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ABSTRACT

We calculate new line lists and opacities for the F 4Di–X
4Di transition of FeH. The 0–0 band of this

transition is responsible for the Wing-Ford band seen in M-type stars, sunspots, and brown dwarfs. The new
Einstein A-values for each line are based on a high-level ab initio calculation of the electronic transition
dipole moment. The necessary rotational line strength factors (Hönl-London factors) are derived for both
the Hund’s case (a) and (b) coupling limits. A new set of spectroscopic constants was derived from the exist-
ing FeH term values for v ¼ 0, 1, and 2 levels of the X and F states. Using these constants, extrapolated term
values were generated for v ¼ 3 and 4 and for J-values up to 50.5. The line lists (including Einstein A-values)
for the 25 vibrational bands with v � 4 were generated using a merged list of experimental and extrapolated
term values. The FeH line lists were used to compute the molecular opacities for a range of temperatures and
pressures encountered in L and M dwarf atmospheres. Good agreement was found between the computed
and observed spectral energy distribution of the L5 dwarf 2MASS-1507.

Subject headings: infrared: stars — line: identification — molecular data — stars: atmospheres —
stars: fundamental parameters — stars: low-mass, brown dwarfs

On-line material:machine-readable table

1. INTRODUCTION

Wing & Ford (1969) were the first to detect a mysterious
band near 9910 Å in late M dwarfs on the basis of low-
resolution spectra. The Wing-Ford band was later found in
S stars (Wing 1972) and in sunspots at higher spectral reso-
lution by Wing, Cohen, & Brault (1977). Nordh, Lindgren,
& Wing (1977) identified the Wing-Ford band as the 0–0
band of an FeH electronic transition by comparison with an
unassigned laboratory spectrum of FeH that showed a head
at 9896 Å degraded to longer wavelengths. Laboratory
spectra of the 1–0 band of this FeH transition show a head
at 8691 Å (Carroll, McCormack, & O’Connor 1976), and
this band is also seen in sunspots (Wing et al. 1977). Fawzy,
Youssef, & Engvold (1998) have detected the 2–0 and 2–1
bands in sunspots.

FeH bands can be observed well past 1 lm with the 0–1
band of the F 4Di–X

4Di transition easily visible near 1.19 lm
in sunspots (Wallace & Hinkle 2001b). A new electronic
transition of FeH has been identified near 1.583 lm in late
M dwarfs, early L dwarfs (Leggett et al. 2001; Cushing et al.
2003), and sunspots (Wallace & Hinkle 2001a). Although
not assigned yet, the 1.583 lm band is probably the E 4P–A
4P transition of FeH on the basis of a comparison with a
laboratory spectrum and the ab initio calculation of
Langhoff & Bauschlicher (1990). Wilson & Brown (2001)
have tentatively identified two spin components of the A 4P

state about 1000 cm�1 above the X 4D7/2 spin component by
low-resolution dispersed laser-induced fluorescence.

On the astronomical front, there have also been recent
advances in FeH observations. The Wing-Ford band has
been found in a wide variety of sources, including galaxies
(e.g., Hardy & Couture 1988). The most important applica-
tion of the F 4Di–X

4Di transition is, however, in the spectro-
scopy of L-type brown dwarfs. Indeed, the presence of the
metal hydrides (FeH and CrH) and the absence of the metal
oxides (TiO and VO) are the defining characteristics of L-
type brown dwarfs (Kirkpatrick et al. 1999a, 1999b, 2000).
The main source of opacity near 1 lm is the A 6�+–X 6�+

transition of CrH and the F 4Di–X
4Di transition of FeH.

Missing in all of the work on FeH is a measurement of the
oscillator strength of any of the FeH transitions. Without
line strengths, it is not possible to determine the column
densities of FeH from observations, and the physical prop-
erties of the atmospheres also depend on the FeH opacity.
Schiavon, Barbuy, & Singh (1997) have provided some line
strengths for the F 4Di–X

4Di transition by arbitrarily choos-
ing an oscillator strength of 10�3, at variance with the value
calculated by Langhoff & Bauschlicher (1990). In addition,
they seem to have made some computational errors, per-
haps associated with the degeneracy factors. We decided,
therefore, to apply to FeH the methods we used in our
recent calculation of the line strengths and opacity of the A
6�+–X 6�+ transition of CrH (Bauschlicher et al. 2001;
Burrows et al. 2002). We thus carried out a new ab initio cal-
culation of the transition dipole moment of the F 4Di–X

4Di

transition of FeH. In addition, we have derived analytical
expressions for the Hönl-London rotational line strength
factors for 4D–4D transitions in both the Hund’s case (a) and
Hund’s case (b) limits. The existing term values of Phillips
et al. (1987) were extrapolated to higher J and v based on a
new determination of the spectroscopic constants.

In the laboratory, early work in Ireland (McCormack &
O’Connor 1976) and Sweden (Klynning & Lindgren 1973)

1 National Solar Observatory, 950 North Cherry Avenue, P.O. Box
26732, Tucson, AZ 85726-6732.

2 NASA Ames Research Center, Mailstop 230-3, Moffett Field,
CA 94035; charles.w.bauschlicher@nasa.gov.

3 Department of Astronomy and Steward Observatory, University of
Arizona, 933 North Cherry Avenue, Tucson, AZ 85721;
burrows@jupiter.as.arizona.edu, csharp@as.arizona.edu.

4 Department of Chemistry, University of Arizona, Tucson, AZ 85721;
rram@u.arizona.edu.

5 Department of Chemistry, University of Waterloo, Waterloo,
ONN2L 3G1, Canada; bernath@uwaterloo.ca.

The Astrophysical Journal, 594:651–663, 2003 September 1

# 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

E

651



provided line lists but no rotational assignments. TheWing-
Ford band was established as a 4D–4D transition by rota-
tional analysis of the 1–0 and 0–0 bands of FeD by Balfour,
Lindgren, & O’Connor (1983). The more heavily perturbed
FeH bands finally yielded to rotational analysis by Phillips
et al. (1987), who assigned the 2–0 (7786 Å), 1–0 (8692 Å),
2–1 (9020 Å), 0–0 (9896 Å), 1–1 (10253 Å), 0–1 (11939 Å),
and 1–2 bands (12389 Å). These bands were recorded by
Fourier transform emission spectroscopy using a carbon
tube furnace at 2200�C–2450�C with 75–500 torr of H2 and
He. The Phillips et al. (1987) paper is still the definitive work
on the 1 lmbands of FeH.

It was not clear in the early work that the lower state of
the Wing-Ford band was, in fact, the ground state of FeH.
Both ab initio calculations (Walch 1984) and photoelectron
spectroscopy of FeH� (Stevens, Feigerle, & Lineberger
1983) provided strong evidence for an X 4D ground state.
Langhoff & Bauschlicher (1990) located all of the low-lying
electronic states by ab initio calculation and suggested the
label F 4Di–X

4Di for the 1 lm band system. (The right
subscript i stands for inverted and indicates the four spin
components with � ¼ 7=2, 5/2, 3/2, 12 increase in energy as
� decreases.) A recent calculation of the properties of the
low-lying electronic states has been carried out by Tanaka,
Sekiya, &Yoshimine (2001).

