Temperature-dependent high resolution absorption cross sections of propane

Christopher A. Beale a,*, Robert J. Hargreaves b,c, Peter F. Bernath b

a Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA
b Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
c Atmospheric, Oceanic & Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

ABSTRACT

High resolution (0.005 cm\(^{-1}\)) absorption cross sections have been measured for pure propane (C\(_3\)H\(_8\)). These cross sections cover the 2550–3500 cm\(^{-1}\) region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 \(\mu\)m region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

Article history:
Received 1 April 2016
Received in revised form 3 June 2016
Accepted 3 June 2016
Available online 11 June 2016

Keywords:
Absorption cross sections
Fourier transform spectroscopy
Hot hydrocarbons
Infrared spectra
Propane

1. Introduction

Propane (C\(_3\)H\(_8\)) is the second most abundant non-methane hydrocarbon (NMHC) in the Earth’s atmosphere after ethane (C\(_2\)H\(_6\)) [1]. Propane and the other NMHCs only have a small radiative forcing effect on the Earth’s atmosphere, nevertheless the chemistry of these molecules has a significant impact on the troposphere through the reaction with the hydroxyl radical (OH), which leads to the formation of acetone. This reaction also leads to the production of peroxyacetyl nitrate (PAN) [2], which has a relatively long lifetime in the upper troposphere where it acts as a reservoir for NO\(_x\), a catalyst for the production of ozone [3].

Propane has been identified in a number of Solar System objects. These include the atmospheres of Jupiter, from observations with the Galileo Probe Neutral Mass Spectrometer [4], and Saturn, using the TEXES instrument on NASA’s Infrared Telescope Facility [5]. For both planets, emission lines from the \(\nu_2\) band (748 cm\(^{-1}\)) were detected [5,6]. Propane has also been detected on Titan, first in the stratosphere with infrared spectra from Voyager 1 [7–9] and more recently with TEXES [10] and the CIRS instrument onboard Cassini [11,12]. Efforts to accurately quantify the propane concentration on Jupiter, Saturn and Titan have suffered from a lack of reliable spectroscopic data [11,13] or laboratory spectra of sufficient resolution [5] for the regions covered by these instruments.

On board NASA’s Juno mission [14] is the Jovian InfraRed Auroral Mapper (JIRAM) [15], which is due to arrive at Jupiter in July 2016. The JIRAM spectrometer covers the 2–5 \(\mu\)m range and will be used to study hot emission in Jupiter’s auroral regions that has been assigned to H\(_2\)\(^+\) and a number of hydrocarbon species [16]. Although the JIRAM spectrometer has a relatively low spectral resolution, it has previously been shown [11] that recent high resolution propane spectra in the 7–15 \(\mu\)m regions [13] were crucial...
to accurately modeling the propane contribution in low resolution spectra of Titan, and thus enabling the detection of propane (C$_3$H$_8$) [17].

The existence of propane and other hydrocarbons in the atmosphere of Jupiter, Saturn, Titan and other Solar System objects indicates the possibility of such molecules existing in the atmosphere of cool brown dwarfs and exoplanets. Methane (CH$_4$) has already been detected in exoplanet atmospheres [18,19] and a number of additional hydrocarbons, including propane, are predicted to exist in the atmospheres of such objects [20,21]. The relatively cool temperatures of brown dwarf atmospheres result in their spectra being dominated by molecular features. Models have predicted brown dwarf atmospheres may include propane, although at much lower concentrations than methane or ethane [21]. The atmospheres of hot Jupiters and brown dwarfs provide environments at elevated temperatures that could contain complex hydrocarbons such as propane. However, the laboratory data on which spectral models for these objects rely are incomplete or not recorded under the appropriate temperatures or pressures.

