Fourier Transform Emission Spectroscopy of the $A^{1}\Sigma^{+} - X^{1}\Sigma^{+}$ Transition of CuD

The $A^1\Sigma^+ - X^1\Sigma^+$ transition of CuD near 4300 Å was previously recorded by Heimer (1), Jeppesen (2), and Ringström (3). Many of the excited vibrational levels of the $A^1\Sigma^+$ state are perturbed (3) and, for CuH, display some evidence of predissociation by a ${}^{3}\Sigma^+$ state (4, 5).

The CuH molecule is of astrophysical interest. Hauge (6) observed the $A^{1}\Sigma^{+}-X^{1}\Sigma^{+}$ transition in the spectrum of a sunspot. CuH was also tentatively identified in the spectrum of the star 19 Piscium (7).

In the course of our work on BD, we identified the 0–0, 0–1, and 1–1 bands of the $A^{1}\Sigma^{+}-X^{1}\Sigma^{+}$ transition of CuD. These Fourier transform data provide much improved spectroscopic constants for ⁶³CuD and ⁶⁵CuD including rotational constants and a value for $\Delta G_{1/2}$ in the ground state. The new CuD ground state constants complement our recent observations of the vibration–rotation spectrum of CuH (8).

The CuD molecule was made in a hollow cathode discharge. In this experiment, a 1:3 mixture of B_4C powder and copper powder was pressed and drilled to form a hollow cathode. The composite-wall hollow cathode was operated at 400 mA with a flow of 1.6 Torr of Ar gas and 35 mTorr of D_2 gas.

The emission from the hollow cathode was observed with the McMath Fourier transform spectrometer of the National Solar Observatory at Kitt Peak. 33 scans were coadded in 1.5 hr of integration with an unapodized resolution of 0.05 cm^{-1} .

A prism monochromator, acting as a filter, limited the wavelength response of the cooled GaAs photomultiplier detectors to approximately 21 700-24 000 cm⁻¹. The spectra were calibrated to an absolute accuracy of about 0.002 cm⁻¹ with the Ar⁺ atomic line positions of Norlen (9).

The line positions were determined from the spectrum by a data-reduction program, PC-DECOMP, developed at Kitt Peak. This program fits the spectral features with Voigt lineshape functions to determine

FIG. 1. The *R*-branch for the 0–0 band of the $A^{1}\Sigma^{+} - X^{1}\Sigma^{+}$ transition of CuD.

0022-2852/90 \$3.00 Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved.

	T	A	BL	Æ	I
--	---	---	----	---	---

⁶³ CuD					65(CuD		
J	P(J)	0-Cª	R(J)	0-C	P(J)	0-C	R(J)	0-C
			c	- 1 Ba	nd			
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 1 12 1 12 1 12 1 12 1 12 1 12	21971.9987 21963.3597 21953.8628 21943.5342 21932.3709 21920.3627 21907.5451 21893.9002	-115 -26 -78 -8 -8 -107 -39 -34	21986.7598 21992.8541 21998.0969 22002.4786 22006.0019 22008.6619 22011.4557 22010.6709 22009.0121 22006.4886 22003.1008 21998.8616 21998.8616 21998.77936 21987.7936 21987.7935 21987.7935 21987.773.3009 21973.3009	-4 -22 6 24 24 17 37 -47 48 40 17 -24 32 22 -10 22 19 -5 -45 10 -188	21972.6524 21964.0054 21954.5137 21944.1931 21933.0266 21921.0473 21908.2395 21894.6030	-95 17 -78 -71 -102 -63 -108	21987.3806 21993.4744 21998.7099 22003.0837 22006.6129 22009.2583 22011.0521 22011.9864 22012.0533 22011.2637 22007.0922 22003.7115 21999.4693 21994.3687 21988.4096 21981.5978 21975.978 21975.82463	21 57 61 23 131 - 14 - 4 - 37 - 37 - 37 - 3 41 29 24 10 - 18 - 12 - 64 71 - 18 - 64 - 72 - 4
			1	- 1 Ba	ind			
0123456789011231456789011231456789011231456789011231456789012212	$\begin{array}{c} 23142.6158\\ 23133.7746\\ 23123.9118\\ 23113.0184\\ 23101.0996\\ 23088.1718\\ 23074.2268\\ 23059.2753\\ 23043.3137\\ 23026.3636\\ 23008.4188\\ 22999.4879\\ 22969.4879\\ 22969.5795\\ 22948.6928\\ 22926.8509\\ 22904.0452\\ 22880.2884\\ 22855.5852\\ 22829.9496\\ 22803.5852\\ 22829.9496\\ 22803.3800\\ 22775.8839\\ 22775.8839\\ 22775.8839\\ 22775.401\\ 22775.8839\\ 22775.8839\\ 22775.291\\ 2275.8839\\ 2275.291$	36 -30 -24 -23 -17 -45 -45 -45 -7 -3 -8 0 -50 4 6 14 22 37 -20	23157.1765 23162.8990 23167.5823 23171.2159 23173.7967 23175.8276 23175.2693 23175.2693 23173.6544 23162.4941 23162.4941 23156.6719 23149.8002 23141.8725 23132.8981 23122.8731 23129.6869 23086.5273 23072.3260 23057.0894	10 9 42 31 -37 5 -4 37 30 -8 2 -7 2 31 6 9 -11 10 -21 -20 -30 -14	23142.7131 23133.8873 23124.0345 23113.1499 23101.2488 23088.3264 23074.3964 23074.3964 23059.4532 23043.5111 23026.5831 23008.6536 22989.7376 22969.8462 22948.9916 22974.3760 2280.6401 2285.9623 22803.3452 22803.3452	14 15 40 3 18 -33 -46 -47 27 -14 -30 37 -19 -18 -28 -20 -38 -20 -38 -22 -5 -2	23157.2671 23162.9748 23167.6613 23171.2746 23173.8703 23175.8906 23175.8906 23175.3296 23175.3296 23173.7297 23171.0558 23162.5800 23156.7662 23149.9056 23141.9841 23133.0202 23123.0043 23111.9513 23099.8488 23086.7009 23072.5161 23057.2884	64 -30 81 98 65 -54 65 -45 13 3 -8 15 15 18 -20 20 -13 4 -11