More recent laboratory work on FeH includes the estima-
tion of the dissociation energy as 1:59� 0:08 eV (at 0 K) by
Schultz & Armentrout (1991) and the calculation of the first
rotational transition J ¼ 9=2 7=2 (v00 ¼ 0, X 4D7/2) at
1411.0927 GHz (a–a) and 1411.3579 GHz (b–b) on the basis
of pure rotational laser magnetic resonance spectroscopy in
the far-infrared region (Brown, Beaton, & Evenson 1993).
The ground X 4Di state has anomalously large �-doubling,
presumably as a result of the interaction with the nearby A
4P state some 1200 cm�1 above (Langhoff & Bauschlicher
1990). Phillips et al. (1987) chose to follow the Brown et al.
(1975) recommendation of using the label a for the lower
energy level of a � doublet and b for the upper level when
the actual e/f parity label could not be ascertained. We will
also adopt this a/b labeling scheme. J. Brown (2003, private
communication) has, in fact, been able to determine the ab-
solute parity in the ground state, and he finds that e lies
below f for all four spin components (i.e., a ¼ e and b ¼ f ).

The mid-infrared laser magnetic resonance spectra of
FeH were recorded by Towle et al. (1993), and they
improved on a few of the predicted line positions (Phillips
& Davis 1988) of the 1–0 vibration-rotation band of the
X 4D7/2 spin component. Phillips et al. (1987) provided a list
of term values for v ¼ 0, 1, and 2 of the F 4Di andX 4Di states
determined from an Åslund term value analysis of the line
positions. These term values were confirmed by Towle et al.
(1993) to have an accuracy of�0.02 cm�1.

The infrared spectrum of FeH (along with FeH2 and
FeH3) in an argon matrix was recorded by Chertihin &
Andrews (1995). Evidently, the earlier matrix measurements
by Dendramis, Van Zee, & Weltner (1979) were of FeH2

and not of FeH.
In addition to the F 4Di–X

4Di transition, FeH has visible
electronic transitions in the blue (4920 Å) and green (5320
Å; Carroll & McCormack 1972; Carroll et al. 1976) that
probably also occur in sunspots. However, these FeH lines
are heavily blended in the sunspot spectrum, in contrast to
the Wing-Ford band. Brown and coworkers (for example,
Wilson & Brown 1999, 2001; Hullah, Barrow, & Brown

1999) have devoted much time to the analysis of the visible
spectra of FeH using high-resolution dye lasers and a much
cooler (450 K) source of molecules. Some of the visible
bands (e.g., Hullah et al. 1999) connect to the ground state
and improve and extend a few of the term values of Phillips
et al. (1987).

2. AB INITIO CALCULATION OF BAND STRENGTHS

The experimental measurement of the radiative lifetime
of the Wing-Ford band is difficult mainly because 1 lm is
not a convenient wavelength and FeH is difficult to make in
the laboratory. In the absence of experimental work, we
chose to calculate the transition dipole moment function
from the wave functions obtained by ab initio solution of
the electronic Schrödinger equation.

The orbitals are determined using a state-averaged com-
plete active space self-consistent field (SA-CASSCF)
approach that includes symmetry and equivalence restric-
tions. In C2v symmetry, the active space contains six a1 orbi-
tals and one orbital each of b1, b2, and a2 symmetry. This
active space includes the Fe 3d, 4s, and 4p� orbitals, the H 1s
orbital, and one extra � orbital, which is added on the basis
of preliminary calculations. The three lowest 4D states are
included in the SA-CASSCF approach. The third state is
added to smooth the potentials and transition moment at
larger r-values.While the addition of the third state improves
the description at large r-values, it makes only a very small
difference in the final potential at shorter r-values. More
extensive correlation is included using the multireference
configuration interaction (MRCI) approach. These MRCI
calculations are performed inC2v symmetry for the four low-
est states, which include the three 4D states and a low-lying
4�� that is in the sameC2v representation.

The MRCI calculations use all CASSCF configurations
as reference configurations, and internal contraction (IC;
Werner & Knowles 1988; Knowles & Werner 1988) is used
to limit the size of the calculations. The importance of
higher excitations is estimated using the multireference ana-
log of the Davidson correction, which is denoted +Q. The
inclusion of Fe 3s and 3p correlation did not significantly
improve the potentials and, therefore, is not included in the
final calculation that correlates the Fe 3d and 4s and H 1s
electrons. Scalar relativistic effects are included using the
one-electron Douglas Kroll (DK) approach (Hess 1986).

The Fe basis set can be described as (20s15p10d6f4g)/
[7s7p5d3f2g]. The primitive set is derived from that of
Partridge (1989). The s, p, and d primitives are contracted
based on a DK-SCF calculation of the 5D state of Fe atom.
The inner 16 s primitives are contracted to three functions,
and the outermost four are uncontracted; the inner 10 p
primitives are contracted to two functions, and the outer-
most five are uncontracted; and the inner six d primitives are
contracted to one function, and the outermost four are
uncontracted. The f and g sets are taken from our averaged
atomic natural orbital set (Bauschlicher 1995). For hydro-
gen, the augmented correlation consistent polarized valence
triple zeta (aug-cc-pVTZ) set (Dunning 1989; Kendall,
Dunning, & Harrison 1992) is used, but the contraction
coefficients are taken from a DK-SCF calculation. The
CASSCF/IC-MRCI calculations are performed using
MOLPRO (Werner &Knowles 2002).

The computed IC-MRCI+Q spectroscopic constants are
tabulated in Table 1. The IC-MRCI+Q results are in
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reasonable agreement with present experimental values
(derived below). Since it is difficult to perform a more accu-
rate calculation and the Rydberg-Klein-Rees (RKR) poten-
tials developed from the experimental constants have
problems with the inner wall at relatively low energies, we
combine the computed results with experiment to develop
our final potentials. We shift the computed potentials so
that the computed B0 values agree with experiment: the
ground state is shifted to longer r by 0.0218 Å and the
excited state to shorter r by 0.0270 Å. The upper state is
shifted up in energy so that the computed T0 value agrees
with the experimental (7/2–7/2) 0–0 band origin. We then
generate RKR potentials using the computed B0, B1, and B2

values from the shifted potentials and the experimental !e

and !exe values (averaged over the two �-doublet compo-
nents). Using these RKR potentials and the IC-MRCI tran-
sition moment, we evaluate the Franck-Condon factors and
EinsteinA-values (see Table 2).

3. CALCULATING HÖNL-LONDON FACTORS
FOR A 4D–4D TRANSITION

Rotational line strength factors are needed to compute
the individual line intensities. Because none are available in
the literature for a 4D–4D transition, we have derived the
Hönl-London factors (HLFs) needed.

