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a b s t r a c t

Einstein A coefficients and absolute line intensities have been calculated for the

E2P–X2Sþ transition of CaH. Using wavefunctions derived from the Rydberg–Klein–

Rees (RKR) method and electronic transition dipole moment functions obtained from

high-level ab initio calculations, rotationless transition dipole moment matrix elements

have been calculated for all 10 bands involving v0 ¼0,1 of the E2P state and v00 ¼0,1,2,3,4

of the X2S state. The rotational line strength factors (Hönl–London factors) are derived

for the intermediate coupling case between Hund’s case (a) and (b) for the E2P–X2Sþ

transition. The computed transition dipole moments and the spectroscopic constants

from a recent study [Ram et al., Journal of Molecular Spectroscopy 2011;266:86–91] have

been combined to generate line lists containing Einstein A coefficients and absolute line

intensities for 10 bands of the E2P–X2Sþ transition of CaH for J-values up to 50.5. The

absolute line intensities have been used to determine a rotational temperature of

77873 1C for the CaH sample in the recent study.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

CaH is an important molecule in astrophysics, having
been identified in the spectra of sunspots [1,2] and cool
brown dwarfs [3,4] through the observation of bands
belonging to the A2P–X2Sþ and B2Sþ–X2Sþ transitions.
The CaH bands are particularly strong in M dwarfs and are
used to identify M [5] and L [6,7] type subdwarfs in which
metal hydrides are enhanced relative to metal oxides such
as TiO. Subdwarfs are metal-poor objects and have very
low abundances of heavy elements compared to normal
stars like the Sun. The observation of metal hydrides and
oxides is, therefore, used as a tool to monitor temperature
and composition of the atmospheres of these objects.

As the number of new classes of stellar objects has
grown [8–10], the understanding of their atmospheres,
ll rights reserved.
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evolution, and spectral characteristics remains far from
complete. Considerable attempts have been made to
develop models to determine their atmospheric para-
meters such as chemical composition, pressure, surface
gravity and temperature. Opacities for the molecular
species found in the atmospheres of these objects are
needed to achieve this goal. However, complete molecular
opacity data for many species found in these atmospheres
are still lacking, limiting the development of adequate
atmospheric models for cool stars and brown dwarfs.

Among the hydride molecules, molecular opacities have
been calculated for the A6Sþ–X6Sþ transition of CrH [11],
the F4D–X4D transition of FeH [12], the A4F–X4F transition
of TiH [13], and the A2P–X2Sþ and B2Sþ–X2Sþ transitions
of MgH [14]. In a more recent study, Hargreaves et al. [15]
have created a line list at 2200 K for the near-infrared
E4P–A4P and E4P–X4D transitions of FeH based on labora-
tory spectra and an ab initio calculation of the band
strengths. For CaH, Weck et al. [16] have performed
theoretical calculations on the rovibrationally-resolved
transitions involving the A2P, B2Sþ and E2P excited
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states and the X2Sþ ground states. Their results were in
good agreement with the available theoretical and experi-
mental data for the vibrational energy levels and band
oscillator strengths. Since the A2P and B2Sþ states of CaH
are affected by strong interactions between the two states
and some other close-lying electronic states, a qualitative
fit of the observed transitions is still lacking. A deperturba-
tion analysis of the two transitions is therefore necessary
in order to obtain a complete set of spectroscopic con-
stants, including the interaction parameters. Work in this
direction is currently being undertaken and the results
will enable the calculation of molecular opacities for the
A2P–X2Sþ and B2Sþ–X2Sþ transitions of CaH using high-
resolution experimental data.

Recently we have completed a high resolution analysis
of the E2P–X2Sþ transition of CaH [17] observed in
the 20 100–20 700 cm�1 spectral region. The spectra were
recorded using a Bruker IFS 120 HR Fourier transform
spectrometer, and a rotational analysis of the 0–0 and 1–1
bands was carried out in order to obtain an improved set of
spectroscopic parameters for the E2P and X2Sþ states [17].
These results, combined with the transition dipole moment
function of the E2P–X2Sþ transition determined by Weck
et al. [16], have enabled the calculation of Einstein A
coefficients and absolute line intensities using the computer
programs LEVEL [18] and PGOPHER (version 7.1.108) [19].
Line lists and Einstein A coefficients for different bands of
the E2P–X2Sþ transition have been generated. A summary
of the theoretical approach applied, and the results of our
calculations will be presented.
2. Methodology

