High-Resolution Laser Excitation Spectroscopy of the $\tilde{B}^2 \Sigma^+ - \tilde{X}^2 \Sigma^+$ System of Jet-Cooled SrOD

C. Zhao, P. G. Hajigeorgiou, P. F. Bernath, and J. W. Hepburn

Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received September 12, 1995

The high-resolution laser excitation spectrum of the 001–000 and 000–000 bands of the $\tilde{B}^2\Sigma^+ - \tilde{X}^2\Sigma^+$ transition of SrOD was recorded. The SrOD molecules were made by pulsed laser ablation of Sr metal followed by reaction with D₂O. Sub-Doppler resolution and rotational cooling were achieved by expansion into vacuum and excitation with a cw dye laser perpendicular to the molecular beam. A molecular linewidth of 200 MHz and the lack of spectral congestion allowed a Q branch to be detected. Spin–orbit mixing between the $\tilde{A}^2\Pi$ and $\tilde{B}^2\Sigma^+$ states caused the unusual appearance of a moderate intensity Q branch in a nominally parallel ${}^2\Sigma^+ - {}^2\Sigma^+$ transition. From the relative intensities of the rotational lines, the ratio of the perpendicular to the parallel transition dipole moment was found to be 0.2 to 0.3. © 1996 Academic Press, Inc.

I. INTRODUCTION

In recent years, there has been a surge of interest in the alkaline earth monohydroxide molecules. For SrOH and SrOD, the pioneering work was the rotational analysis of the 000–000, 001–001, and 010–010 bands of the $\tilde{B}^2\Sigma^+$ – $\tilde{X}^2\Sigma^+$ transition by Nakagawa *et al.* in 1983 (*1*). Since then, the 000–000 band of the $\tilde{A}^2\Pi-\tilde{X}^2\Sigma^+$ transition of SrOH has

been analyzed (2), followed by work on additional bands of the $\tilde{A}-\tilde{X}$ (3) and $\tilde{B}-\tilde{X}$ (4) transitions. Microwave (5) and millimeter-wave (6, 7) spectra of SrOH are available and the dipole moments in the \tilde{X}, \tilde{A} , and \tilde{B} states were determined from the Stark effect in a molecular beam (8). Semiempirical calculations based on a modified Rittner model (9) and ligand field theory (10) have been used to predict energy levels and dipole moments.

FIG. 1. A block diagram of the experimental apparatus.

FIG. 2. A portion of the high-resolution spectrum showing *P* and *R* branches of the 000-000 band of the $\tilde{B}^2\Sigma^+ - \tilde{X}^2\Sigma^+$ transition of SrOD.

The previous spectrum of SrOD was recorded in a Broida oven (1) so that the resolution was limited by Doppler broadening and weak Q-branch lines were not seen. In a supersonic jet expansion, the molecules are vibrationally and rotationally cooled in order to simplify the spectrum. The molecular beam is crossed at right angles with a laser beam so that sub-Doppler spectra are obtained. The 000–000 and 001–000 bands of the $\tilde{B}^2\Sigma^+ - \tilde{X}^2\Sigma^+$ system of SrOD were studied in our work. The $\tilde{A}^2\Pi_{1/2}$ and $\tilde{B}^2\Sigma^+$ states are mixed by off-diagonal spin–orbit coupling. The $\tilde{B}^2\Sigma^+ - \tilde{X}^2\Sigma^+$ is nominally a parallel transition which should have very weak Q branches which decrease rapidly in intensity as J increases. However, the $\tilde{A}^2\Pi_{1/2} \sim \tilde{B}^2\Sigma^+$ mixing induces some perpendicular character in the $\tilde{B}-\tilde{X}$ transition

FIG. 3. The portion of the *P* branch of the 000–000 band of the $\tilde{B}^2\Sigma^+ - \tilde{X}^2\Sigma^+$ transition of SrOD showing *Q*-branch lines.