The elements of an electric dipole transition matrix T for
a Hund’s case (a) �0S0�0J 0M 0�0 ! �S�JM� rotational
transition in the absence of external fields can be expressed
in terms of compact spherical tensor notation as

�0S0�0J 0M 0�0 Tj j�S�JM�h i ¼ ð�1ÞJ
0��0 J 0 1 J

��0 q �

� �

� �0 lk k�h i� S;S0ð Þ� �;�0ð Þ� M;M 0ð Þ : ð1Þ

Here l ¼ �er is the electric dipole operator and for case
(a) coupling � ¼ �þ �. The presence of the delta functions
for S and � occurs because l does not depend on electron-
spin coordinates. The delta functions and the conditions for
a nonzero Wigner 3-j symbol establish the well-known case
(a) selection rules for allowed transitions:

DS ¼ D� ¼ 0 ;

D� ¼ �q ¼ 0; �1 ;

DJ ¼ �1ðP-branchÞ; 0ðQ-branchÞ; þ1ðR-branchÞ :

The factor �0 lk k�h i is a constant for a given�0 ! � tran-
sition. The only real importance of this factor here is that it
establishes the selection rule, D� ¼ 0, �1, as a result of the
fact that l is a rank-one spherical tensor. Furthermore,
D� ¼ D�þ D�, and since D� ¼ 0, the selection rule for
spin component transitions is reduced simply to D� ¼ D�.

The remaining property to fully characterize case (a) rota-
tional levels is parity. In recent decades, the e/f parity
scheme has become the conventionally accepted method by
molecular spectroscopists for parity labeling the case (a)
rotational levels. The transition matrix in the e/f parity
basis is obtained by the transformation

UyTU ; ð2Þ

whereU is theWangmatrix,

Uij ¼

� 1ffiffiffi
2
p for j ¼ i <

n

2
;

þ 1ffiffiffi
2
p for j ¼ i >

n

2
;

þ1 for j ¼ i ¼ n

2
;

þ 1ffiffiffi
2
p for j ¼ n� i þ 1 ;

0 otherwise ;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ

with n being the total number of �S� states. For P- and R-
branch lines the resultant matrix is partitioned into two
nonzero diagonal blocks of equal dimension, where one

TABLE 1

Summary of IC-MRCI+Q Spectroscopic Constants, in cm�1

Parameter B0 !e !exe T0

Ground State

IC-MRCI+Q.......... 6.6880 1792.8 35.9

Expta....................... 6.50907 1831.80 34.86

Excited State

IC-MRCI+Q.......... 5.7019 1543.3 31.4 9219.0

Expt........................ 5.86663 1501.55 37.80 9995.76

Shifted Potentials

B0 B1 B2

Ground state........... 6.5092 6.1359 5.7809

Excited state............ 5.8667 5.5071 5.1690

a Present work, averaged over the�-doublet components.

TABLE 2

The Einstein A-Values, Franck-Condon Factors,

and Energy Differences

v0 v00 FC

DE

(cm�1)
A

(s�1)

0............... 0 0.8338 9995.8 0.1018(+7)

0............... 1 0.1616 8226.2 0.9371(+5)

0............... 2 0.0045 6526.4 0.8730(+3)

0............... 3 0.0001 4898.7 0.9800(+1)

0............... 4 0.0000 3345.0 0.1529(+0)

1............... 0 0.1349 11422.3 0.2772(+6)

1............... 1 0.5471 9652.7 0.5721(+6)

1............... 2 0.3015 7952.9 0.1506(+6)

1............... 3 0.0159 6325.2 0.2669(+4)

1............... 4 0.0005 4771.5 0.3059(+2)

2............... 0 0.0234 12771.0 0.7185(+5)

2............... 1 0.2104 11001.5 0.3724(+6)

2............... 2 0.3199 9301.6 0.2808(+6)

2............... 3 0.4082 7673.9 0.1728(+6)

2............... 4 0.0366 6120.2 0.5135(+4)

3............... 0 0.0053 14041.6 0.2224(+5)

3............... 1 0.0558 12272.0 0.1481(+6)

3............... 2 0.2365 10572.2 0.3569(+6)

3............... 3 0.1563 8944.5 0.1112(+6)

3............... 4 0.4741 7390.8 0.1665(+6)

4............... 0 0.0015 15234.2 0.8446(+4)

4............... 1 0.0159 13464.7 0.5823(+5)

4............... 2 0.0876 11764.8 0.1983(+6)

4............... 3 0.2256 10137.1 0.2873(+6)

4............... 4 0.0541 8583.4 0.2830(+5)
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block corresponds to e! e transitions and the other to
f ! f . In contrast, the transition matrix for the Q-branch
lines in the parity basis is comprised of two nonzero off-
diagonal blocks, the e! f and the f ! e transitions.

Results for the 4D–4D transition (�0 ¼ � ¼ 1
2, 3/2, 5/2,

7/2) are displayed in Table 3. Apart from the constant fac-
tor D lk kDh i, the HLFs, designated by S(J), are the squares
of the matrix elements ofUyTU.

Because Hund’s case (a) and case (b) are both well-
defined coupling schemes, that is, the coupling does not
depend on molecular parameters, it then becomes a matter
of just simply constructing a transformation matrix U in
closed analytical form where UyTU converts T in the case
(a) nonparity basis over to case (b), or vice versa. The matrix

elements for such a transformation are

�S�JM�j�N�SJMh i ¼ �N�SJMj�S�JM�h i
¼ ð�1ÞS�Nþ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1
p

�
J S N

�� � �

� �
: ð4Þ

The case (b) HLFs in Table 4 were derived using this
approach.

For case (b) coupling, � and � are no longer defined,
whereas � is a well-defined quantum number for both cou-
pling cases. Secondly, rotational energies for case (a) are
computed using the Hamiltonian operator BðrÞR2, where

TABLE 3
4D–4D Hönl-London Factors: Hund’s Case (a) Coupling

Branch �00 Parity �0 Parity S(J )

P(J ) .................. 7/2 e/f 7/2 e/f 1=4ð Þ ð2J � 7Þð2J þ 7Þ=J½ �
5/2 e/f 5/2 e/f 1=4ð Þ ð2J � 5Þð2J þ 5Þ=J½ �
3/2 e/f 3/2 e/f 1=4ð Þ ð2J � 3Þð2J þ 3Þ=J½ �
1/2 e/f 1/2 e/f 1=4ð Þ ð2J � 1Þð2J þ 1Þ=J½ �

Q(J ) .................. 7/2 e/f 7/2 f/e 49=4ð Þ 2J þ 1ð Þ=JðJ þ 1Þ½ �
5/2 e/f 5/2 f/e 25=4ð Þ 2J þ 1ð Þ=JðJ þ 1Þ½ �
3/2 e/f 3/2 f/e 9=4ð Þ 2J þ 1ð Þ=JðJ þ 1Þ½ �
1/2 e/f 1/2 f/e 1=4ð Þ 2J þ 1ð Þ=JðJ þ 1Þ½ �

R(J ) .................. 7/2 e/f 7/2 e/f 1=4ð Þ ð2J � 5Þð2J þ 9Þ= J þ 1ð Þ½ �
5/2 e/f 5/2 e/f 1=4ð Þ ð2J � 3Þð2J þ 7Þ= J þ 1ð Þ½ �
3/2 e/f 3/2 e/f 1=4ð Þ ð2J � 1Þð2J þ 5Þ= J þ 1ð Þ½ �
1/2 e/f 1/2 e/f 1=4ð Þ ð2J þ 1Þð2J þ 3Þ= J þ 1ð Þ½ �

TABLE 4
4D–4D Hönl-London Factors: Hund’s Case (b) Coupling

Branch N00 Parity N0 Parity S(J )