The knowledge of absolute line intensities and Einstein
A coefficients of molecular species is of fundamental
importance with applications in areas such as astrophy-
sics and atmospheric science [20]. While Einstein A
coefficients can be obtained indirectly by measurements
of radiative lifetimes, experimental measurements of
absolute line intensities require specific experimental
conditions which are difficult to obtain for many high
temperature molecular species. The rapid increase in
computing power and the recent developments in quan-
tum chemistry have made it possible to compute these
data, in addition to making experimental measurements.
The use of semi-empirical methods that combine the best
available experimental and theoretical data can provide
the desired information for important molecular species.

Theoretically, the eigenvalues Ev,J and eigenfunctions
cv,J(r) for a diatomic molecule with the potential VJ(r)
can be determined by solving the one-dimensional
Schrödinger equation. Methods for determining the
potential VJ(r) include the RKR (Rydberg–Klein–Rees)
method [21], or ab initio calculations. Line intensities for
an electronic transition of a diatomic molecule are pro-
portional to the square of the appropriate transition
dipole moment matrix element, /cv0 ,J0 ðrÞ9ReðrÞ9cv00 ,J00 ðrÞS,
where ReðrÞ is the electronic transition dipole
moment. Given the electronic wavefunction, celðrÞ, as a
function of internuclear distance, ReðrÞ can be calculated
ab initio,

ReðrÞ ¼/c0elðrÞ9lðrÞ9c
00

elðrÞS ð1Þ

where l(r) is the electric dipole moment operator.
The calculation of transition dipole moment matrix

elements of the form /cv0 ,J0 ðrÞ9ReðrÞ9cv00 ,J00 ðrÞS is rather
involved. However, we have shown in a previous study on
HCl [22] that Le Roy’s LEVEL program can significantly
simplify this procedure and produce transition dipole
moment matrix elements with sufficient accuracy for
many purposes. Once transition dipole moment matrix
elements are extracted from LEVEL, Einstein A coefficients
can be calculated with the aid of the PGOPHER program
[19] by the relation [23]

AJ0-J00 ¼ 3:13618932� 10�7n3 S
2J0 þ1

9/cn0J0 9ReðrÞ9cn00J00S92

ð2Þ

where AJ0-J00 has the units of s�1, n is the transition
wavenumber (cm�1), S is the rotational line strength
factor (Hönl–London factor) which will be discussed in
detail later, and Re is the electronic transition dipole
moment in debye.

2.1. Hönl–London factors

In general, the line strength, S, for the one-photon
electric-dipole-allowed aJ0–bJ00 transition of a diatomic
molecule is given by the integral [23]

SaJ0 ,bJ00 ¼
X

p,M0 ,M00
9/CaJ0M0 9T

1
pðmÞ9CbJ00M00S92

ð3Þ

where CaJ0M0 and CbJ00M00 are the wavefunctions for the
magnetic substates of the upper and lower states, respec-
tively, J0 and J00 are the total angular momenta, M0 and M00

their associated components (in a space-fixed coordinate
system), a and b any other necessary quantum numbers,
and T1

p (m) are the spherical tensor components (in a
space-fixed coordinate system) of the transition dipole
moment operator.

In order to derive expressions for the line strength,
T1

p(m) must be expressed in terms of the molecule-fixed
components T1

q using Wigner D matrices [24]

T1
pðmÞ ¼

X
q

D1
pqðoÞ

nT1
qðmÞ ð4Þ

Using case (a) basis functions of the form 9ZL;v; S
S; JOMS (i.e., a non-parity basis set; refer to Ref. [24] for
definitions of the quantum numbers), assuming the radia-
tion is isotropic, and using the Wigner–Eckart theorem,
Sbasis can be written as [24]:

