Severe Arctic ozone loss in the winter 2004/2005: observations from ACE-FTS J. J. Jin, ¹ K. Semeniuk, ¹ G. L. Manney, ^{2,3} A. I. Jonsson, ¹ S. R. Beagley, ¹ J. C. McConnell, ¹ G. Dufour, ^{4,5} R. Nassar, ⁴ C. D. Boone, ⁴ K. A. Walker, ⁴ P. F. Bernath, ⁴ and C. P. Rinsland, ⁶ Received 29 April 2006; revised 31 May 2006; accepted 13 June 2006; published 2 August 2006. [1] The severe Arctic ozone reduction in the winter 2004/2005 is analyzed using ACE-FTS observations and four different analysis techniques: correlations between ozone and long-lived tracers (adjusted to account for mixing), an artificial tracer correlation method, a profile-descent technique, and the empirical relationship between ozone loss and potential PSC volume. The average maximum ozone loss was about 2.1 ppmv at 475 K – 500 K (~18 km – 20 km). Over 60% of the ozone between 425 K – 475 K (~16 km – 18 km) was destroyed. The average total column ozone loss was 119 DU, ~20 – 30 DU larger than the largest previously observed Arctic ozone loss in the winter 1999/2000. Citation: Jin, J. J., et al. (2006), Severe Arctic ozone loss in the winter 2004/2005: observations from ACE-FTS, Geophys. Res. Lett., 33, L15801, doi:10.1029/2006GL026752. #### 1. Introduction [2] The Atmospheric Chemistry Experiment (ACE) is a Canadian satellite mission (SCISAT-1) whose primary science objective is to study processes related to Arctic stratospheric polar ozone (O₃) loss [Bernath et al., 2005]. The primary instrument is a high spectral resolution (0.02 cm⁻¹) Fourier Transform Spectrometer (ACE-FTS) operating from 2.3 to 13.3 μm (750-4400 cm⁻¹) that measures temperature and many species involved in ozone-related chemistry. The retrieval approach for temperature, pressure, and volume mixing ratios (VMRs) is described by Boone et al. [2005]. Validation studies of ACE-FTS version 1.0 and 2.1 data show that stratospheric ozone is in good agreement with the observations from instruments including GOMOS [Fussen et al., 2005], HALOE [McHugh et al., 2005], POAM III, SAGE III, ozonesondes [Walker et al., 2005], Odin/OSIRIS [Petelina et al., 2005], and EOS MLS [Froidevaux et al., 2006]. In this study the new version 2.2 ACE-FTS data with updated O₃ retrievals, which give more consistent results in the [3] To quantify chemical O₃ loss throughout the winter, and to isolate it from dynamical effects, a tracer correlation method has been used [e.g., Proffitt et al., 1990; Müller et al., 1997; Salawitch et al., 2002]. This method assumes that the correlation between O₃ and a long-lived tracer is preserved inside the polar vortex if there is no chemical O₃ reduction, and thus any change of the correlation relationship yields information on chemical O₃ loss. However, mixing inside the polar vortex and across the vortex edge can also change the correlations. Rex et al. [2002] and Müller et al. [2005] argued that neglecting mixing across the polar vortex edge could only result in an underestimation of the chemical O₃ loss. For the winter 1999/2000, when the largest ever Arctic O₃ loss was reported [World Meteorological Organization (WMO), 2003], mixing across the vortex edge was negligible [Ray et al., 2002; Richard et al., 2001; Salawitch et al., 2002]. Ray et al. [2002] also showed that mixing within the vortex can be responsible for most long-lived tracer correlation changes. In a study on denitrification, Rex et al. [1999] proposed a mixing-line technique to correct for the effects of mixing across the vortex edge when using the correlation method. Later, Esler and Waugh [2002] composed an artificial tracer that has a linear relation with the nitrogen family (NO_v), so mixing does not change the correlations, to get a robust estimate of denitrification. Here, the correlation method with the mixing correction and the artificial tracer method are both used to quantify the O₃ loss. In addition, a profiledescent method [Manney et al., 2006] (hereinafter referred to as MG2006) is used. Finally, Rex et