Propane, an asymmetric top molecule with C$_2v$ symmetry [22], has been the subject of a number of spectroscopic studies. Of the 27 fundamental modes of propane detailed in Shimanouchi [23], several have been studied at high resolution (0.015 cm$^{-1}$) and overtones of the various other modes. The CH$_2$ rocking mode region at elevated temperatures, including the ν$_{19}$ (ν$_{1}$, 1338 cm$^{-1}$), ν$_{24}$ (ν$_{2}$, 1472 cm$^{-1}$) bands [24], the ν$_9$ band (ν$_{1}$, 369 cm$^{-1}$) [25], the ν$_{21}$ band (ν$_{1}$, 748 cm$^{-1}$) [26], the ν$_{26}$ (ν$_{2}$, 748 cm$^{-1}$), Z(ν$_{1}$)+ν$_{19}$ (ν$_{1}$) (1338 cm$^{-1}$). High resolution absorption cross sections of the 690–1550 cm$^{-1}$ [13] and 2550–3300 cm$^{-1}$ [2] regions have also been measured. In the 3 μm region there are 8 C–H stretching modes (ν$_1$ (ν$_{1}$), ν$_2$ (ν$_{1}$), ν$_3$ (ν$_{1}$), ν$_{10}$ (ν$_{2}$), ν$_{15}$ (ν$_{2}$), ν$_{16}$ (ν$_{1}$), ν$_{22}$ (ν$_{2}$) and ν$_{23}$ (ν$_{2}$)) of which 7 modes are allowed, with only the ν$_{10}$ mode being forbidden [23], as such the spectrum of propane is extremely congested in this region.

Several molecular databases include data for propane. HITRAN [27] contains cross sections for propane, broadened by air, from Harrison and Bernath for 195–296.4 K at high resolution (0.015 cm$^{-1}$) in the range 2540–3300 cm$^{-1}$ [2]. GEISA [28] includes cross sections for 220–2000 cm$^{-1}$, broadened by N$_2$, recorded at 296 K at a resolution of 0.25 cm$^{-1}$, as well as 8983 transitions in the range 700–800 cm$^{-1}$, the CH$_2$ rocking mode region at a resolution of 0.08 cm$^{-1}$. Absorption cross sections of propane broadened by N$_2$ are available from the Pacific Northwest National Laboratory (PNNL), recorded in the infrared at 278, 293 and 323 K, in the range 600–6500 cm$^{-1}$ at medium resolution (0.1 cm$^{-1}$) [29]. Cross sections provided by Sung et al. [13] were also recorded, broadened by N$_2$, at various temperatures between 145–297 K, in the range 690–1550 cm$^{-1}$ at resolutions of 0.0033–0.0056 cm$^{-1}$. Absorption cross sections for propane broadened by N$_2$ have been measured in the 3 μm region (2500–3400 cm$^{-1}$) at elevated temperatures [30], although at medium resolution (0.09 cm$^{-1}$) and relatively low temperatures (298, 373 and 473 K).

The efficiency of fuels and engines is important for industrial applications. The combustion reactions involved can be analyzed by sophisticated models, which include a large number of temperature dependent reactions from the constituents of fuels and the products of their combustion. To this end, spectra have been recorded to monitor a number hydrocarbons in combustion reactions [31–35].

Cross sections from high resolution spectra (0.1 cm$^{-1}$ or better) of a number of hydrocarbons have been studied in the 3 μm region at elevated temperatures, including ethane [36], propylene (C$_3$H$_8$) [31,37], methane, ethane and ethylene (C$_2$H$_4$) [38]. Klingbeil et al. [31] have also obtained spectra of a number of larger hydrocarbons (12 in total) at 1 cm$^{-1}$ resolution up to 500 °C. However there do not exist high resolution cross section measurements of propane for the 3 μm region. Such data are required to accurately model hot environments such as auroral regions on Jupiter, exoplanets or brown dwarfs. This paper addresses the lack of high resolution cross sections of propane at high temperature.