Sbasis
Z0L0v0S0S0J0O0 ,Z00L00v00S00S00J00O00

¼ 3
X

M0 ,M00
9/Z0L0;v0; S0S0; J0O0M09T1

p ¼ 0ðmÞ9Z
00L00;

v00; S00S00; J00O00M00S92

¼ 3
X

M0M00
9
X

q

/Z0L0;v0; S0S0; J0O0M09D1
0qðoÞ

nT1
qðmÞ9Z

00L00;

v00; S00S00; J00O00M00S
��2

¼ 3
X

M0M00

X
q

/Z0Ls0 9T1
qðmÞ9Z

00Ls00S/S0S09S00S00S

�����
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�/v09v00S/J0O0M09D1
0qðoÞ

n9J00O00M00S

�����2

¼ 3dS0S00dS0S00qv0v00

X
M0M00

X
q

ð�1ÞJ
0
�M0 J0 1 J00

�M0 0 M00

 !�����
�/J0O0JD1

UqðoÞ
nJJ00O00S/Z0Ls0 9T1

qðmÞ9Z
00Ls00S

�����2

¼ dS0S00dS0S00qv0v00

X
q

ð�1ÞJ
0
�O0 J0 1 J00

�O0 q O00

 !�����
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J0 þ1Þð2J00 þ1Þ

q
/Z0Ls0 9T1

qðmÞ9Z
00Ls00S

����
2

¼ dS0S00dS0S00qv0v00 Rej j
2SJ0O0 ,J00O00 ð5Þ

where 9Re9
2
¼ 9/Z0Ls0 9T1

L0�L00 ðmÞ9Z00L
s00S92

and

SJ0O0 ,J00O00 ¼ ð2J0 þ1Þð2J00 þ1Þ
J0 1 J00

�O0 O0�O00 O00

 !2

In this definition, qv0v00 is the Franck–Condon factor, Re

the electronic transition dipole moment of the molecule,
and SJ0O0 ,J00O00 the (non-parity) Hönl–London factors (HLFs).
The derivation of Eq. (5) makes use of the Franck–Condon
principle.

The HLFs for singlet–singlet transitions were originally
derived by Hönl and London in 1925 [25]. Analytical
formulae of HLFs for higher multiplicity transitions have
subsequently been derived during the last century [26–35].
Generally published formulae agree with respect to the
relative intensities within a band, however there are often
discrepancies by a factor of two or more for the absolute
intensities for certain types of transitions. Some of the
ambiguities regarding HLFs in the literature were summar-
ized by Hansson and Watson [35] in 2005 for singlet-singlet
transitions. Their derivation also showed that the use of
parity basis functions introduces an additional factor of two
in absolute intensities for the perpendicular transitions
1P–1S and 1S–1P. For all other singlet-singlet transitions,
the use of parity basis functions, as in Eq. (6), produces the
same expressions for HLFs due to the symmetry relations
between the matrix elements

9Z2Sþ19L9OvJ M par¼ 71S¼
1ffiffiffi
2
p

n
9ZLs;v; SS; JOMS

7 ð�1ÞJ�Sþ s9Z�Ls;v; S�S; J�OMS
o

ð6Þ

Hansson and Watson’s conclusions for perpendicular
1P–1S and 1S–1P transitions can be extended to higher
Table 1
SJ0O0par0 ,J00O00par00 .

Transition P Q

DK¼0 ðJ00�O00 ÞðJ00 þO00 Þ
J00

ð2J00

J00 ð

DK¼�1 w0 ðJ
00
�1þO00 ÞðJ00 þO00 Þ

2J00
w0 ð

DK¼þ1 w00 ðJ
00
�1�O00 ÞðJ00�O00 Þ

2J00
w00

where

w0 ¼ 1þdL00dS00

w00 ¼ 1þdL000dS000
multiplicity even-electron P–S and S–P transitions. In
such cases, the associated basis function for the S¼0
component of a S state is no longer written as a linear
combination, but as a single function of the form

9Z2Sþ1SðsÞ0 vJMpar¼ J�SþsS¼ 9ZL¼ 0ðsÞ;v; SS¼ 0; JO¼ 0MS

ð7Þ

(For odd-electron systems, all wavefunctions are of the
form given in Eq. (6)). It is obvious that any P–S/S–P
matrix elements involving the basis function in Eq. (7) must
be a factor of two higher than the corresponding matrix
element derived in a non-parity basis set. General expres-
sions for HLFs in a case (a) parity basis set (SJ0O0par0 ,J00O00par00 )
are given in Table 1. Note that for the purposes of this table
we define LZ0. Furthermore, values of O must satisfy the
requirement DS¼0. The entries in Table 1 of Hansson and
Watson [35] can be viewed as a special case of those in the
present Table 1, with O¼L (S¼0 for singlet states).