PPðJÞ ................ J � 3=2 +/� J � 5=2 +/� 1=4ð Þ½ð2J � 7Þð2J þ 1Þ2=ð2J � 3ÞðJ � 1Þ�
QPðJÞ ................ J � 3=2 +/� J � 3=2 +/� 48½ 2J þ 1ð Þ=Jð2J � 3Þð2J � 1Þ2�
RPðJÞ ................ J � 3=2 +/� J � 1=2 +/� 3=4ð Þ½ð2J � 5Þð2J þ 3Þ=J2ð2J � 1Þ2ðJ � 1Þ�
PPðJÞ ................ J � 1=2 +/� J � 3=2 +/� 1=4ð Þ½ð2J � 5Þð2J � 3Þð2J þ 1Þð2J þ 3ÞðJ þ 1Þ=J2ð2J � 1Þ2�
QPðJÞ ................ J � 1=2 +/� J � 1=2 +/� 256½ðJ � 1ÞðJ þ 1Þ=Jð2J � 1Þ2ð2J þ 1Þ2�
RPðJÞ ................ J � 1=2 +/� J þ 1=2 +/� 3=4ð Þ½ð2J � 3Þð2J þ 5Þ=J2ð2J þ 1Þ2ðJ þ 1Þ�
PPðJÞ ................ J þ 1=2 +/� J � 1=2 +/� 1=4ð Þ½ð2J � 3Þð2J � 1Þð2J þ 3Þð2J þ 5ÞðJ � 1Þ=J2ð2J þ 1Þ2�
QPðJÞ ................ J þ 1=2 +/� J þ 1=2 +/� 48½ 2J � 1ð Þ=Jð2J þ 1Þ2ð2J þ 3Þ�
PPðJÞ ................ J þ 3=2 +/� J þ 1=2 +/� 1=4ð Þ½ð2J � 1Þ2ð2J þ 7Þ=ð2J þ 3ÞðJ þ 1Þ�
QQðJÞ ............... J � 3=2 +/� J � 3=2 +/� 16½ð2J þ 1ÞðJ þ 1Þ=Jð2J � 1Þ2�
RQðJÞ................ J � 3=2 +/� J � 1=2 +/� 3=4ð Þ½ð2J � 5Þð2J þ 1Þð2J þ 3Þ=J2ð2J � 1Þ2�
PQðJÞ................ J � 1=2 +/� J � 3=2 +/� 3=4ð Þ½ð2J � 5Þð2J þ 1Þð2J þ 3Þ=J2ð2J � 1Þ2�
QQðJÞ ............... J � 1=2 +/� J � 1=2 +/� 16½ð2J2 þ J � 4Þ2=Jð2J � 1Þ2ð2J þ 1ÞðJ þ 1Þ�
RQðJÞ................ J � 1=2 +/� J þ 1=2 +/� 1=4ð Þ½ð2J � 3Þð2J � 1Þð2J þ 3Þð2J þ 5Þ=J2ð2J þ 1ÞðJ þ 1Þ2�
PQðJÞ................ J þ 1=2 +/� J � 1=2 +/� 1=4ð Þ½ð2J � 3Þð2J � 1Þð2J þ 3Þð2J þ 5Þ=J2ð2J þ 1ÞðJ þ 1Þ2�
QQðJÞ ............... J þ 1=2 +/� J þ 1=2 +/� 16½ð2J2 þ 3J � 3Þ2=Jð2J þ 1Þð2J þ 3Þ2ðJ þ 1Þ�
RQðJÞ................ J þ 1=2 +/� J þ 3=2 +/� 3=4ð Þ½ð2J � 1Þð2J þ 1Þð2J þ 7Þ=ð2J þ 3Þ2ðJ þ 1Þ2�
PQðJÞ................ J þ 3=2 +/� J þ 1=2 +/� 3=4ð Þ½ð2J � 1Þð2J þ 1Þð2J þ 7Þ=ð2J þ 3Þ2ðJ þ 1Þ2�
QQðJÞ ............... J þ 3=2 +/� J þ 3=2 +/� 16½Jð2J þ 1Þ=ð2J þ 3Þ2ðJ þ 1Þ�
RRðJÞ................ J � 3=2 +/� J � 1=2 +/� 1=4ð Þ½ð2J � 5Þð2J þ 3Þ2=Jð2J � 1Þ�
QRðJÞ................ J � 1=2 +/� J � 1=2 +/� 48½ 2J þ 3ð Þ=ð2J � 1Þð2J þ 1Þ2ðJ þ 1Þ�
RRðJÞ................ J � 1=2 +/� J þ 1=2 +/� 1=4ð Þ½ð2J � 3Þð2J � 1Þð2J þ 3Þð2J þ 5ÞðJ þ 2Þ=ð2J þ 1Þ2ðJ þ 1Þ2�
PRðJÞ ................ J þ 1=2 +/� J � 1=2 +/� 3=4ð Þ½ð2J � 3Þð2J þ 5Þ=Jð2J þ 1Þ2ðJ þ 1Þ2�
QRðJÞ................ J þ 1=2 +/� J þ 1=2 +/� 256½JðJ þ 2Þ=ð2J þ 1Þ2ð2J þ 3Þ2ðJ þ 1Þ�
RRðJÞ................ J þ 1=2 +/� J þ 3=2 +/� 1=4ð Þ½Jð2J � 1Þð2J þ 1Þð2J þ 5Þð2J þ 7Þ=ð2J þ 3Þ2ðJ þ 1Þ2�
PRðJÞ ................ J þ 3=2 +/� J þ 1=2 +/� 3=4ð Þ½ð2J � 1Þð2J þ 7Þ=ð2J þ 3Þ2ðJ þ 1Þ2ðJ þ 2Þ�
QRðJÞ................ J þ 3=2 +/� J þ 3=2 +/� 48½ 2J þ 1ð Þ=ðJ þ 1Þð2J þ 3Þ2ð2J þ 5Þ�
RRðJÞ................ J þ 3=2 +/� J þ 5=2 +/� 1=4ð Þ½ð2J þ 1Þ2ð2J þ 9Þ=ð2J þ 5ÞðJ þ 2Þ�
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R ¼ J� L� S. For case (b) the Hamiltonian operator is
BðrÞN2, where N ¼ Rþ L ¼ J� S. Thus, for a given J-
value and discounting parity, there are four rotational levels
with N-values, J � 3=2, J � 1

2, J þ 1
2, and J þ 3=2 for

S ¼ 3=2, which equals the number of spin components with
�-values, 12, 3/2, 5/2, and 7/2 for case (a) coupling. In addi-
tion, the e/f parity labeling is not convenient for the case (b)
rotational levels since the basis functions j�N�SJMi are
already eigenfunctions of the parity operator; they are
labeled simply as + or � to correspond to the �� degener-
acy. For case (b) rotational transitions, the parity selection
rules are þ ! þ and � ! �, regardless of whether the
branch is P,Q, or R. This + or � orbital parity is written as
a right superscript to the term symbol (e.g., 1�+ or 4D+) and
is not to be confused with total parity (Bernath 1995).