al. [2004] showed that there exists a quantitative empirical linear relation between the Arctic total column chemical O₃ loss and the potential PSC volume from mid-December to March, which offers another tool for chemical O₃ loss estimation. ## 2. O₃ Reduction Analyses from Correlations between O₃ and Long-Lived Tracers [4] The SCISAT-1 orbit allowed ACE-FTS to observe the Arctic ($50^{\circ}N-80^{\circ}N$) between 1 January and 26 March 2005, and the data at potential temperatures 350 K-1700 K (\sim 12 km-45 km) are used here. We consider measurements north of $50^{\circ}N$ with sPV (scaled potential vorticity [Manney et al., 1994]) >1.8 × 10^{-4} s⁻¹ above 450 K and sPV > 1.4×10^{-4} s⁻¹ between 350 K-450 K to be inside the polar vortex. Measurements with sPV < 1.0×10^{-4} s⁻¹ are categorized as outside the polar vortex. We estimate the O₃ loss between 1–7 January 2005 and 8–15 March 2005, Copyright 2006 by the American Geophysical Union. 0094-8276/06/2006GL026752\$05.00 **L15801** 1 of 5 lower stratosphere, are employed to analyze the Arctic O_3 loss during the winter 2004/2005. ¹Department of Earth and Space Science and Engineering, York University, Toronto, Canada. ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA. ³Also at New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA. New Mexico, USA. ⁴Department of Chemistry, University of Waterloo, Waterloo, Canada. ⁵Now at Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, Palaiseau, France. ⁶NASA Langley Research Center, Hampton, Virginia, USA. L15801 **Figure 1.** Correlations of N_2O and CH_4 between 350 K-1700 K. after which the polar vortex broke up [MG2006]. sPV is calculated from UK Met Office analyses [Swinbank et al., 2002]. - [5] Figure 1 shows correlations between nitrous oxide (N_2O) and methane (CH_4) for the Arctic. For N_2O values below 200 ppbv (above ~ 15 km), the correlations inside the vortex are different from those outside. From early January to March 2005, the *vortex* correlation curve shifts to its concave side (aside from a few observations shown by the blue dots). This shift suggests that mixing within the vortex or across the vortex edge occurred. Moreover, EOS MLS observations show that the mixing occurred mainly from the inner vortex edge to the vortex core [MG2006]. - [6] The blue dots (observations for 8-15 March) in Figure 1 and Figure 2 have relatively large CH_4 values and indicate mixing of extra-vortex air which is not surprising as it was near the time of vortex break-up. These points are excluded in all the following O_3 loss estimates to reduce the uncertainty caused by the mixing. - [7] However, when using the O₃/CH₄ correlation to quantify the chemical O₃ loss, the mixing effect still needs to be removed. *Rex et al.* [1999] constructed mixing lines to correct for effects on the denitrification estimates using the change in the N₂O/CH₄ correlation. Using that method and the *vortex* O₃/CH₄ and N₂O/CH₄ correlations, the effect of mixing within the vortex can be roughly removed. Still, since the O₃/CH₄ correlations are different inside and outside the vortex even without chemical O₃ loss and both of the end members of the mixing line are set on the vortex correlations, this method cannot correct for the mixing across the vortex edge. - [8] Polynomial fits of the 1-7 January 2005 O_3/CH_4 correlations are shown as the black and red lines in Figure 3. The black line part is obtained using CH_4 VMRs smaller than 0.30 ppmv but only retains the part below 0.22 ppmv. The red line part is obtained using the entire data set but retains only the part with CH_4 VMRs larger than 0.22 ppmv. In the calculation for the mixing lines, vortex observations for 8-15 March 2005 are binned onto isentropic surfaces in 20 K intervals. For more details about this technique, see *Rex et al.* [1999]. - [9] The adjusted correlation points and their polynomial representation are shown as the grey triangles and line in **Figure 2.