The $A^3\Sigma^- - X^3\Pi$ transition of the SiC radical

C. R. Brazier
Astronautics Laboratory/LSX, Edwards Air Force Base, California 93523
L. C. O'Brien and P. F. Bernath
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
(Received 14 August 1989; accepted 8 September 1989)

The 0–0 band of the $A^3\Sigma^- - X^3\Pi$ system of SiC, analogous to the Balilik–Ramsay system of C_2, has been observed in emission near 4500 cm$^{-1}$. The internuclear separations (r_0) were found to be 1.813 56 and 1.721 87 Å for the $A^3\Sigma^-$ and $X^3\Pi$ states, respectively.

INTRODUCTION

Last year we reported the first experimental observations of the SiC radical, by detection of the $d^3\Sigma^- - b^1\Pi$ electronic transition. The ground state of this elusive radical now has been well-characterized following the laboratory and astrophysical observation of microwave transitions by Cernicharo, et al. In our earlier paper, we reported the observation of two Q branches near the theoretically predicted position of the $A^3\Sigma^- - X^3\Pi$ transition. The two branches were assigned as Q_1 and Q_2, but due to the low signal-to-noise ratio of the spectrum and high line density, no other branches could be found. A complete set of experimental and theoretical references to previous work on SiC is provided in our previous paper.

Since our last report, we have tried to obtain spectra of SiC with better signal to noise, but without success. SiC is a difficult species to produce. The microwave transitions tied down the ground state constants and using this information, it was possible to obtain absolute J quantum number assignments for the two previously identified branches. Using this information, many other branches were found and a full rotational analysis of the $A^3\Sigma^- - X^3\Pi$ system obtained.

EXPERIMENTAL

The $A^3\Sigma^- - X^3\Pi$ system of SiC was observed in the same Fourier transform spectrum as the $d^3\Sigma^- - b^1\Pi$ system. The spectrum was observed in emission from a composite wall hollow cathode (1:3 SiC powder to copper powder) and recorded with the McMath Fourier transform spectrometer at the National Solar Observatory at Kitt Peak. A total of 69 scans were co-added in 8.3 h at a resolution of 0.02 cm$^{-1}$ using InSb detectors and a silicon filter. This gave a bandpass of 1800–9000 cm$^{-1}$.

The spectrum consisted primarily of C_2 lines, but two bands with a rotational spacing characteristic of SiC were observed. Absolute calibration of the spectrum was obtained from the Ne atomic lines, which have been calibrated against OH in an OH–Ne spectrum. The absolute accuracy of the line positions is about ± 0.002 cm$^{-1}$.

RESULTS AND ANALYSIS

Figure 1 shows a section of the spectrum near the strongest lines of the two previously identified branches Q_1 and Q_2. It is immediately apparent why this system was unanalyzable without the help of microwave constants. The spectrum is very congested and the signal-to-noise ratio is quite low, about 5 to 1 for the Q_1 and Q_2 lines. The Q_1 and Q_2 branch lines were fitted to a $^3\Sigma^- - ^3\Pi$ Hamiltonian with the ground state constants held fixed to those of Cernicharo et al. By varying the excited state constants T, B, D, and γ, it was possible to fit either branch with any reasonable J assignment; however, only for one assignment could both branches be described using the same set of constants.

A spectrum prediction program, using the intensity formulas of Budo, was used to predict the positions of the connecting P_1, R_1, P_3, and R_3 branches. Lines for all four branches were found in the predicted positions confirming the J assignment of the Q_1 and Q_2 branches. These lines were all very weak, having a signal-to-noise of 3 to 1 or less as was predicted by the intensity formulas.

The Q_2 lines were predicted with a signal-to-noise ratio of about 3 to 1. The F_2 energy levels are quite sensitive to the value of λ in the $^3\Sigma^-$ state, but the spacing between the Q_2 lines could be predicted accurately and by matching the predicted spacings with the spectrum, an assignment was obtained. The P_2 and R_2 lines were also observed and added to the data set.