These finer points between case (a) and case (b) help to
explain the notation differences in Tables 3 and 4. The �
and parity labels along with the DJ P-, Q-, and R-branch
designations in Table 3 are sufficient to label uniquely all the
allowed case (a) rotational transitions. The quantum num-
ber N in case (b) serves as a label analogous to � in case (a).
In addition to the strong DN ¼ DJ transitions, which form
the so-called main branches (analogous to the case [a]
D� ¼ D� branches), there also exist weaker DN 6¼ DJ tran-
sitions, which account for the better than twofold increase
in the number of branches. To distinguish DN ¼ DJ from
DN 6¼ DJ branches, the traditional convention is to aug-
ment the DJ P-,Q-, orR-branch designations with DNP,Q,
or R left superscript designations when DN 6¼ DJ. In Table
4 this convention is not strictly followed; to alleviate any
confusion, the redundant DN superscripts are retained for
the main branches as well. Note that in order to avoid errors
in the HLFs in Tables 3 and 4, they were generated with the
computer algebra programMaple.

For the X and F 4D states of FeH, the coupling is inter-
mediate between case (a) and case (b) for increasing J. To
further complicate matters, the rotational levels for both of
these states are perturbed by unknown electronic states. The
former problem of intermediacy can be treated by con-

structing the energy Hamiltonian H in the case (a) basis as
shown in Table 5 (see Table 6 for case [b]). The eigenvectors
U from the diagonalization UyHU for both the lower and
upper states l and u are then used to correct the HLFs for
intermediate coupling by the processUylTUu.

The Phillips et al. (1987) tables of experimental term
values for the X and F v ¼ 0, 1, and 2 levels were used along
with the eigenvalues of H in least-squares fits to determine
the molecular constants, Tv, Bv, Dv, Av, and �v, separately
for each parity a and b. (The distinction between e/f and the
Phillips et al. a/b labeling is irrelevant as far as the analysis
presented here is concerned.) As a result of the perturba-
tions, these fits gave rather disappointing results, yielding
standard deviations on the order of 2–4 cm�1 for theX levels
and 1–3 cm�1 for the F levels. To minimize the effects of
these perturbations as much as possible, an alternate fitting
procedure was tried using the average of the experimental
term values for each J-value for the four spin components.
The results from these fits showed remarkable improvement
with roughly a factor of 10 reduction in the standard devia-
tions, 0.1–0.7 cm�1 for the X levels and 0.2–0.4 cm�1 for
the F levels. Nevertheless, these standard deviations are
still a factor of 10 higher than the estimated experimental

TABLE 5
4D Hund’s Case (a) Hamiltonian Matrix x ¼ J þ 1=2

Term Value

7=2 Hj j7=2h i .............. T þ 3Aþ 2�þ Bðx2 � 7Þ �Dðx4 � 11x2 þ 22Þ
7=2 Hj j5=2h i .............. 5=2 Hj j7=2h i ¼ � B� 2Dðx2 � 3Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx2 � 9Þ

p
7=2 Hj j3=2h i .............. 3=2 Hj j7=2h i ¼ �2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx2 � 9Þðx2 � 4Þ

p
7=2 Hj j1=2h i .............. 1=2 Hj j7=2h i ¼ 0

5=2 Hj j5=2h i .............. T þ A� 2�þ Bðx2 þ 1Þ �Dðx4 þ 9x2 � 42Þ
5=2 Hj j3=2h i .............. 3=2 Hj j5=2h i ¼ �2 B� 2Dðx2 þ 3Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4
p

5=2 Hj j1=2h i .............. 1=2 Hj j5=2h i ¼ �2D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx2 � 4Þðx2 � 1Þ

p
3=2 Hj j3=2h i .............. T � A� 2�þ Bðx2 þ 5Þ �Dðx4 þ 17x2 þ 6Þ
3=2 Hj j1=2h i .............. 1=2 Hj j3=2h i ¼ � B� 2Dðx2 þ 5Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx2 � 1Þ

p
1=2 Hj j1=2h i .............. T � 3Aþ 2�þ Bðx2 þ 5Þ �Dðx4 þ 13x2 þ 22Þ

TABLE 6
4D Hund’s Case (b) Hamiltonian Matrix

Term Value

x ¼ N ¼ J � 3=2

x Hj jxh i .................... T þ Bxðxþ 1Þ �Dx2ðxþ 1Þ2 þ 6A= xþ 1ð Þ � 2� ðx� 3Þðxþ 4Þ=ðxþ 1Þð2xþ 3Þ½ �
x Hj jxþ 1h i .............. xþ 1 Hj jxh i ¼ Aðxþ 2Þ þ 4�½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx� 1Þðxþ 3Þð2xþ 5Þ=ðxþ 1Þ2ðxþ 2Þ2ð2xþ 3Þ

q

x Hj jxþ 2h i .............. xþ 2 Hj jxh i ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx� 1Þxðxþ 3Þ2ðxþ 4Þ=ðxþ 1Þðxþ 2Þ2ð2xþ 3Þ2

q

x Hj jxþ 3h i .............. xþ 3 Hj jxh i ¼ 0

x ¼ N ¼ J � 1=2

x Hj jxh i .................... T þ Bxðxþ 1Þ �Dx2ðxþ 1Þ2 þ 2A x� 3ð Þ=xðxþ 1Þ½ � þ 2� ðx� 3Þðxþ 3Þðxþ 4Þ=xðxþ 1Þð2xþ 3Þ½ �
x Hj jxþ 1h i .............. xþ 1 Hj jxh i ¼ 4 Axðxþ 2Þ � 6�½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þðxþ 3Þ=xðxþ 1Þ2ðxþ 2Þð2xþ 1Þð2xþ 3Þ

q

x Hj jxþ 2h i .............. xþ 2 Hj jxh i ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx� 1Þx2ðxþ 3Þðxþ 4Þ=ðxþ 1Þ2ðxþ 2Þð2xþ 3Þ2

q

x ¼ N ¼ J þ 1=2

x Hj jxh i .................... T þ Bxðxþ 1Þ �Dx2ðxþ 1Þ2 � 2A xþ 4ð Þ=xðxþ 1Þ½ � þ 2� ðx� 3Þðx� 2Þðxþ 4Þ=xðxþ 1Þð2x� 1Þ½ �
x Hj jxþ 1h i .............. xþ 1 Hj jxh i ¼ ðAx� 4�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx� 1Þðxþ 3Þð2x� 1Þ=x2ðxþ 1Þ2ð2xþ 1Þ

q

x ¼ N ¼ J þ 3=2

x Hj jxh i .................... T þ Bxðxþ 1Þ �Dx2ðxþ 1Þ2 � 6A=x� 2� ðx� 3Þðxþ 4Þ=xð2x� 1Þ½ �

No. 1, 2003 FeH F 4Di–X
4Di TRANSITION 655



uncertainties of better than 0.05 cm�1, indicating the extent
of residual effects due to the perturbations that averaging
was unable to remove. Fitting the term values in this manner
cannot determine the spin-orbit and spin-spin constants.
These A- and �-values instead were determined in separate
fits utilizing the spin-splitting data in Table 6C of Phillips
et al. (1987). To within the quoted experimental error of 0.5
cm�1, the spin splittings for all the observed vibrational
levels can be reproduced by a single A- and �-value for each
electronic state. The molecular constants in Table 7 repre-
sent a marginal improvement over those reported by
Phillips et al. (1987), who derived their constants by fitting
the rotational line positions to a simple polynomial expres-
sion. Our new constants, however, extrapolate somewhat
better to higher J- and v-values.