** Vertical distribution of CH₄. The symbols are the same as in Figure 1 and the lines are the averages. Figure 3. The modifications mainly impact the middle and lower stratospheric vortex with CH_4 mixing ratios larger than 0.5 ppmv. This suggests that the impact of mixing above $\sim \! \! 35$ km during the intervening two months was negligible for the air below. [10] Employing the adjusted correlation function to the CH₄ measurements for $8{\text -}15$ March 2005, we can estimate the O₃ inside the vortex, as shown in Figure 4. O₃ reduction occurred between 375 K ${\text -}800$ K (${\text -}14$ km ${\text -}30$ km) with a maximum loss of 1.8 ppmv between 475 K ${\text -}500$ K (${\text -}18$ km ${\text -}20$ km). For individual data points, O₃ loss was as large as 2.4 ppmv at these levels. The O₃ loss exceeded 45% between 400 K ${\text -}500$ K (${\text -}15$ km ${\text -}20$ km) and reached over 60% between 425 K ${\text -}450$ K. [11] Using vortex averaged profiles of temperature and pressure for the periods 1-7 January and 8-15 March 2005, the total column O_3 loss between 375 K and 800 K for 8-15 March 2005 is estimated to be ~ 114 DU from the $O_3/\mathrm{CH_4}$ correlations. This value is ~ 25 DU smaller than the estimate of 139 DU obtained using the correlation function without the mixing correction. Based on the adjusted $O_3/\mathrm{N_2O}$ and $O_3/\mathrm{CFC-12}$ (dichlodifluoromethane, $\mathrm{CCl_2f_2}$) correlations, the maximum O_3 loss were 2.0 ppmv and 2.1 ppmv, and the total column O_3 loss estimates were 125 DU and 130 DU, respectively (Table 1). For the three tracers, the averages are 2.0 ppmv and 123 DU for maximum O_3 loss and total column O_3 loss, respectively. **Figure 3.** Correlations of O_3 and CH_4 between 350 K–1700 K. The color symbols are the same as in Figure 1. See text for details of the lines and grey triangles. **Figure 4.** Vertical vortex O_3 and O_3 loss profiles. Dashdot red line, averaged O_3 observations for 1-7 January; blue line, averaged O_3 observations for 8-15 March. Green circles and purple triangles are calculated O_3 and O_3 loss values for 8-15 March using the modified O_3/CH_4 correlations (the grey line in Figure 3), while the green solid and dashed lines are their averages on isentropic surfaces. The black solid and dashed lines show the calculated O_3 and O_3 loss values for 8-15 March using CH_4 and the profile-descent technique, while the grey solid and dashed lines, and the yellow solid and dashed lines show the same result but using N_2O and CFC-12, respectively. ### 3. O₃ Loss from Artificial Tracer, Profile-Descent, and Potential PSC Volume Methods [12] Using the artificial tracer technique proposed by *Esler and Waugh* [2002] we compose an artificial tracer from simultaneous CH₄, N₂O, CFC-11 (trichlorofluoromethane, CCl₃f) and OCS (carbonyl sulphide) observations from 350 K to 800 K within the vortex for 1–7 January 2005 with the coefficients determined by a linear regression. $$\begin{split} \text{Artificial tracer} &= 3.262 \times 10^{-3} \text{ CH}_4(\text{ppbv}) \\ &- 1.678 \times 10^{-2} \text{ N}_2\text{O(ppbv)} \\ &+ 6.903 \times 10^{-3} \text{ CFC-11(pptv)} \\ &- 1.251 \times 10^{-2} \text{ OCS(pptv)} + 3.622 \end{split} \tag{1}$$ [13] Using equation (1) we can obtain the artificial tracers inside and outside the vortex for 1-7 January and 8-15 March and their correlations with O_3 as shown in Figure 5. The decrease of O₃ with respect to this artificial long-lived tracer can be regarded as the chemical O₃ loss. However, because the correlations inside and outside the vortex are different, this method cannot correct for the mixing across the vortex edge. This kind of mixing can only increase O₃ for an artificial tracer value, which suggests that neglecting mixing across the edge gives a conservative O₃ loss estimate for this method. However, because of the early vortex linear correlation, which cannot be changed by inner vortex mixing, this method still can reduce the uncertainty due to the mixing within in the vortex. Figure 6 shows the vertical distribution of O₃ loss estimated by this method. The loss maximized at around 450 K with an average reduction of ~ 2.1 ppmv, slightly larger than the estimate **Figure 5.