The Observed Line Positions for the $A^{1}\Sigma^{+}-X^{1}\Sigma^{+}$ Transition of CuD (in cm⁻¹)

 $^{\rm a}$ Observed minus calculated line positions using the constants of Table II (in units of $10^{-4}~{\rm cm}^{-1})$.

the peak positions. Because the spectrum was slightly under-resolved, most of the strong lines produced ringing. A special option in PC-DECOMP called "filtered fitting" was used to improve the resolution by removing the effect of the instrumental sinc function lineshape.

Lines for ⁶³CuD and for ⁶⁵CuD were measured for 0–0, 1–1, and 0–1 bands of the $A^{1}\Sigma^{+}-X^{1}\Sigma^{+}$ transition and are listed in Table I. Part of the *R* head of the 0–0 band is shown in Fig. 1. The observed linewidth of the CuD lines was approximately .095 cm⁻¹ and the transitions were easily assigned with the help of Jeppesen's work (2).

Copper has two stable isotopes, 63 Cu and 65 Cu (69.2 and 30.8%). At higher J values a doublet pattern due to the two isotopomers was observed in the 0–0 and 1–1 bands. In the 0–1 band, the lines from the two isotopomers were well separated.

All of the lines for the 0-0, 1-1, and 0-1 vibrational bands were fitted together for each isotopomer using the customary energy level expression

$$F(J) = v_0 + BJ(J+1) - D[J(J+1)]^2 + H[J(J+1)]^3.$$

		63 C	uD			65 Cu	ıD		
J	P(J)	0-C	R(J)	0-C	P(J)	0-C	R(J)	0-C	
	0 - 0 Band								
0123456789011121145167189012222222222222331223345677890	23318.0446 23309.0252 23298.9912 23287.9195 23262.7362 23264.6259 23233.5056 23217.3942 23200.2916 23182.2071 23163.1408 23122.1028 23143.1038 23122.1028 23143.1038 23122.1028 23100.1445 23077.2406 23053.3981 23028.6229 23002.9250 23002.9250 23092.9250 23092.9250 23094.175 22948.7964 22979.0017 22860.9256 22798.0017 22860.9256 22798.0017 22860.9256 22622.0808 22599.2416 22551.6434 22551.6434 22551.6434 22551.6434 22551.2645 22474.1155 22434.2128 22552.1641 22552.1641	$\begin{array}{c} 12\\ -27\\ 65\\ 16\\ 38\\ 42\\ -27\\ -23\\ 15\\ 200\\ 6\\ 14\\ 307\\ 19\\ -43\\ 307\\ 19\\ -43\\ 40\\ 7\\ -17\\ -46\\ -53\\ -16\\ -32\\ 14\\ 22\\ 26\\ -8\\ 24\\ 9\\ -35\\ \end{array}$	23332.9764 23338.8887 23343.7601 23347.5898 23350.3760 23352.1155 23352.8118 23351.0631 23348.6193 23345.1289 23340.5941 23345.1289 23340.5941 23320.7278 23320.7278 23320.2839 23291.5114 23297.5128 23226.8883 2325.3879 2328.1680 23222.2832 23205.3879 23187.4911 23168.8888 23148.6911 23165.9195 23083.0701 23059.2343 23034.4286 23008.6536 22961.9304 22954.2316 22954.2316 22954.2316	$\begin{array}{c} -10\\ -9\\ -17\\ -22\\ -42\\ -30\\ -30\\ -19\\ -19\\ -19\\ -7\\ 2\\ 18\\ -44\\ 42\\ 25\\ -20\\ -39\\ 6\\ 2\\ 28\\ -31\\ -44\\ -11\\ -18\\ -13\\ -9\\ -63\\ 27\\ 17\\ 23\\ -39\\ 6\\ -34\\ -11\\ -40\\ \end{array}$	23318.0539 23309.0474 23299.0092 23287.9555 23275.8843 23262.8015 23248.7055 23233.6065 23217.5130 23200.4256 231182.3513 23163.3007 23143.2794 23122.3056 23100.3759 23077.4894 23053.6635 23028.9123 23003.2420 22976.6573 22949.1647 22920.7835 22949.1647 22920.7835 22949.1647 22920.7835 22949.1647 22920.7835 2289.3641 22798.5068 22732.2648 22697.8957 22626.7302 22689.9517 22552.3783 22514.0318 22474.9233 22435.0472 2339.4384	$\begin{array}{c} -12\\ -36\\ -6\\ 42\\ 41\\ 359\\ 49\\ 49\\ -46\\ 25\\ 86\\ 48\\ 3\\ 5\\ 29\\ -12\\ -55\\ -26\\ -35\\ 15\\ -13\\ 15\\ -13\\ 15\\ -13\\ -14\\ -46\\ 5\\ 50\\ -59\\ \end{array}$	23332.9764 23338.8807 23343.7474 23347.5748 23350.3590 23352.0961 23352.7923 23351.0449 23346.6016 23345.1155 23340.8388 23335.0093 23328.3914 23320.7403 23328.3914 23320.7403 23328.3914 23320.7403 23328.3914 23320.7403 23328.2378 232291.5597 232291.5597 232291.5597 23228.2224.4092 23205.5341 23148.76476 23168.7628 23148.8902 23128.0226 23166.1686 23059.5246 23034.7439 23099.0020 22926.0244	$\begin{array}{c} 20\\ -20\\ -10\\ -3\\ -24\\ -9\\ -9\\ -20\\ -80\\ -11\\ -3\\ -9\\ -53\\ -11\\ 15\\ -29\\ -53\\ 321\\ -14\\ -49\\ -5\\ -51\\ -26\\ -28\\ -23\\ -23\\ -23\\ -23\\ -23\\ -23\\ -23\\ -23$	