Note that the total line strength calculated in a basis
set with defined parity, Sbasis

Z0L0v0S0S0J0O0par0 ,Z00L00v00S00S00 J00O00par00 , will
differ from Eq. (5) when w0 or w00 equals 2. The (parity)
HLFs, SJ0O0par0 ,J00O00par00 , in Table 1 reduce to the (non-parity)
HLFs, SJ0O0 ,J00O00 , by setting w0 ¼w00 ¼1. Furthermore, it can
be shown that the normal ‘‘sum rule’’ [33–35] for HLFs
still applies, where the sum is taken over all possible spin-
components and L-doublets,X
SJ0O0 ,J00O00 ¼

X
SJ0O0par0 ,J00O00par00 ¼ ð2�dL00dL000Þð2Sþ1Þð2Jþ1Þ

ð8Þ

2.2. Calculation of Hönl–London factors

for a 2P–2Sþ transition

As we have seen, obtaining analytical formulae for HLFs
using Hund’s case-(a) basis functions is rather straightfor-
ward. However, applying these to real molecules requires
more work. The Hamiltonian matrices of the lower and
upper states need to be diagonalised to produce wavefunc-
tions which are simply linear combinations of the basis
functions. The line strength for a particular rovibronic line
can then be computed by transforming the basis-calculated
transition dipole moment matrix elements using the coeffi-
cients from the diagonalisation, and squaring the result.

For the purpose of validation, we have re-derived
analytical HLFs for a 2P–2Sþ transition to compare with
the output of PGOPHER; these were first derived by Earls
in 1935 [28]. Analytical expressions for the eigenstates of
a 2P state intermediate between Hund’s cases (a) and (b)
R

þ1ÞO002
J00 þ1Þ

ðJ00 þ1�O00 ÞðJ00 þ1þO00 Þ
J00 þ1

2J00 þ1ÞðJ00 þO00 ÞðJ00 þ1�O00 Þ
2J00 ðJ00 þ1Þ

w0 ðJ
00
þ1�O00 ÞðJ00 þ2�O00 Þ

2ðJ00 þ1Þ

ð2J00 þ1ÞðJ00�O00 ÞðJ00 þ1þO00 Þ
2J00 ðJ00 þ1Þ

w00 ðJ
00
þ1þO00 ÞðJ00 þ2þO00 Þ

2ðJ00 þ1Þ



Table 2
General HLF expressions for a 2P–2Sþ transition in which the 2P state is intermediate between Hund’s cases (a) and (b). Refer to text for further details.

2P (upper) 2Sþ (lower) SJ0O0par0 ,J00O00par00
a

F1 F1

ð2J0 þ1Þð2J00 þ1Þ b2
J0

J0 1
�3
2 1

J00

1
2

 !2

þa2
J0

J0 1
�1
2 1

J00

�1
2

 !2

�2a2
J0
b2

J0
J0 1
�3
2 1

J00

1
2

 !
J0 1
�1
2 1

J00

�1
2

 !8<
:

9=
;

F1 F2

ð2J0 þ1Þð2J00 þ1Þ b2
J0

J0 1
�3
2 1

J00

1
2

 !2

þa2
J0

J0 1
�1
2 1

J00

�1
2

 !2

þ2a2
J0
b2

J0
J0 1
�3
2 1

J00

1
2

 !
J0 1
�1
2 1

J00

�1
2

 !8<
:

9=
;

F2 F1

ð2J0 þ1Þð2J00 þ1Þ a2
J0

J0 1
�3
2 1

J00

1
2

 !2

þb2
J0

J0 1
�1
2 1

J00

�1
2

 !2

þ2a2
J0
b2

J0
J0 1
�3
2 1

J00

1
2

 !
J0 1
�1
2 1

J00

�1
2

 !8<
:

9=
;