The $A^3\Sigma^- - X^3\Pi$ system of SiC is a Hund’s case (b)—case (a) transition and, in principle, all 27 possible branches have reasonable intensities. The calculated intensities for the four Q-type satellite branches are comparable to those for the other newly assigned lines, and using the prediction these branches were picked out and assigned. The remaining satellite branches are predicted to have an intensity about of at least a factor of 2 less than the weakest of the ones previously assigned and, while some lines could be seen in the spectrum, the signal-to-noise ratio was poor and they were not measured.

A total of 393 lines from 13 branches were assigned and fitted to a $^3\Sigma^- - ^3\Pi$ Hamiltonian. The line positions and residuals are available through PAPS or directly from the authors. The effective Hamiltonian for a $^3\Sigma^-$ state is given

by Zare et al.,7 while Brown and Merer8 give the $^3\Pi$ Hamiltonian. Explicit matrix elements for both states are given by Brazier et al.9 The microwave data of Cernicharo et al.2 were included in the fit and weighted according to their estimated precision. The Fourier transform data were weighted according to the signal to noise of the lines. The Q_0 and Q_3 branches are estimated to have a precision of 0.003 cm\(^{-1}\), the P_1, R_1, P_3, R_3, Q_2, Q_{12}, Q_{23}, Q_{12}, and Q_{21} branches 0.005 cm\(^{-1}\) and the P_2 and R_2 branches 0.007 cm\(^{-1}\). Some low and high J rotational lines were deweighted slightly and 32 lines were deweighted because of blending. The constants from our final fit are reported in Table I.

DISCUSSION

We have analyzed a single vibrational band of the $A^1\Sigma^+\rightarrow X^3\Pi$ system of SiC. The ground vibrational level is clearly $v = 0$ from the microwave observations,2 but the excited state vibrational assignment is not immediately obvious. The Franck–Condon factors for this transition were calculated from the constants obtained, assuming assignment to the 0–0 band. The vibrational frequencies determined from the Kratzer relation5 $D = 4B^3/\omega_x^2$ are $\omega_x = 965$ cm\(^{-1}\) for $X^3\Pi$ and $\omega_x = 861$ cm\(^{-1}\) for $A^1\Sigma^+$. By looking at similar molecules, values for ω_x, x, of 5 and 4 cm\(^{-1}\) for the X

<table>
<thead>
<tr>
<th>Constant</th>
<th>$X^3\Pi$</th>
<th>$A^1\Sigma^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_x</td>
<td>1.351 34 (38)</td>
<td>1.327 45 (33)</td>
</tr>
<tr>
<td>B_0</td>
<td>0.677 054 474 (25)</td>
<td>0.677 054 457 (33)</td>
</tr>
<tr>
<td>$D_0 \times 10^6$</td>
<td>1.258 (10)</td>
<td>(2.68 (12))</td>
</tr>
<tr>
<td>$\gamma_0 \times 10^6$</td>
<td>-0.032 68 (30)</td>
<td>-0.032 68 (33)</td>
</tr>
<tr>
<td>$\gamma_{10} \times 10^6$</td>
<td>2.401 (33)</td>
<td>2.401 (33)</td>
</tr>
<tr>
<td>$\gamma_{20} \times 10^6$</td>
<td>6.240 (67)</td>
<td>6.240 (67)</td>
</tr>
<tr>
<td>$\gamma_{30} \times 10^6$</td>
<td>(3.43 (12))</td>
<td>(3.43 (12))</td>
</tr>
<tr>
<td>A_0</td>
<td>41.630 31 (44)</td>
<td>41.630 54 (43)</td>
</tr>
<tr>
<td>$\omega_0 \times 10^4$</td>
<td>(0.896 41 (34))</td>
<td>(0.890 82 (20))</td>
</tr>
<tr>
<td>$\omega_{00} \times 10^6$</td>
<td>(-1.85 (29))</td>
<td>(-1.85 (29))</td>
</tr>
<tr>
<td>$\rho_0 \times 10^3$</td>
<td>4.538 07 (78)</td>
<td>4.403 (33)</td>
</tr>
<tr>
<td>$\rho_{0} \times 10^3$</td>
<td>(-3.57 (30))</td>
<td>(-3.57 (30))</td>
</tr>
</tbody>
</table>