The specified range in temperature for the opacity
calculations required extending the spectrum to include
rotational lines up to J 00 ¼ J 0 ¼ 50:5 and vibrational transi-
tions up to v00 ¼ v0 ¼ 4. The term values used in generating
the spectrum for the low-resolution opacity calculations are
listed in Table 8. The entries are a combination of experi-
mental term values taken from the tables of Phillips et al.

(1987) and calculated values for the higher v and J levels.
The missing entries in their tables for the lower J levels were
calculated by simple polynomial extrapolation. Even in
spite of the perturbations, the observed term values are sur-
prisingly smooth functions of J. This smoothness was main-
tained in extending the term values to higher J by averaging
the observed to calculated term value ratios in the region of
overlap and then multiplying the calculated term values
outside the region by this average ratio.

In light of the perturbations, there are obvious concerns
regarding the reliability of the HLFs for intermediate
coupling (Table 3 or Table 4) using either the case (a)
Hamiltonian model in Table 5 or case (b) model in Table 6.
To address this issue, we did a comparison of the HLFs with
the measured line intensities from a McMath-Pierce FTS
archived emission spectrum recorded on 1984 May 23 at a
furnace temperature of 2350�C and a background pressure
of 70 torr. This spectrum was then ratioed to the archived
companion Optronics reference lamp spectrum to remove
the variation of detector response with wavenumber from
the background signal. The bands specifically targeted for
this comparison were the Dv ¼ 0 and �1 bands involving

TABLE 7

Molecular Constants for the X 4D and F 4D States

Parameter v ¼ 0 v ¼ 1 v ¼ 2

X 4D State [A ¼ �116:860ð524Þ, � ¼ 10:645ð693Þ]

Parity a

Tv ........................... 315.879(221) 2078.171(358) 3769.400(361)

Bv ........................... 6.49504(312) 6.29867(516) 6.16724(471)

Dv .......................... 0.00022624(833) 0.0000592(139) 0.0001586(136)

!e ........................... 1833.36(113)

!exe ........................ 35.53(50)

Be ........................... 6.5662(185)

�e ........................... 0.1639(108)

Parity b

Tv ........................... 319.5395(458) 2081.421(627) 3774.95(134)

Bv ........................... 6.523101(590) 6.34794(918) 6.1016(226)

Dv .......................... 0.00023866(143) 0.0001967(261) �0.0001767(800)
!e ........................... 1830.23(189)

!exe ........................ 34.18(80)

Be ........................... 6.6403(203)

�e ........................... 0.2108(119)

F 4D State [A ¼ �124:816ð692Þ, � ¼ �9:263ð916Þ]

Parity a

Tv ........................... 10313.114(186) 11737.011(440) 13085.964(591)

Bv ........................... 5.87584(210) 5.69283(553) 5.45930(847)

Dv .......................... 0.00040430(421) 0.0004711(138) 0.0004365(249)

!e ........................... 1498.84(145)

!exe ........................ 37.47(60)

Be ........................... 5.9884(147)

�e ........................... 0.20827(842)

Parity b

Tv ........................... 10313.819(225) 11741.817(195) 13093.571(481)

Bv ........................... 5.85742(290) 5.60903(264) 5.38113(718)

Dv .......................... 0.00032849(704) 0.00034484(684) 0.0002624(204)

!e ........................... 1504.24(80)

!exe ........................ 38.12(40)

Be ........................... 5.97308(583)

�e ........................... 0.23815(342)
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the main D� ¼ 0 branches versus the D� ¼ �1 satellite
branches. Rotational line intensities in these bands were
measured by fitting the observed rotational line shapes to a
Voigt line shape function preceded by subtraction of the
background signal level in the vicinity of line center to deter-
mine absolute peak intensities. Measured rotational line
intensities in the satellite branches were for the most part a
factor of 6 times weaker than the corresponding ones in the
main branches that shared common upper levels. The calcu-
lated line strength factors based on the Table 5 or Table 6
Hamiltonian model predict on the other hand that the ratio
of these satellite to main branch lines should be weaker by a
factor more like 70 for the low-J lines (J 00 � 3:5) and 50 for
the high-J lines (J 00 � 50:5). Obviously the F and X states
are not pure 4D states.

4. GENERATION OF LINE LISTS

The line positions for the F 4Di–X
4Di transition for

v ¼ 0 4 and J � 50:5 were generated from term values in
Table 8. All possible lines were computed consistent with
the electric dipole selection rules for J (DJ ¼ 0,�1) and par-
ity (a–a, b–b for R- and P-branches and a–b, b–a for Q-
branches). For Hund’s case (a) coupling there are only two
strong branches (P and R) and a Q-branch whose intensity
decreases rapidly with J (Table 3) for each spin component
(12 branches in total). For Hund’s case (b), numerous
satellite branches appear, and there are 28 branches in all.

The Einstein A-values for each line were computed using
the formula A ¼ Av0v00HLF=ð2J 0 þ 1Þ, in which the Einstein
A for the v0–v00 band is taken from Table 2 and the HLF is
computed as discussed above. Because the F–X transition of
FeH is intermediate between Hund’s cases (a) and (b), the
HLFs were calculated from the Hund’s case (a) HLFs and
the eigenvectors used to diagonalize the Hamiltonian
matrix. Note that at high J these calculated factors are
nearly identical with those given by the Hund’s case (b) for-
mula in Table 4. The individual Einstein A-values for each
rovibronic line can be converted to dimensionless gf-values
with the formula

gf ¼ 2J 00 þ 1ð Þfabs ¼
�0mec3

2�e2�2
A 2J 0 þ 1ð Þ ; ð5Þ

using SI units.

The line positions and line intensities were collected into
25 files, one for each of the bands involving v0 and v00 0–4
and for P-, Q-, and R-branches. These files can be obtained
on-line.6

5. CALCULATION OF FeH OPACITIES

As with the molecule CrH (Burrows et al. 2002), the inte-
grated line strengths were computed from input Einstein A-
coefficients obtained from the calculated line lists. Since the
A-coefficients already include all the details of the line
strength, i.e., the strength of the associated band and its
Franck-Condon factor, as well as the individual HLF, these
factors do not need to be considered separately. As in
Burrows et al. (2002), the integrated line strength in cm2 s�1

molecule�1 is calculated from

S ¼ 1

8����2
A 2J 0 þ 1ð Þ exp �E00hc=kTð Þ 1� exp �hc���=kTð Þ½ �

Q
;

ð6Þ

where J0 is the upper rotational quantum number, ��� is the
transition wavenumber in cm�1, E00 is the excitation energy
of the lower state in cm�1, and Q is the internal partition
function. The stimulated emission factor is also included in
equation (6). Note that there is a small error in the Burrows
et al. (2002) equation for S and the correct version has
2J 0 þ 1, not 2J 00 þ 1. The reason for this change is that an
extra factor of ð2J 0 þ 1Þ=ð2J 00 þ 1Þ is needed to convert the
emission quantityA to the absorption quantity S.