F2 F2

ð2J0 þ1Þð2J00 þ1Þ a2
J0

J0 1
�3
2 1

J00

1
2

 !2

þb2
J0

J0 1
�1
2 1

J00

�1
2

 !2

�2a2
J0
b2

J0
J0 1
�3
2 1

J00

1
2

 !
J0 1
�1
2 1

J00

�1
2

 !8<
:

9=
;

F1 (J0 ¼0.5)b F1/F2

2ð2J00 þ1Þ
1
2 1
�1
2 1

J00

�1
2

 !2

a aJ ¼
XJ þðY�2Þ

2XJ

h i1=2
and bJ ¼

XJ�ðY�2Þ
2XJ

h i1=2
.

b For the E2P state of CaH, the special case of J0 ¼0.5 corresponds to F1.

Table 3
Hönl–London Factors for 2P–2Sþ transitions.

2P–2Sþ SJ0O0par0 ,J00O00par00
a

P1(J) ð2J�1Þ2 þð2J�1ÞX�1
J�1 ð4J2

�4J�7þ2YÞ

8J

Q1(J) ð2Jþ1Þ½ð4J2
þ4J�1ÞþX�1

J ð8J3
þ12J2

�2J�7þ2YÞ

8JðJþ1Þ

R1(J) ð2Jþ3Þ2 þð2Jþ3ÞX�1
Jþ 1 ð4J2

þ12Jþ9�2YÞ

8ðJþ1Þ

P12(J) ð2J�1Þ2�ð2J�1ÞX�1
J�1 ð4J2

�4Jþ1�2YÞ

8J

Q12(J) ð2Jþ1Þ½ð4J2
þ4J�1Þ�X�1

J ð8J3
þ12J2

�2Jþ1�2YÞ

8JðJþ1Þ

R12(J) ð2Jþ3Þ2�ð2Jþ3ÞX�1
Jþ 1 ð4J2

þ12Jþ1þ2YÞ

8ðJþ1Þ

P2(J) ð2J�1Þ2 þð2J�1ÞX�1
J�1 ð4J2

�4Jþ1�2YÞ

8J

Q2(J) ð2Jþ1Þ½ð4J2
þ4J�1ÞþX�1

J ð8J3
þ12J2

�2Jþ1�2YÞ

8JðJþ1Þ

R2(J) ð2Jþ3Þ2 þð2Jþ3ÞX�1
Jþ 1 ð4J2

þ12Jþ1þ2YÞ

8ðJþ1Þ

P21(J) ð2J�1Þ2�ð2J�1ÞX�1
J�1 ð4J2

�4J�7þ2YÞ

8J

Q21(J) ð2Jþ1Þ½ð4J2
þ4J�1Þ�X�1

J ð8J3
þ12J2

�2J�7þ2YÞ

8JðJþ1Þ

R21(J) ð2Jþ3Þ2�ð2Jþ3ÞX�1
Jþ 1 ð4J2

þ12Jþ9�2YÞ

8ðJþ1Þ

Q12(0.5), Q1(0.5)b 4
3

P12(1.5), P1(1.5)b 2
3

a XJ ¼ ðY�2Þ2þ4 Jþ 1
2

� �2
�1

h in o1=2
; Y ¼ A=B .

b For the E2P state of CaH, the special case of J0 ¼0.5 corresponds to F1.
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are derived in the Appendix A using a simple version of the
N2 Hamiltonian [24]. 2Sþ eigenstates can be found in
various text books, e.g. [23]. General expressions for these
HLFs are given in Table 2, with analytical expressions (upon
substitution of Wigner 3-j symbols, etc.) for 12 branches of a
2P–2Sþ transitions listed in Table 3. The parity for each
entry in Tables 2 and 3 is determined by that of the lower
2Sþ state: for F1, the parity of each J-level is equated with
(�1)J�1/2; for F2, with (�1)Jþ1/2. Upper-state parities must
satisfy the relationship par0par00 ¼ �1.

Using the definitions outlined in this paper, the HLFs
derived for a 2P–2S transition (Table 3) are four times
larger than the values calculated by Earls et al. [28]. The
outputs of PGOPHER for the HLFs are consistent with the
analytical formulae in Table 3, providing confidence in
using PGOPHER to calculate Einstein A coefficients and
line intensities.