TABLE 1

Line Positions (in cm⁻¹) for the $\tilde{B}^2\Sigma^+(000) - \tilde{X}^2\Sigma^+(000)$ Band of SrOD

N Pl	9 16369.7975 -0.0063	43 16354.4190 -0.0067
2 16365.6515 0.0049	10 16370.2804 0.0383	44 16354.2740 0.0001
3 16365,1368 0.0012	11 16370.6845 -0.0010	45 16354.1237 -0.0038
4 16364.6325 0.0025	12 16371.1310 -0.0034	46 16353.9873 0.0007
5 16364.1319 0.0022	13 16371.5808 -0.0077	47 16353 8500 -0.0011
6 16363.6358 0.0011	14 16372.0461 -0.0018	48 16353.7222 0.0010
7 16363.1454 0.0002	15 16372.5094 -0.0033	49 16353 5959 -0 0007
8 16362.6730 0.0120	16 16372 9814 -0.0013	50 16353 4793 0 0017
9 16362.1860 0.0038	17 16373.4537 -0.0043	N R2
10 16361.7160 0.0072	18 16373.9390 0.0004	1 16367.2098 -0.0019
11 16361.2490 0.0082	19 16374.4237 -0.0006	2 16367.7458 0.0016
12 16360.7807 0.0025	20 16374.9158 0.0003	3 16368.2786 -0.0032
13 16360,3263 0.0054	21 16375.4129 0.0010	4 16368.8216 -0.0033
14 16359.8694 0.0003	22 16375.9137 0.0002	5 16369.3697 -0.0036
15 16359.4225 -0.0000	23 16376.4195 -0.0007	6 16369.9241 -0.0030
16 16358,9821 0.0005	24 16376.9314 -0.0009	7 16370.4832 -0.0030
17 16358,5450 -0.0008	N P2	8 16371.0474 -0.0031
18 16358.1183 0.0026	2 16365.3374 0.0024	9 16371.6139 -0.0063
19 16357.7631 0.0722	3 16364.9629 0.0021	10 16372 1926 -0.0026
20 16357 2724 0.0009	4 16364 5934 0 0014	11 16372 7728 -0 0028
21 16356.8597 0.0022	5 16364.2346 0.0060	12 16373 3592 -0 0020
22 16356 4514 0.0025	6 16363 8732 0.0027	13 16373 9506 -0 0015
23 16356.0460 0.0003	7 16363.5160 -0.0017	14 16374 5508 0 0025
24 16355.6511 0.0031	8 16363 1736 0 0031	15 16375 1461 -0 0036
25 16355 2554 -0 0006	9 16362 8390 0 0105	16 16375 7562 -0 0003
26 16354 8695 0 0007	10 16362 5110 0 0190	17 16376 3689 0 0003
27 16354 4889 0 0015	11 16362 1860 0 0252	18 16376 9853 -0 0005
28 16354 1127 0 0013	12 16361 8380 0 0030	N Olef
29 16353 7405 -0 0002	13 16361 5230 0 0083	12 16360 3522 0 0038
30 16353.3757 0.0000	14 16361 1990 -0 0006	13 16359 9025 0 0037
31 16353 0151 -0 0008	15 16360 9060 0 0159	14 16359 4536 -0 0008
32 16352 6616 -0 0001	16 16360 5886 0 0027	15 16359 0171 0 0014
33 16352 3105 -0 0024	17 16360 2904 0 0032	16 16358 5822 0 0000
34 16351 9696 0 0000	18 16359 9958 0 0020	17 16358 1572 0.0030
35 16351 6309 -0.0007	19 16359 7084 0 0025	18 16357 7332 0 0016
36 16351 2959 -0.0032	20 16359 4225 -0 0008	20 16356 8977 -0 0048
37 16350.9717 -0.0004	21 16359.1490 0.0028	21 16356 4990 0 0028
38 16350.6488 -0.0018	22 16358 8720 -0.0025	22 16356.0958 0 0006
39 16350.3352 0.0006	23 16358 6072 -0.0010	23 16355 7032 0.0035
40 16350.0248 0.0009	24 16358 3487 0 0012	24 16355 3101 0 0005
41 16349.7189 0.0001	25 16358 0881 -0 0039	25 16354 9256 0 0007
42 16349 4194 0.0004	26 16357 8424 0 0003	26 16354 5472 0 0015
43 16349.1239 -0.0008	27 16357.6000 0.0024	27 16354.1728 0.0009
44 16348 8379 0.0019	28 16357 3595 0 0010	28 16353 8020 -0 0015
45 16348.5538 0.0011	29 16357.1239 -0 0008	29 16353 4401 -0 0004
46 16348.2736 -0.0011	30 16356.8976 0.0010	30 16353 0827 -0.0003
47 16348.0040 0.0016	31 16356.6756 0.0017	31 16352 7305 -0.0005
48 16347.7337 -0.0017	32 16356.4513 -0 0051	32 16352 3793 -0 0051
49 16347.4732 -0.0007	33 16356.2453 0.0007	33 16352.0425 -0.0007
50 16347.2210 0.0030	34 16356.0459 0.0077	N Olfe
N R1	35 16355.8376 0.0004	11 16372.1704 -0.0017
2 16366.8911 0.0058	36 16355.6510 0.0093	12 16372.7496 -0.0007
3 16367.2867 0.0005	37 16355.4537 0.0021	13 16373.3324 -0.0013
4 16367.6962 0.0037	38 16355.2655 -0.0014	14 16373.8896 -0.0328
5 16368.0986 -0.0054	39 16355.0861 -0.0017	15 16374.5189 0.0025
6 16368.5166 -0.0044	40 16354.9255 0.0114	16 16375.1119 -0.0037
7 16368.9412 -0.0021	41 16354.7461 0.0002	17 16375.7193 -0.0009
8 16369.3697 -0.0012	42 16354.5834 0.0003	