TABLE I-Continued

TABLE II

Molecular Constants for the $A^{1}\Sigma^{+} - X^{1}\Sigma^{+}$ Transition of CuD (in cm⁻¹).

	$X^{1}\Sigma^{*}$		$A^{1}\Sigma^{*}$		
Constant	v = 0	v = 1	v = 0	v = 1	
······		⁶³ CuD			
T _v	0.0	1346.2171(12)	23326.02770(64)	24496.6296(14)	
B _v	3.992396(20)	3,900452(31)	3.475075(20)	3.381743(34)	
D, 104	1.36296(27)	1.3485(12)	1.20200(28)	1.2149(13)	
H _v 10 ⁹	2.819(11)	2.69(16)	1.565(11)	8.5(16)	
		⁶⁵ CuD			
Tv	0.0	1345.5958(15)	23326.03150(83)	24496.1001(19)	
B _v	3.988482(27)	3.896603(44)	3.471678(28)	3.378417(47)	
D _v 10 ⁴	1.35903(43)	1.3429(16)	1.19831(47)	1.2085(18)	
Н _и 10 ⁹	2.785(19)	2.62(22)	1.535(22)	5.8(23)	

Note. One standard deviation uncertainty is enclosed in parentheses.

NOTES

The molecular constants from our two fits are provided in Table II. These constants are in reasonable agreement with less accurate previous values.

ACKNOWLEDGMENTS

The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. We thank J. Wagner, C. Plymate, and G. Ladd for assistance in recording the spectra. Acknowledgment is made to the Petroleum Research Fund, administered by the American Chemical Society, for the support of this work.

REFERENCES

- 1. T. HEIMER, Naturwissenschaften 23, 372 (1935).
- 2. M. A. JEPPESEN, Phys. Rev. 50, 445-449 (1936).
- 3. U. RINGSTRÖM, Ark. Fys. 32, 211–239 (1966).
- 4. G. HERZBERG AND L. G. MUNDIE, J. Chem. Phys. 8, 263-273 (1940).
- 5. B. KLEMAN, Ark. Fys. 6, 17-24 (1953).
- 6. Ö. HAUGE, Astron. Astrophys. 10, 73-75 (1971).
- 7. R. S. WOJSLAW AND B. F. PERRY, JR, Astrophys. J. Suppl. 31, 75-92 (1976).
- 8. R. S. RAM, P. F. BERNATH, AND J. W. BRAULT, J. Mol. Spectrosc. 113, 269-274 (1985).
- 9. G. NORLEN, Phys. Scripta 8, 249-268 (1973).

W. T. M. L. FERNANDO L. C. O'BRIEN¹ P. F. BERNATH²

Department of Chemistry The University of Arizona Tucson, Arizona 85721 Received October 10, 1989

¹ Current address: Food and Drug Administration, Division of Drug Analysis, 1114 Market St., St. Louis, Missouri 63101.

² Alfred P. Sloan fellow; Camille and Henry Dreyfus teacher-scholar.