3. Details of the calculations and the results

Potential energy functions, VJ(r), for both the E2P and
X2Sþ states of CaH were constructed using the purely
numerical RKR method [21] with the Kaiser correction [36]
and the effective Dunham coefficients from Ram et al. [17].
These RKR potential curves were then employed in the
LEVEL program to calculate the wavefunctions, cv,J. Note
that the current version of LEVEL is limited to singlet-singlet
electronic transitions. Therefore, we use LEVEL and the high-
level ab initio electronic transition dipole moments, ReðrÞ,
from Weck et al. for the E2P–X2Sþ transition [16], to
calculate transition dipole moment matrix elements for
R(0) lines of a 1P–1S transition, i.e. /v0J0¼ 19ReðrÞ9v00J

00
¼ 0S,

for all 10 bands with v0 ¼0,1 and v00 ¼0, 1, 2, 3, 4; these are
listed in Table 4. Considering the minor differences between
/v0J0¼ 19ReðrÞ9v00J

00
¼ 0Sand/v0J0¼ 09ReðrÞ9v

00

J00¼ 0S, less than
1% in this case, /v0J0¼ 19ReðrÞ9v00J

00
¼ 0S was used as the

‘rotationless matrix element’ in order to avoid Herman–
Wallis fitting.

Einstein A coefficients and absolute line intensities for
all 10 bands of the E2P–X2Sþ transition of CaH were
calculated using PGOPHER. Firstly, the rovibronic transi-
tion wavenumbers were calculated using the spectro-
scopic constants derived by Shayesteh et al. [37] for
v¼0–4 of the X2Sþ state and Ram et al. [17] for v¼0, 1
of the E2P state. Next, the transition dipole moment
matrix elements for R(0) lines of a 1P–1S transition listed
in Table 4 for the 10 bands were inserted into PGOPHER
and absolute line intensities calculated.

The absolute line intensities were used to determine
the rotational temperature of the CaH sample in the
experiments of Ref. [17]. PGOPHER has a useful function
to determine the rotational temperature (TR). TR was
determined as 77873 1C, which compares well with the
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estimated experimental temperature of 780 1C [17]. In the
present study, the vibrational temperature, TV, was set
equal to TR.

Fig. 1 shows the contour fit result using PGOPHER. The
unfitted feature marked with a triangle in the residuals is
due to a weak argon atomic line. In addition, two lines were
locally perturbed and their positions have been marked
with asterisks. These two perturbed lines were previously
reported in Ref. [17]. The 1–1 band did not fit well due to
the presence of perturbations. The E2P state probably
interacts with the D2Sþ state or the higher vibrational
levels of the B2Sþ state. As reported in Ref. [17], the D2Sþ

state lies only 2132 cm�1 above the E2P state.
Finally, PGOPHER was used to generate a line list

(including line positions, Einstein A coefficients and
absolute line intensities) for the 10 bands of the E2P–
X2Sþ transition of CaH for J-values up to 50.5. The line
positions of the 0–0 band agree well with the
Table 4
LEVEL outputs for a 2P–2Sþ transition of CaH using RKR potentials and

transition dipole moment function from Ref. [16].

DJ(J00) v0 v00 A (Einstein)/s�1 /v0j09R9v00j00S/debyea

R(0) 0 0 1.04395�106 0.767167

R(0) 0 1 1.58329�103
�0.032876

R(0) 0 2 6.97259�102 0.024089

R(0) 0 3 8.86349�10�1 0.000952

R(0) 0 4 7.46177�10�3
�0.000097

R(0) 1 0 4.16855�103 0.044494

R(0) 1 1 1.05409�106 0.774310

R(0) 1 2 1.90705�102
�0.011430

R(0) 1 3 2.66231�103 0.047015

R(0) 1 4 5.94906�10�2
�0.000246

a Vibronic transition moment input to PGOPHER.