Note. The table shows $\nu_{\rm obs}$ and the residuals, $\nu_{\rm obs}$ – $\nu_{\rm calc}$

TABLE 2

Line Positions (in cm⁻¹) for the $\tilde{B}^2\Sigma^+(001) - \tilde{X}^2\Sigma^+(000)$ Band of SrOD

	·····	······
N Pl	17 16896.7066 -0.0005	26 16880.6474 0.0016
2 16889.3002 0.0014	18 16897.1420 0.0015	27 16880.3359 0.0026
3 16888.7894 0.0044	19 16897.5773 0.0009	28 16880.0243 0.0007
4 16888 2777 0.0037	20 16898 0116 -0 0033	29 16879.7163 -0.0004
5 16887 7692 0.0034	21 16898 4574 0 0012	30 16879 4122 -0.0005
6 16887.7692 0.0054	21 10090.4574 0.0012	31 16879 1117 0 0001
6 16887.2062 0.0000	22 10898.9022 0.0022	22 16879.1117 0.0001
/ 16886.7579 0.0005	25 16899.5456 -0.0008	32 10878.8141 0.0009
8 16886.2566 -0.0007	24 16899.7956 0.0000	33 168/8.51/4 -0.0002
9 16885.7600 0.0000	25 16900.2476 0.0003	34 16878.2188 -0.0061
10 16885.2648 -0.0008	26 16900.7009 -0.0007	35 16877.9318 -0.0033
11 16884.7716 -0.0022	27 16901.1586 0.0000	36 16877.6482 0.0000
12 16884.2860 0.0010	28 16901.6203 0.0021	37 16877.3591 -0.0048
13 16883.8036 0.0048	29 16902.0793 -0.0012	38 16877.0800 -0.0026
14 16883 3195 0 0042	30 16902.5450 0.0000	41 16876.2504 -0.0054
15 16882 8349 0.0002	31 16903 0139 0 0014	42 16875.9775 -0.0084
16 16882 3551 0 0016	32 16903 4854 0 0030	
10 10882.3331 -0.0010	32 16003 0400 0 0040	N P2
1/10881.8814 -0.0003	33 10903.9499 -0.0049	
18 16881.4109 0.0014	34 16904.4309 0.0009	
19 16880.9395 -0.0004	35 16904.9109 0.0033	2 10891.3709 -0.0041
20 16880.4732 -0.0000	36 16905.389 0.0011	3 16891.9081 -0.0003
21 16880.0088 -0.0005	37 16905.8718 0.0012	4 16892.4387 0.0001
22 16879.5479 -0.0003	38 16906.3546 -0.0013	5 16892.9694 -0.0019
23 16879.0891 -0.0008	39 16906.8453 0.0015	6 16893.5045 -0.0024
24 16878.6323 -0.0021	40 16907.335 0.0007	7 16894.0394 -0.0057
25 16878,1792 -0.0025	41 16907.8275 0.0003	8 16894.5799 -0.0061
26 16877 7286 -0 0033	42 16908 3238 0.0011	9 16895,1272 -0.0024
27 16877 2818 -0 0031	43 16908 823 0 0023	10 16895.6681 -0.0078
29 16976 9390 -0.0026	44 16909 3218 0 0006	11 16896 2109 -0 0014
28 10870.8380 -0.0020	45 16000 8225 0.0016	12 16896 7550 -0 0215