2. Experimental

High resolution (0.005 cm$^{-1}$) propane spectra were recorded between 2500 and 3500 cm$^{-1}$, at five temperatures from 296 K to 700 K using a Bruker IFS 125 Fourier transform spectrometer. This region contains the seven active C–H stretching modes [23] and a number of combinations and overtones of the various other modes. The propane gas (Airgas, 99.99% purity) is contained in an all quartz cell (i.e., with quartz windows) which is heated to the appropriate temperature using a tube furnace.

To obtain a transmission spectrum ($τ$) two individual spectra are recorded for each temperature and combined as,

$$τ = \frac{A_{ab}}{A_{ref}} \quad (1)$$

where the C$_3$H$_8$ absorption component is given by A$_{ab}$ and A$_{ref}$ is the background spectrum.

The conditions for the experiment are detailed in Table 1. At higher temperatures (600 and 700 K) there is an emission component which is significant enough that it must be corrected for. As a result two additional spectra were recorded for these temperatures without the infrared source, one with propane in the sample cell and one without. These emission spectra were subtracted from A$_{ab}$ and A$_{ref}$ respectively. The experimental setup and procedure for obtaining the transmission spectrum are

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Experimental conditions and setup of the Bruker 125 HR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral range (cm$^{-1}$)</td>
<td>2500–3500</td>
</tr>
<tr>
<td>Temperature range (K)</td>
<td>296–700</td>
</tr>
<tr>
<td>Resolution (cm$^{-1}$)</td>
<td>0.005</td>
</tr>
<tr>
<td>Cell path length (cm)</td>
<td>50</td>
</tr>
<tr>
<td>Filter</td>
<td>Germanium</td>
</tr>
<tr>
<td>Windows</td>
<td>CaF$_2$</td>
</tr>
<tr>
<td>Beamsplitter</td>
<td>CaF$_2$</td>
</tr>
<tr>
<td>Number of scans</td>
<td>300</td>
</tr>
</tbody>
</table>
described in detail in Hargreaves et al. [39] where it was used to produce temperature dependent line lists for CH₄ and to obtain temperature dependent cross sections for C₂H₆ [36].

The C–H stretching region contains a number of water lines that were removed using the OPUS software once the transmission spectra were obtained.

3. Results

The experimental transmission spectra are converted to absorption cross sections, \(\sigma \) (cm² molecule⁻¹) using the equation

\[
\sigma = -\frac{\varepsilon \times 10^{4} k_{B} T \ln(\tau)}{P l}
\]

where \(k_{B} \) is the Boltzmann constant (1.38065 \times 10⁻²³ J K⁻¹), \(T \) is the temperature (K), \(P \) is the propane pressure (Pa), \(l \) is the optical path length (m), \(\tau(\nu) \) is the transmittance at each wavenumber and \(\varepsilon \) is a correction factor which is used to normalize the experimental cross sections to PNNL [2].

PNNL cross sections are given in units of ppm⁻¹ m⁻¹ at 296 K, which may be converted into units of cm molecule⁻¹ using the conversion \(k_{B} \times 296 \times \ln(10) \times 10^{4}/0.101325. \) The PNNL integrated cross sections in the region 2550–3500 cm⁻¹ for 278, 293 and 323 K are 4.248 \times 10⁻¹⁷, 4.214 \times 10⁻¹⁷ and 4.310 \times 10⁻¹⁷ cm molecule⁻¹, respectively. The mean of the three PNNL integrated cross sections is 4.257 \times 10⁻¹⁷ cm molecule⁻¹ and are within 2.3% of each other [29].

The path length of the cell can be reliably determined and the temperature of the sample was measured via a thermocouple and maintained throughout the experiment. The pressure was measured outside of the observed path and fluctuated slightly during the experiment. When calibrating to PNNL integrated cross sections, the normalization factor \(\varepsilon \) is applied to the pressure which results in an effective pressure, i.e. the sample gas pressure required to effectively reproduce our results. In addition to these uncertainties, a small leak of air in the regulator resulted in an overestimation of the cell pressure by approximately 40 Pa. This additional pressure was sufficiently small that no adverse increase in the recorded line widths was observed. This pressure error is accounted for when calibrating to the integrated cross sections of PNNL.