** Correlations between O_3 and an artificial tracer composed of CH_4 , N_2O , CFC-11, and OCS. from the modified correlations. The reduction extended up to about 650 K (\sim 25 km) and the column O_3 loss between this level and 375 K was 116 DU. [14] Next, we estimate O₃ loss using the profile-descent technique [MG2006]. Using the vortex averaged long-lived tracer profiles (e.g., CH₄ in Figure 2) for 1-7 January and 8-15 March 2005, vortex descent rates can be deduced. The descent rates are then applied to the O_3 profile for 1–7 January (dash-dot red line, in Figure 4 and Figure 6) to derive new O₃ profiles for mid-March. The difference between the O₃ measurements and the derived O₃ values for 8-15 March is considered as O₃ loss. Estimates based on these inferred descent rates from the profiles of CH₄, N₂O and CFC-12 are shown in Figure 4 and Table 1. The maximum O₃ loss averaged for the three species occurred at 500 K and was \sim 2.3 ppmv, which is slightly larger than the estimates from the artificial tracer method and the adjusted correlations. The average total column loss using the CH₄, N₂O and CFC-12 profiles was 128 DU, close to the results from the adjusted correlation analysis but 10% larger than the estimate from the artificial tracer method. [15] Finally, using National Center for Environmental Predication/National Center for Atmospheric Research Reanalysis (NCEP/NCAR) temperature data [Kistler et al., 2001], and typical HNO₃ and H₂O mixing ratios from ACE-FTS measurements from January to March 2005 we estimate the potential PSC volume (V_{PSC}) to be 41 \times 10⁶ km³. According to the empirical relation of Rex et al. [2004], this would imply column O₃ loss of 108±15 DU. The uncertainty range is due to uncertainties in the HNO₃ and H₂O values used for the potential PSC volume calculation. This **Figure 6.** Vertical vortex O_3 and O_3 loss profiles. Lines and symbols are the same as in Figure 4 except that the O_3 and O_3 loss values are derived from the correlations between O_3 and the artificial tracer. **Table 1.** Total column O₃ loss in DU and maximum VMRs loss in ppmv (in brackets) | Method | CH_4 | N_2O | CFC-12 | Average | |--|------------------------|------------------------|------------------------|-------------------------------| | Original correlation
Adjusted correlation | 139 (2.1)
114 (1.8) | 131 (2.1)
125 (2.0) | 131 (2.1)
130 (2.1) | 134 (2.1)
123 (2.0) | | Profile-descent technique
Artificial tracer method
V _{PSC} method | 137 (2.6) | 125 (2.2) | 123 (2.2) | 128 (2.3)
116 (2.1)
108 | estimate is about 12%, 7%, and 15% smaller than the direct estimates using ACE-FTS data from the adjusted correlation analysis, the artificial tracer method and the profile-descent technique, respectively. A possible reason for relatively smallness of this estimate is that the NCEP/NCAR temperature is biased high in the lower stratosphere compared to other data sets [Manney et al., 2005, and references therein]. - [16] On average, ACE-FTS maximum O_3 loss by mixing ratio is estimated to be \sim 2.1 ppmv between 475 K-500 K. This value is \sim 0.8 ppmv larger than estimates from EOS MLS and POAM III using vortex-averaged descent from a radiation calculation [MG2006]. Between 450 K-500 K, the ACE-FTS estimate is \sim 2.0 ppmv from the profile-descent method, which is close to the loss in the outer vortex and \sim 0.5 ppmv larger than the vortex average from EOS MLS using the same method. - [17] Before the winter 2004/2005 the largest Arctic O₃ loss on record occurred in the winter 1999/2000 [WMO, 2003]. The above average maximum O_3 loss is ~ 0.8 ppmv larger than the maximum loss estimated from POAM III using the profile-descent technique and modeling in the Arctic for the winter 1999/2000 [Hoppel et al., 