Fig. 1. Overview of experimental (upper curve) and simulated (lower curve) spe

top panel, the residuals (observed minus calculated spectra) are displayed as

to 100%. The unfitted features include: a strong argon atomic line around 2056

residuals and two locally perturbed lines marked with asterisks.
experimental values apart from two locally perturbed
lines. However, due to the perturbations in the 1–1 band
as reported by Ram et al., the line positions have a larger
standard deviation of 0.02 cm�1 [17]. For the intensities,
an overview of the comparison of experimental and
simulated spectra for the 0–0 and 1–1 bands of the E2P–
X2Sþ transition of CaH is provided in Fig. 1. Similarly, a
comparison for the Q1 and Q2 branches is provided in Fig. 2.
As shown in Figs. 1 and 2, the simulated spectra agree very
well with the experimental spectra.

There are four main sources of error in our calculations:
1)
ctra

a p

5 w
The uncertainty in the ab initio transition dipole
moments, which were not discussed in Ref. [16].
2)
 The error from assuming that transition dipole
moment matrix elements for a 1P–1S transition are
the same as the CaH E2P–X2Sþ transition. At lowest J,
the difference is likely to be very small because this is
basically equivalent to the validity of the Hund’s case
(a) basis. Furthermore, as demonstrated in Ref. [22],
the errors caused by using wave functions from RKR
potentials are small.
3)
 Uncertainty by not including the rotation–vibration
interaction, i.e., Herman–Wallis effect [38] in the
calculation of line intensities.
4)
 Interaction of the E2P state with a close-lying 2Sþ state.
There is another D2Sþ state lying only 2312 cm�1 above
E2P state. Symmetry requires any resulting state mixing
to be J-dependent.
Although, the uncertainty arising from source 2, 3, and
4 is hard to evaluate, the overall effect can be estimated

by the standard deviation of the intensity fit which is less
than 10% for the Q1, Q2 branches and 15% for the P1, P2 and
R1, R2 branches.
for the 0–0 and 1–1 bands of the E2P–X2Sþ transition of CaH. In the

ercentage with the largest peak in the experimental spectrum set

avenumber; a weak argon atomic line marked with a triangle in the



Fig. 2. Experimental (upper) and simulated (lower) spectra of the Q1 and Q2 branches of the 0–0 band of the E2P–X2Sþ transition of CaH. In the top

panel, the residuals are displayed as a percentage with the largest peak in the experimental spectrum set to 100%.
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Recently, Liu et al. have measured the lifetime of
the A2P state of CaH [39], which allows us to check our
Hönl–London factors for a 2P–2Sþ transition. Using the
transition dipole moment function for the A2P–X2Sþ

transition of CaH from Weck et al. [16], the transition
dipole moment at the ground state equilibrium geometry
is 5.694 debye. Since the X and A state potentials are fairly
similar, this value seems reasonable. Liu et al. quote a
value of 5.655 debye as determined from the lifetime,
which is in good agreement with the value derived from
Weck et al. A final check was performed by calculating the
lifetime using the value 5.694 debye for the transition
dipole moment. PGOPHER gives a lifetime around 33 ns
for the A2P state, which is in good agreement with the
measured lifetime 33.2 ns [39].

4. Conclusions and future work

Computed transition dipole moments [16] and the
spectroscopic constants from a recent study [17] have been
used with the PGOPHER program to generate line lists
containing Einstein A coefficients and absolute line inten-
sities for 10 bands of the E2P–X2Sþ transition of CaH for J-
values up to 50.5. The line intensities have enabled the
determination of a rotational temperature, TR, of 77873 1C
for the CaH sample in Ref. [17]. The calculated line inten-
sities agree well with experimental values, with a standard
deviation of 10% for the Q1, Q2 branches and 15% for the P1,
P2 and R1, R2 branches.

Analytical formulae for Hönl–London factors have
been derived for a 2P–2Sþ transition using a spherical
tensor approach, with the 2P state intermediate between
Hund’s case (a) and case (b) coupling. Our derived
formulae are a factor of 4 larger than those by Earls
et al. [28]. A further examination reveals that our
derivation agrees with the sum rule in Ref. [34], which
has become standard. Our analytical formulae for HLFs in
Table 3 agree with values given by PGOPHER for the
2P–2Sþ transition. These HLFs were validated by com-
paring
the upper-state lifetime calculated by PGOPHER for the
A2P–X2Sþ transition of CaH (using ab initio transition
dipole moments [16]) with the experimental lifetime
[39]; these are in good agreement.