29 10870.3982 -0.0011	45 16909.8225 -0.0010	12 16807 2680 -0.0628
30 16875.9611 0.0003	40 10910.3280 -0.0011	14 16907 0202 0 0223
31 16875.5238 -0.0011	47 16910.8386 0.0008	14 10897.9202 0.0323
32 16875.0904 -0.0016	48 16911.3494 0.0011	15 16898.4374 0.0098
33 16874.6626 0.0006		16 16899.0203 0.0104
34 16874.2339 -0.0009	N P2	17 16899.5835 0.0086
35 16873.8129 0.0025	2 16888.9835 -0.0012	18 16900.1508 0.0082
36 16873.3874 -0.0014	3 16888.6067 0.0012	19 16900.7045 -0.0082
37 16872.9705 0.0004	4 16888.2286 -0.0003	20 16901.2899 0.0041
38 16872.5524 -0.0018	5 16887.8517 -0.0034	21 16901.8658 0.0045
39 16872.1389 -0.0022	6 16887.4815 -0.0025	22 16902.4432 0.0037
40 16871.7306 -0.0004	7 16887.1089 -0.0068	23 16903.0156 -0.0046
41 16871 3221 -0.0015	8 16886.7473 -0.0028	24 16903.6055 0.0017
11100/1.5221 0.0015	9 16886 383 -0.0043	25 16904.1925 0.0027
N PI	10 16886 0206 -0.0067	26 16904 7808 0.0023
1 16900 1275 0 0015	11 16995 6632 0 0069	27 16905 3890 0.0192
1 10890.1373 -0.0013	12 16885.0052 -0.0009	28 16905 9636 0.0000
2 16890.5298 0.0004	12 16885.5084 -0.0072	20 16006 5614 0.0013
4 16891.3161 -0.0018	13 16884.9590 -0.0049	29 16900.3014 0.0013
5 16891.7142 -0.0021	14 16884.5930 -0.0219	30 16907.1614 0.0022
6 16892.1161 -0.0013	15 16884.2052 -0.0636	31 16907.7611 0.0003
7 16892.5228 0.0015	16 16883.9574 0.0319	32 16908.3238 -0.0412
8 16892.9267 -0.0010	17 16883.6001 0.0152	33 16908.9715 -0.0003
9 16893.3393 0.0023	18 16883.2610 0.0138	34 16909.5806 -0.0005
10 16893.7518 0.0029	19 16882.9201 0.0079	35 16910.2017 0.0086
11 16894.1647 0.0012	20 16882.5891 0.0091	36 16910.8073 -0.0002
12 16894,5799 -0.0008	21 16882.2558 0.0052	37 16911.4256 0.0009
13 16895.0033 0.0026	22 16881.9275 0.0035	38 16912.0424 -0.0018
14 16895 4258 0 0025	23 16881 6035 0 0032	39 16912.6662 -0.0001
15 16895 8499 0 0013	24 16881 2805 0 0012	41 16913.9366 0.0183
16 16896 2756 _0 0000	25 16880 9627 0 0015	42 16914 5526 0 0046
10 100/0.2730 -0.0009	25 10000.7027 0.0015	.2 10/11/0/20 0.0010

Note. The table shows $\nu_{\rm obs}$ and the residuals, $\nu_{\rm obs}$ – $\nu_{\rm calc}$