aThis work.
bReference 2.
and A states, respectively, were estimated. From these $\omega_x x_x$ values, α_x's of 0.0049 and 0.0041 cm$^{-1}$ were calculated from the Pekeris relation $\alpha_x = 6\sqrt{\omega_x x_x} B_x / \omega_x - 6B_x^2 / \omega_x$. The Franck–Condon factors for the 0–1, 0–0, and 1–0 bands were found to be 0.4, 0.5, and 0.4, respectively. This implies that more than one band should be seen. An additional weak band showing dense structure characteristic of SiC was found about 900 cm$^{-1}$ to the red, but no significant structure could be seen to the blue. If the analyzed band is 0–0, then this adjacent band is 0–1. The intensity of the adjacent band is a factor of 2 to 3 less than the 0–0 band as predicted by the v' dependence of the emission intensity. The very poor signal-to-noise ratio of the spectrum (less than 2), together with interference from extensive atmospheric CO$_2$ absorption, makes it impossible to pick out any structure in this band. The 1–0 band would be expected to have 1.5 times the intensity of the origin system if the vibrational populations in $v = 0$ and $v = 1$ were equal. However, no sign of emission from $v = 1$ was seen in the $d' \Sigma^+ - b' \Pi$ system, implying a fairly low vibrational temperature. A vibrational temperature of \sim1000 K compared to the \sim600 K rotational-temperature would be required to see the 1–0 band. The only alternative assignment of the observed spectrum to the 1–0 band would imply a 2–1 band of at least comparable intensity to the blue where none is seen. From this evidence, we are reasonably confident that we have observed the 0–0 band of the $A \ ^3\Sigma^- - X \ ^3\Pi$ system of SiC.

The bond lengths obtained $r_0 = 1.721$ 87 Å and $r_0 = 1.81356$ Å for the $X \ ^3\Pi$ and $A \ ^3\Sigma^-$ states are in very good agreement with the theoretical r_0 values of 1.726 and 1.810 Å, respectively. The theoretical T_∞ value of 3600 cm$^{-1}$ compares reasonably well with the experimental value of 4578 cm$^{-1}$. The ab initio T_∞ value of Bauschlicher and Langhoff10 is 3700 cm$^{-1}$.

The ground molecular constants (Table I) which we derived from our analysis are in good agreement with the values of Cernicharo et al.3 This is not surprising since the microwave data was included in our final fit. The optical data allows the determination of some additional higher order constants such as λ_d and α_d. The optical data also directly determine the spin–orbit constant A_o, which is only indirectly determined from spin uncoupling effects in the pure rotational microwave data. In summary, the $X \ ^3\Pi$ constants of Table I should be slightly better than those reported by Cernicharo et al.3 The constants for the $A \ ^3\Sigma^-$ state are determined for the first time.

CONCLUSION

We have analyzed the origin band of the $A \ ^3\Sigma^- - X \ ^3\Pi$ system of SiC. The band is very weak, presumably due to the difficulty in making SiC and was only analyzable with the aid of ground state microwave constants.

ACKNOWLEDGMENTS

The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. We thank J. Wagner and G. Ladd for assistance in acquiring the SiC spectrum. Acknowledgment is made to the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work. Support was also provided by the Air Force Astronautics Laboratory, Grant No. F04611-87-0020. We thank C. Gottlieb for a copy of Ref. 2 in advance of publication. These microwave data were the key to our analysis.

6. See AIP document no. PAPS JCP-91-7384-4 for 4 pages of measured line positions of the 0–0 band of the $A \ ^3\Sigma^- - X \ ^3\Pi$ transition of SiC. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, 335 East 45th Street, New York, NY 10017. The price is $1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.