The present study has demonstrated that the use of
LEVEL and PGOPHER significantly simplifies the proce-
dure of calculating Einstein A coefficients and absolute
line intensities. However, some improvements are still
needed. The current version of PGOPHER cannot accept
internuclear distance dependent ReðrÞ to calculate the
transition dipole moments. Thus the rotation–vibration
interaction, i.e., Herman–Wallis effect [38], was ignored in
calculating the line intensities.
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Appendix A.

In the following derivations, all the terms and con-
stants have their usual meaning [24]. In order to deter-
mine the eigenstates for a 2P state intermediate between
Hund’s coupling cases (a) and (b), we use a simple version
of the N2 Hamiltonian incorporating only the following
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rotational and spin–orbit terms

Hrot ¼ BN2
¼ BðJ�SÞ2 ð9Þ

HSO ¼ ALzSz ð10Þ

There are four case-(a) parity basis functions associated
with a 2P state

92P3=2 JM7S¼
1ffiffiffi
2
p L¼ 1; S¼

1

2
,S¼

1

2
; J,O¼

3

2
,MS

����
�

7 ð�1ÞJ�1=2 L¼�1; S¼
1

2
,S¼�

1

2
; J,O¼�

3

2
,MS

����
�
ð11aÞ

92P1=2 JM7S¼
1ffiffiffi
2
p L¼ 1; S¼

1

2
,S¼�

1

2
; J,O¼

1

2
,MS

����
�

7 ð�1ÞJ�1=2 L¼�1; S¼
1

2
,S¼

1

2
; J,O¼�

1

2
,MS

����
�
ð11bÞ

Using these basis functions and the Hamilton terms in
Eqs. (11a) and (11b), the following matrix elements are
obtained [24].
Note that the matrix elements are identical for each7
parity block. Diagonalisation of the matrix in Table 5
provides the following eigenvalues (for JZ1.5):

Eð7 Þ ¼ BðJþ1Þ27
1

2
ðA�2BÞ2þ4B2 Jþ

1

2

� 	2

�1

" #( )1
2

¼ B Jþ
1

2

� 	2

7
1

2
BXJ ð12Þ

where

XJ ¼ ðY�2Þ2þ4 Jþ
1

2

� 	2

�1

" #( )1=2

, Y ¼
A

B

Note that the þ and � signs in Eq. (12) refer to the
upper (F2) and lower (F1) levels, respectively, and not to
the parity. The associated eigenfunctions are:

9F27S¼ aJ9
2P3=2 JM7S�bJ9

2P1=2 JM7S ð13aÞ

9F17S¼ bJ9
2P3=2 JM7SþaJ9

2P1=2 JM7S ð13bÞ

where aJ ¼ ½ðXJþðY�2ÞÞ=2XJ �
1=2 and

bJ ¼ ½ðXJ�ðY�2ÞÞ=2XJ �
1=2

In the special case when J¼0.5, and assuming A40,
the eigenvalue and eigenvector is given by

E J¼
1

2

� 	
¼�

A

2
þ2B ð14Þ

9F17S¼ 92P1=2 JM7S ð15Þ
Table 5
Matrix elements of HrotþHSO for a 2P state.

HrotþHSO 92P3=2 JM7S 92P1=2 JM7S

/2P3=2 JM79 A
2 þB Jþ 1

2

� �2
�1

h i
�B Jþ 1

2

� �2
�1

h i1=2

/2P1=2 JM79 �B Jþ 1
2

� �2
�1

h i1=2
� A

2 þB Jþ 1
2

� �2
þ1

h i
Appendix B. Supplementary materials

Supplementary materials associated with this article
can be found in the online version at doi:10.1016/j.jqsrt.
2011.09.010.
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[39] Liu M, Pauchard T, Sjödin M, Launila O, van der Meulen P, Berg LE.
Time-resolved study of the A2P state of CaH by laser spectroscopy.
Journal of Molecular Spectroscopy 2009;257:105–7.


	Einstein A coefficients and absolute line intensities for the E2Pi-X2Sigmaplus transition of CaH
	Introduction
	Methodology
	Hönl-London factors
	Calculation of Hönl-London factors for a 2Pi-2Sigmaplus transition

	Details of the calculations and the results
	Conclusions and future work
	Acknowledgement
	Appendix A.
	Supplementary materials
	References