The monochromatic cross section per molecule is obtain
by multiplying the value from equation (6) by a truncated
Lorentzian profile. A simple prescription provided by R.
Freedman (2000, private communication) is used to calcu-
late the J-dependent FWHM in cm�1 of a line given by

D��� ¼ Wa �Wb min J 00; 30ð Þ½ �Patm ;

where Wa and Wb are line broadening coefficients, with the
values 0.15 and 0.002, respectively, J00 is the rotational
quantum number of the lower state, and Patm is the total gas
pressure in atmospheres. This simple prescription causes the

TABLE 8

The X 4D v ¼ 0 Term Values

7/2 5/2 3/2 1/2

J a b a b a b a b

0.5.............. . . . . . . . . . . . . . . . . . . 694.40 699.70

1.5.............. . . . . . . . . . . . . 450.60 450.92 716.44 723.28

2.5.............. . . . . . . 244.68 244.68 484.89 486.22 753.10 762.42

3.5.............. 80.70 80.70 288.71 288.82 532.71 535.37 805.18 816.01

4.5.............. 127.77 127.78 345.10 345.52 593.88 598.64 872.65 883.92

5.5.............. 186.02 186.02 413.74 414.70 668.52 675.70 955.21 965.98

6.5.............. 255.66 255.77 494.53 496.41 756.52 766.33 1052.62 1062.02

7.5.............. 336.97 337.20 587.45 590.63 857.95 870.28 1164.51 1171.98

8.5.............. 430.13 430.59 692.50 697.42 972.76 987.31 1290.54 1295.71

9.5.............. 535.29 536.07 809.71 816.74 1100.98 1117.20 1430.42 1433.13

Note.—Table 8 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion
is shown here for guidance regarding its form and content.

6 See http://bernath.uwaterloo.ca/FeH.
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lines to decrease in width up to J 00 ¼ 30 and thereafter
remain at a constant width.

The line is profiled using a Lorentzian function on a
spectral grid with a 1 cm�1 grid spacing. In order to save
computer time and to simulate the rapid drop-off in inten-
sity in the far wings, the profile is truncated beyond D���trunc
cm�1 from the line center, where D���trunc is the smaller of
25Patm and 100, so a profile is never computed more than
100 cm�1 on either side of the line center. However, in order
to conserve the total line strength, a normalizing factor is
applied to the profile.

At very low pressures, the lines may be so narrow that
they may ‘‘ fall between ’’ the grid points and be under-
sampled or missed completely. To ensure that the lines are
properly represented, the line centers are moved to the
nearest grid point, regardless of the width, and then for very
narrow lines where only the grid point at the line center is
represented, the line is artificially broadened to include the
two neighboring grid points and normalized so that the area
covered corresponds to the total line strength.

The internal partition function (Q) is calculated from all
electronic molecular states for which experimental and the-
oretical information is available and that make a significant
contribution for the temperatures of relevance. This
includes the ground (X 4D) and excited (F 4D) states that pro-
duce the band systems being computed, as well as eight
intermediate excited states that lie below the F state. Of
these 10 states, we have estimated the excitation energies of
the spin-split substates for the first five. The energy levels
and spectroscopic constants used in the calculation of Q are
provided in Tables 9 and 10.

Associated with each of the 10 electronic states are the
vibrational and rotational constants !e, !exe, Be, and De,
where it is assumed that for all spin-split substates belonging
to an electronic state the constants are the same. Normally
for partition functions this is a good approximation. The
individual partition function for the electronic state i is
given by the product Qei �Qvi �Qri , which are, respec-
tively, the electronic, vibrational, and rotational partition
functions. Qei is a small integer depending on electron spin
and orbital angular momentum, and Qvi and Qri are calcu-
lated using asymptotic formulae from Kassel (1933a,
1933b). The total internal partition function is calculated by
summing up the individual electronic states weighed by the
Boltzmann factor using

Q ¼
Xn
i¼1

QeiQviQri exp �
Tihc

kT

� �
; ð7Þ

where Ti is the excitation energy of state i and is zero for the
ground state (i ¼ 1). The computed partition function from
1000 to 3500 K in 100 K increments is provided in Table 11.
As a test we computed the function by direct summation of
the X and F state energy levels used to generate the line list.
The partition function was also computed using the analyti-
cal formulae (cited above) using all of the low-lying elec-
tronic states (Tables 9 and 10). These low-lying electronic
states make an important contribution toQ (Table 11) at all
relevant temperatures and should not be neglected.

In order to calculate the abundance of FeH at a particular
temperature and pressure in model calculations assuming
chemical equilibrium, the free energy of FeH is calculated at
the temperature in question, and then the total free energy
of the system is minimized (Sharp & Huebner 1990). How-

ever, this requires up-to-date thermodynamic data. Accord-
ingly, these were calculated from the partition function of
FeH using equation (7) with our new data, the partition
functions of the dissociated atoms Fe and H, and the disso-
ciation energy of FeH (taken as 1.598 eV). It was found that
the partition function calculated with our new data was
about a factor of 2 larger than the old value.

Along with the most abundant isotope (56Fe, which
makes up 91.7% of iron), 54Fe, 57Fe, and 58Fe are included
and make up 5.8%, 2.2%, and 0.28%, respectively. The cor-
responding vibrational, rotational, and vibration-rotation
coupling constants for any isotopically substituted molecule
of FeH can be obtained from the ratio of the reduced mass

TABLE 9

FeH Energy Levels for

Thermochemistry

State

TermValue

(cm�1)

X 4D7/2 ..................... 0

X5/2.......................... 191

X3/2.......................... 426

X1/2.......................... 695

A 4P5/2..................... 910

A3/2.......................... 1068

A1/2.......................... 1228

A�1/2........................ 1388

a 6D9/2 ...................... 1766

a7/2........................... 1981

a5/2........................... 2177

a3/2........................... 2356

a1/2........................... 2518

a�1/2......................... 2656

C 4�9/2 ..................... 3174

C7/2.......................... 3375

C5/2.......................... 3575

C3/2.......................... 3735

b 6P7/2...................... 3889

b5/2........................... 3939

b3/2........................... 3989

b1/2........................... 4039

b�1/2......................... 4089

b�3/2......................... 4139

c 6�+ ........................ 4750

B 4�� ....................... 5089

D 4�+....................... 7158

E 4P ......................... 7300

F 4D.......................... 9995

TABLE 10

FeH Constants for Thermochemistry in cm�1

State Be �e De !e !exe

X 4D ......... 6.5906 0.2116 8.5� 10�5 1826.86 31.96

A 4P......... 6.86 0.22 1� 10�4 1875 34

a 6D .......... 6.00 0.2 1.4� 10�4 1680 30

C 4� ......... 6.6 0.2 1� 10�4 1680 30

b 6P.......... 5.9 0.2 1� 10�4 1600 30

c 6�+ ........ 6.7 0.2 1� 10�4 1600 30

B 4�� ....... 6.9 0.2 1� 10�4 1875 34

D 4�+....... 6.5 0.2 1� 10�4 1800 30

E 4P ......... 6.86 0.22 1� 10�4 1875 34

F 4D.......... 5.936 0.19 1� 10�4 1498 37
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of that molecule and the reduced mass of 56Fe1H. These
constants depend on various 1

2-integer powers of the ratio of
reduced masses, as given by Herzberg (1950). From the
vibrational and rotational quantum numbers of the upper
and lower states for each transition, the isotopic shifts of the
lines are computed. The strength of each line is calculated
by applying the fraction of the isotope of iron to equation
(6). To calculate the cross section as a function of frequency,
this is then multiplied by the abundance of FeH and the
profile.