TABLE 3Molecular Constants for SrOD (in cm⁻¹)

$\widetilde{X}^{2}\Sigma^{+}(000)$	$\widetilde{B}^{2}\Sigma^{+}(000)$	$\widetilde{B}^{2}\Sigma^{+}(001)$
0.22531615(82)	0.227992(24)	0.226681(45)
1.66514(89)E-7	1.6930(46)E-7	1.6833(72)E-7
0.00219960(17)	-0.129270(92)	-0.129510(32)
-	16366.0983(01)	16889.7505(08)
	$\tilde{X}^{2}\Sigma^{+}(000)$ 0.22531615(82) 1.66514(89)E-7 0.00219960(17) -	$\widetilde{X}^2 \Sigma^+(000)$ $\widetilde{B}^2 \Sigma^+(000)$ 0.22531615(82)0.227992(24)1.66514(89)E-71.6930(46)E-70.00219960(17)-0.129270(92)-16366.0983(01)

and enhances the intensity of the Q branches. By comparing the intensities of the P, Q, and R branches, it is possible to deduce the ratio of the parallel to the perpendicular transition dipole moment.

With the exception of the millimeter-wave work (6) on SrOD, all of the recent studies have concentrated on SrOH. We report here on the analysis of the 001-000 and 000-000 bands of SrOD, recorded in order to test a new laser ablation spectrometer.

II. EXPERIMENTAL

The block diagram of the experimental apparatus is given in Fig. 1. The apparatus had two separately pumped chambers in order to produce a collimated supersonic beam. The ablation source chamber was pumped by a 10-in. diffusion pump (250/2000 Edwards), while the detection chamber was pumped by a 4-in. diffusion pump (100/300 Edwards). The supersonic molecular beam was produced by a homemade piezo-driven pulsed valve and collimated by a 3-mm-diameter stainless-steel skimmer located 3 cm from the nozzle (5, 8). The second harmonic (532 nm) of a 10 Hz pulsed Nd/ YAG laser was used to vaporize the metal. The beam was formed by expansion of 2.7 atm (40 psi) of helium flowing over liquid D₂O. The stainless-steel nozzle can accept a metal sample rod with a diameter up to 8 mm. This rod was rotated and translated during the experiment. The ablation laser was weakly focused onto the sample and entered the sample holder through a 1-mm hole. The expansion channel was about 1 mm in diameter and 10 mm long.

The signal was detected by monitoring the laser-induced fluorescence (LIF) produced by the molecular beam when it intersected the probe laser beam from a cw-ring dye laser 12 cm downstream from the skimmer. A Hamamatsu photo-multiplier tube (R943-02) was aligned perpendicular to both the molecular beam and the probe laser beam, and the LIF was collected through a lens assembly. A narrow bandpass filter (40 nm) centered at the laser frequency was used for the 000–000 transition. A bandpass filter (40 nm) centered on the 001–001 transition and a red-pass filter were used for 001–000 transition, and in this way a much better signal-to-noise ratio was obtained. The bandpass filter was very

effective at eliminating most of the plasma radiation from the ablation source. A boxcar integrator was used to process the LIF signal. A time "window" of 20 μ sec was opened after a 100 μ sec delay from when the ablation laser fired. To increase the signal-to-noise ratio, the scan time of the ring dye laser was set such that at least five pulses were averaged for each frequency point. Therefore, 100 sec was needed for each 10 GHz scan using 50 MHz steps.

The Coherent Autoscan 699-29 dye ring laser was calibrated with the I₂ lines (11) recorded at the same time during the experiment. The absolute accuracy of the line positions is about 0.003 cm⁻¹.

III. RESULTS AND DISCUSSION

The analysis of the 001–000 and 000–000 bands of the $\tilde{B}^2\Sigma^+ - \tilde{X}^2\Sigma^+$ transition of SrOD was straightforward with the help of the previous work (*I*). As a result of rotational cooling, the first few lines and the band origin were easily located (Fig. 2). The line positions of the two bands were measured with a program called Decomp and are reported in Tables 1 and 2.