2002]. However, the loss in 2004/2005 was about 0.5 ppmv smaller than the maximum loss at 450 K at the end of March 2000 from the MATCH analysis [Rex et al., 2002]. Nevertheless, since loss extended farther down where ozone VMRs are smaller, the maximum fractional loss reached 60% at between 425 K-475 K (\sim 16 km-18 km), close to the estimate using various methods and data sets during SOLVE/THESEO 2000 [Newman et al., 2002]. The average of the total column loss estimates from the four methods is 119 DU. This is $\sim 20-30$ DU larger than estimates at the end of March 2000 [WMO, 2003]. ### 4. Summary [18] The Arctic winter 2004/2005 was particularly cold [MG2006] with substantial chlorine activation [Dufour et al., 2006]. Table 1 shows the estimates of the maximum O₃ mixing ratio loss and total column O₃ loss from various methods. The maximum mixing ratio loss over the entire winter was ~ 1.8 ppmv based on the adjusted O_3/CH_4 correlations and ~2.0 ppmv of average from the adjust O_3/CH_4 , O_3/N_2O and $O_3/CFC-12$ correlations, ~ 2.1 ppmv from the correlation between O₃ and an artificial tracer, and ~2.3 ppmv from the profile-descent method. These estimates are ~ 0.5 ppmv larger than those from EOS MLS [MG2006]. Total column O_3 loss was \sim 123 DU based on the adjusted O₃/long-lived tracer correlations and 116 DU based on the artificial tracer method. Only the effect of mixing within the vortex is corrected for in the tracer correlation methods used here. Hence, the results are likely to be conservative. However, exact mixing effects cannot be assessed due to the unusual and complex morphology of O_3 in this year [MG2006]. A smaller estimate of \sim 108 DU is obtained from the empirical relationship of Rex et al. [2004], while a larger value of \sim 127 DU is obtained from the profile-descent technique. The average from the four methods is 119 DU, which is the largest Arctic column O_3 loss observed. Further investigation using modeling and other observations is necessary to better understand the O_3 depletion during this winter. [19] Acknowledgments. We thank Ross Salawitch for useful conversations. Funding for ACE is provided by the Canadian Space Agency and the Natural Sciences and Engineering Research Council (NSERC) of Canada. Support was also provided by the NSERC-Bomem-CSA-MSC Industrial Research Chair in Fourier Transform Spectroscopy and by the Canadian Foundation for Climate and Atmospheric Science. Work at the Jet Propulsion Laboratory, California Institute of Technology was done under contract with the National Aeronautics and Space Administration. ### References Bernath, P. F., et al. (2005), Atmospheric Chemistry Experiment (ACE): Mission overview, *Geophys. Res. Lett.*, 32, L15S01, doi:10.1029/2005GL022386. Boone, C. D., et al. (2005), Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer, *Appl. Opt.*, *44*(33), 7218–7231. Dufour, G., et al. (2006), Partitioning between the inorganic chlorine reservoirs HCl and ClONO₂ during the Arctic winter 2005 from the ACE-FTS, Atmos. Chem. Phys. Disc., 6, 1249–1273. Esler, J. G., and D. W. Waugh (2002), A method for estimating the extent of denitrification of arctic polar vortex air from tracer-tracer scatter plots, *J. Geophys. Res.*, 107(D13), 4169, doi:10.1029/2001JD001071. Froidevaux, L., et al. (2006), Early validation analyses of atmospheric profiles from EOS MLS on the Aura satellite, *IEEE Trans. Geosci. Remote Sens.*, 44(5), 1106–1121. Fussen, D., F. Vanhellemont, J. Dodion, C. Bingen, K. A. Walker, C. D. Boone, S. D. McLeod, and P. F. Bernath (2005), Initial intercomparison of ozone and nitrogen dioxide number density profiles retrieved by the ACE-FTS and GOMOS occultation experiments, *Geophys. Res. Lett.*, 32, L16S02, doi:10.1029/2005GL022468. Hoppel, K., R. Bevilacqua, G. Nedoluha, C. Deniel, F. Lefèvre, J. Lumpe, M. Fromm, C. Randall, J. Rosenfield, and M. Rex (2002), POAM III observations of arctic ozone loss for the 1999/2000 winter, *J. Geophys. Res.