Because of the isotopic shifts of the energy levels, the par-
tition function and the Boltzmann factor of the lower states
will be affected, which will have a small effect on the line
strengths. Likewise, there will be a small effect due to a
changed oscillator strength caused by a shift in the fre-
quency of the transition, and slightly changed wave func-
tions will alter the Franck-Condon factors. All these effects
are very small compared with the shifting of the lines, and
so they are ignored. The shifted lines may be important as
they could fill in gaps in the 56Fe1H opacity spectrum.

The whole process is repeated for each of the 25 bands of
FeH considered for all possible combinations of the upper
and lower vibrational quantum numbers taking values
between 0 and 4 and for each of the four isotopic versions;
thus, 100 bands are calculated.

6. REPRESENTATIVE FeH OPACITY PLOTS AND A
THEORETICAL L DWARF SPECTRUM

Using the procedure outlined in x 5, we have calculated
tables of FeH opacities for a broad range of the temperatures
and pressures encountered in L and T dwarf atmospheres.

These opacities have also been incorporated, along with the
new FeH abundances, into a spectral synthesis code
(Burrows et al. 2002) used to derive theoretical spectra and
colors for cool, often substellar, objects with molecular
atmospheres. A representative opacity spectrum at a temper-
ature of 1800 K and a pressure of 30 atm for wavelengths
from �0.65 to �1.6 lm for both FeH and CrH (Burrows et
al. 2002) is provided in Figure 1. The new FeH opacities are
�100 times larger than those found in Schiavon et al. (1997).
The CrH opacities are presented along with the new FeH
opacities to demonstrate the similarities and differences
between the opacities for the two molecules. The Wing-Ford
band of FeH near �0.99 lm is accompanied by a similar
band for CrH. In addition, the prominent FeH 1–0 band fea-
ture near 0.87 lm is accompanied by a CrH feature near 0.86
lm. Importantly, the J photometric band between 1.19 and
1.30 lm boasts lines from both molecules, although previ-
ously only FeH features have been identified. Figure 2
focuses on the J band and has a resolution near 0.22 cm�1.
Clearly both molecules must be considered when analyzing
high-resolution spectra in this band.

Figure 3 portrays a comparison between the L5 dwarf
2MASS-1507 (Kirkpatrick et al. 1999b) and a solar-
metallicity theoretical spectrum at 0.85 lm to �1.0 lm,
calculated using the new FeH and CrH (Burrows et al.
2002) opacities and abundances. An effective temperature
of 1700 K and a gravity of 104.5 cm s�2 were assumed, and
the new solar elemental abundances from Allende-Prieto,
Lambert, & Asplund (2002) for oxygen and carbon were
used. The latter decrease the depth of the water feature near
0.94 lm and lead to a better fit in that region of the spectrum
than could previously be obtained. The theoretical model
was offset for clarity of comparison with the data. Since
2MASS-1507 is an L dwarf, silicate clouds figure promi-
nently in their atmospheres (Burrows et al. 2001). We have
incorporated a forsterite cloud with 50 lm particles that
sequesters 10% of the solar magnesium. Such a cloud, while
having an important effect in the J, H, and K bands, does
not dominate the depicted spectrum. Clearly, the FeH and
CrH features around the Wing-Ford band and near the
0.86/0.87 lm features are reasonably reproduced, along
with the overall spectral slope. The fit is improved just long-
ward of 0.87 lm as a result of the inclusion of the FeH opac-
ities redward of the band head. The relative strengths of the
paired FeH and CrH features depicted seem good, although
playing with the abundances, effective temperature, cloud
model, and gravity could no doubt further improve the fit.

Figure 3 demonstrates improvement over previous fits
but merely represents the efforts that can and will be under-
taken in the future as new, higher resolution observations
that highlight regions of the spectrum in which FeH plays
an important role are obtained. In this spirit, we plan to
incorporate the new FeH opacities derived in this paper into
a future, more comprehensive paper that studies the defin-
ing FeH and CrH features observed in L dwarf spectra, in
particular in the I,Z, J, andH photometric bands.

This work was supported in part by NASA under grants
NAG 5-10760 and NAG 5-10629. Support was also pro-
vided by the NASA Laboratory Physics Program and the
Natural Sciences and Engineering Research Council of
Canada. The authors would like to thank Richard
Freedman for providing guidance with line-broadening
parameters for FeH.

TABLE 11

Partition Function of FeH by Level Summation

and Analytic Evaluation (See Text)

T

(K) Summation Analytic

1000 ..................... 6.97184E+02 8.89514E+02

1100 ..................... 8.03851E+02 1.08709E+03

1200 ..................... 9.17504E+02 1.31250E+03

1300 ..................... 1.03828E+03 1.56785E+03

1400 ..................... 1.16627E+03 1.85520E+03

1500 ..................... 1.30158E+03 2.17658E+03

1600 ..................... 1.44427E+03 2.53392E+03

1700 ..................... 1.59438E+03 2.92912E+03

1800 ..................... 1.75196E+03 3.36400E+03

1900 ..................... 1.91703E+03 3.84032E+03

2000 ..................... 2.08960E+03 4.35980E+03

2100 ..................... 2.26969E+03 4.92408E+03

2200 ..................... 2.45731E+03 5.53478E+03

2300 ..................... 2.65244E+03 6.19343E+03

2400 ..................... 2.85509E+03 6.90156E+03

2500 ..................... 3.06524E+03 7.66062E+03

2600 ..................... 3.28289E+03 8.47207E+03

2700 ..................... 3.50803E+03 9.33728E+03

2800 ..................... 3.74062E+03 1.02576E+04

2900 ..................... 3.98065E+03 1.12344E+04

3000 ..................... 4.22809E+03 1.22691E+04

3100 ..................... 4.48291E+03 1.33627E+04

3200 ..................... 4.74507E+03 1.45167E+04

3300 ..................... 5.01453E+03 1.57323E+04

3400 ..................... 5.29123E+03 1.70107E+04

3500 ..................... 5.57513E+03 1.83531E+04
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Fig. 1.—Logarithm (base-10) of the absorption cross sections for FeH (red ) and CrH (blue), the former as derived in this paper, the latter taken from
Burrows et al. (2002). The temperature and pressure are 1800 K and 30 atm, respectively. Most (but not all) of the important bands for both molecules are to
be found at wavelengths between 0.65 and 1.6 lm, and these are what are plotted here. Notice that FeH and CrH frequently contribute opacity in similar
wavelength regions. This is particularly relevant around�0.86 lm,�1.0 lm, and in the J photometric band from�1.2 to�1.3 lm.
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Fig. 2.—Logarithm (base-10) of the absorption cross sections of both FeH (red ) and CrH (blue) in the J band from 1.16 to 1.33 lm. As this plot
demonstrates, depending on the relative abundances, both FeH and CrH bands can contribute opacity and lines in the J band. A spectral resolution near
0.22 cm�1 was employed.
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