The line positions were fitted using the standard N^2 Hamiltonian evaluated using Hund's case (*a*) basis functions (12). The 001–000 and 000–000 bands, and the pure rotational transitions (6) were fitted together to provide the constants of Table 3. A small perturbation was noted in the excited state F_2 component of the 001 $\tilde{B}^2\Sigma^+$ state close to N' = 14, J' = 13.5, f parity (Table 2). These lines were included with reduced weights in the final fit.

For pure ${}^{2}\Sigma^{+} - {}^{2}\Sigma^{+}$ transitions, *Q* branches are very weak in intensity. If there is ${}^{2}\Pi_{1/2}$ character mixed into a ${}^{2}\Sigma^{+}$ state, then the intensity of the *Q* branches is enhanced. Kopp and Hougen (*13*) considered the intensity of the branches of a general $\frac{1}{2} - \frac{1}{2}$ transition and derived the following formulas:

$$\begin{split} P_{ee}: \quad & [(J+\frac{1}{2})(J-\frac{1}{2})/J][\mu_{\parallel}-\mu_{\perp}]^2\\ Q_{ef}: \quad & [2(J+\frac{1}{2})^3/J(J+1)][\mu_{\parallel}/(2J+1)-\mu_{\perp}]^2. \end{split}$$

Application of these expressions to the 000–000 band gives a ratio of $\mu_{\perp}/\mu_{\parallel}$ of about 0.2 to 0.3 for the $\tilde{B}^2\Sigma^+ - \tilde{X}^2\Sigma^+$ transition of SrOD. The 001–000 band is weaker than the 000–000 band, so that Q branches were not detected. The value of the Sr–O stretching mode frequency, ν_3 , in the $\tilde{B}^2\Sigma^+$ state of SrOD is found to be 523.652 cm⁻¹ by subtraction of the band origins. The use of our 001–000 band origin and Nakagawa *et al.*'s (1) 001–001 band origin of 16 372.6281 gives a value of 517.122 cm⁻¹ for ν_3 in the $\tilde{X}^2\Sigma^+$ state.

IV. CONCLUSION

Our high-resolution study of SrOD has provided improved molecular constants. This resulted from the cooling of SrOD

ACKNOWLEDGMENT

We thank the National Sciences and Engineering Research Council of Canada (NSERC) for support of this research.

REFERENCES

- J. Nakagawa, R. F. Wormsbecher, and D. O. Harris, J. Mol. Spectrosc. 97, 37–64 (1983).
- C. R. Brazier and P. F. Bernath, J. Mol. Spectrosc. 114, 163–173 (1985).
- 3. P. I. Presunka and J. A. Coxon, J. Chem. Phys. 101, 201-222 (1994).

- 4. P. I. Presunka and J. A. Coxon, *Can. J. Chem.* **71**, 1689–1705 (1993).
- D. A. Fletcher, K. Y. Jung, C. T. Scurlock, and T. C. Steimle, J. Chem. Phys. 98, 1837–1842 (1993).
- M. A. Anderson, W. L. Barclay, and L. M. Ziurys, *Chem. Phys. Lett.* 196, 166–172 (1992).
- D. A. Fletcher, M. A. Anderson, W. L. Barclay, and L. M. Ziurys, J. Chem. Phys. 102, 4334–4339 (1995).
- T. C. Steimle, D. A. Fletcher, K. Y. Jun, and C. T. Scurlock, J. Chem. Phys. 96, 2556–2564 (1992).
- 9. J. M. Mestdagh and J. P. Visticot, *Chem. Phys.* 155, 79-89 (1991).
- A. R. Allouche and M. Aubert-Frécon, J. Mol. Spectrosc. 163, 599– 603 (1994).
- S. Gerstenkorn and P. Luc, "Atlas du Spectre d'Absorption de la Molécule d'Iode." Laboratoire Aimé-Cotton, CNRS II, 91405 Orsay, France, 1978.
- M. Douay, S. A. Rogers, and P. F. Bernath, *Mol. Phys.* 64, 425–436 (1988).
- 13. I. Kopp and J. T. Hougen, Can. J. Phys. 45, 2581-2596 (1967).