*, 107(D20), 8262, doi:10.1029/2001JD000476. Kistler, R., et al. (2001), The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, *Bull. Am. Meteorol. Soc.*, 82, 247–267. Manney, G. L., et al. (1994), On the motion of air through the stratospheric polar vortex, J. Atmos. Sci., 51, 2973–2994. Manney, G. L., K. Krüger, J. L. Sabutis, S. A. Sena, and S. Pawson (2005), The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s, *J. Geophys. Res.*, 110, D04107, doi:10.1029/2004JD005367. Manney, G. L., M. L. Santee, L. Froidevaux, K. Hoppel, N. J. Livesey, and J. W. Waters (2006), EOS MLS observations of ozone loss in the 2004–2005 Arctic winter, *Geophys. Res. Lett.*, 33, L04802, doi:10.1029/2005GL024494. McHugh, M., B. Magill, K. A. Walker, C. D. Boone, P. F. Bernath, and J. M. Russell III (2005), Comparison of atmospheric retrievals from ACE and HALOE, *Geophys. Res. Lett.*, *32*, L15S10, doi:10.1029/2005GL022403. Müller, R., et al. (1997), Severe chemical ozone loss in the Arctic during the winter of 1995–1996, *Nature*, 389, 709–712. Müller, R., et al. (2005), Impact of mixing and chemical change on ozone-tracer relations in the polar vortex, *Atmos. Chem. Phys.*, 5, 3139–3151. Newman, P. A., et al. (2002), An overview of the SOLVE/THESEO 2000 campaign, *J. Geophys. Res.*, 107(D20), 8259, doi:10.1029/2001JD001303. Petelina, S. V., et al. (2005), Validation of ACE-FTS stratospheric ozone profiles against Odin/OSIRIS measurements, *Geophys. Res. Lett.*, 32, L15S06, doi:10.1029/2005GL022377. Proffitt, M. H., et al. (1990), Ozone loss in the Arctic polar vortex inferred from high altitude aircraft measurements, *Nature*, 347, 31–36. Ray, E. A., F. L. Moore, J. W. Elkins, D. F. Hurst, P. A. Romashkin, G. S. Dutton, and D. W. Fahey (2002), Descent and mixing in the 1999–2000 northern polar vortex inferred from in situ tracer measurements, J. Geophys. Res., 107(D20), 8285, doi:10.1029/2001JD000961. - Rex, M., et al. (1999), Subsidence, mixing, and denitrification of Arctic polar vortex air measured during POLARIS, *J. Geophys. Res.*, 104(D21), 26 611–26 624 - Rex, M., et al. (2002), Chemical depletion of Arctic ozone in winter 1999/2000, J. Geophys. Res., 107(D20), 8276, doi:10.1029/2001JD000533. - Rex, M., R. J. Salawitch, P. von der Gathen, N. R. P. Harris, M. P. Chipperfield, and B. Naujokat (2004), Arctic ozone loss and climate change, *Geophys. Res. Lett.*, 31, L04116, doi:10.1029/ 2003GL018844. - Richard, E. C., et al. (2001), Severe chemical ozone loss inside the Arctic polar vortex during winter 1999–2000 inferred from in situ airborne measurements, *Geophys. Res. Lett.*, 28(11), 2197–2200. - Salawitch, R. J., et al. (2002), Chemical loss of ozone during the Arctic winter of 1999/2000: An analysis based on balloon-borne observations, *J. Geophys. Res.*, 107(D20), 8269, doi:10.1029/2001JD000620. - Swinbank, R., N. B. Ingleby, P. M. Boorman, and R. J. Renshaw (2002), A 3D variational data assimilation system for the stratosphere and troposphere, *Tech. Rep. 71*, Met Off. Numer. Weather Predict. Forecasting Res., Exeter, U.K. - Walker, K. A., C. E. Randall, C. R. Trepte, C. D. Boone, and P. F. Bernath (2005), Initial validation comparisons for the Atmospheric Chemistry - Experiment (ACE-FTS), *Geophys. Res. Lett.*, 32, L16S04, doi:10.1029/2005GL022388. - World Meteorological Organization (WMO) (2003), Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project—Report No. 47, 498 pp., Geneva. - S. R. Beagley, J. J. Jin, A. I. Jonsson, J. C. McConnell, and K. Semeniuk, Department of Earth and Space Science and Engineering, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3. (jianjun@yorku.ca) - P. F. Bernath, C. D. Boone, R. Nassar, and K. A. Walker, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1. - G. Dufour, Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, F-91128 Palaiseau, France. - G. L. Manney, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA. - C. P. Rinsland, NASA Langley Research Center, 100 NASA Road, Hampton, VA 23681, USA.