The normalization factors are used to establish the effective propane pressures of the sample, which are given in Table 2. The resulting calibrated cross sections for each temperature, over the range 2550–3500 cm⁻¹, are shown in Fig. 1. The effect of normalization is that the integrated cross sections for all temperatures are equal to the mean of the PNNL cross sections, 4.257 \times 10⁻¹⁷ cm molecule⁻¹.

The peak cross sections for the modes at 2887 cm⁻¹ (Fig. 2), 2962 cm⁻¹ and 2967 cm⁻¹ are stronger at lower temperatures than at high temperatures. Each temperature was recorded at high resolution (0.005 cm⁻¹) and the evolution of the sharp, individual features of the low temperature spectra can be seen to gradually decrease to form a continuum with increasing temperature (inset Fig. 1). This is primarily caused by Doppler broadening of spectral lines and increasing populations of higher rotational states and hot bands. Fig. 2 demonstrates the temperature-dependence of the propane continuum between 2860 and 2910 cm⁻¹. The prominent P, Q and R branch structure (due to the \(\nu_3 \) and \(\nu_{16} \) bands) is effectively reduced to a gradual slope with no defining features over the observed temperature range.

Table 2
Propane integrated cross section calibration.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Sample pressure (Pa)</th>
<th>Effective pressure (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>296</td>
<td>173.85</td>
<td>124.64</td>
</tr>
<tr>
<td>400</td>
<td>216.92</td>
<td>176.86</td>
</tr>
<tr>
<td>500</td>
<td>264.11</td>
<td>199.32</td>
</tr>
<tr>
<td>600</td>
<td>375.97</td>
<td>340.21</td>
</tr>
<tr>
<td>700</td>
<td>428.63</td>
<td>408.59</td>
</tr>
</tbody>
</table>
integrated cross sections of the three PNNL spectra. Our estimated error in the calibrated absorption cross sections is therefore approximately 5%.

The integrated cross section over an isolated band has been shown to be independent of temperature [36,40,41]. For comparison between temperatures, the cross sections should be integrated over isolated bands, i.e. the transmission at the integration limits must be 100%. For propane, the large number of absorption bands within the observed 3 μm region (particularly at high temperature) means that complete isolation is not guaranteed. The 2550 and 3500 cm⁻¹ integration limits were chosen as they provide the transmission maxima within the observed region.

The development of continua with increasing temperature has been observed in CH₄ [39] for which the large number of weak lines contribute significant absorption at higher temperatures. For larger hydrocarbons such as C₂H₆, the low frequency torsional modes result in a larger continuum effect [36]. The changing shape of the spectral features of C₃H₈ with increasing temperature in this region can be seen in Fig. 1. The populations of the low frequency...
torsional modes at 216 cm⁻¹ (v_{14}, a_2) and 268 cm⁻¹ (v_{27}, b_2) increase with temperature resulting in the growth of a broad continuum.

These measurements are the first high resolution absorption cross sections of propane at high temperature and will find use in the remote sensing of propane on exoplanets, brown dwarfs and for combustion monitoring. The data is provided as supplementary material with the online version of this paper. The temperature-dependence of the propane cross section in this region makes it suitable for inferring the temperature, particularly the sharp Q branches at 2887 cm⁻¹ and 2967 cm⁻¹. It is only at high resolution that many of the temperature dependent features can be identified. Certain sub-regions are also unsuitable for temperature determination of propane, for example the crossover point at 2945 cm⁻¹ between the stronger continuum of the higher temperatures and the sharp features of the low temperature Q branches here shows no temperature dependence.

5. Conclusion

High resolution cross sections have been measured for pure propane in the region 2550–3500 cm⁻¹ at 296, 400, 500, 600 and 700 K. The integrated cross sections were calibrated against PNNL spectral values for the same spectral region. The calibrated cross sections cover the C–H stretching modes near 3 μm and are provided as supplementary data. These data may be included in simulations of astronomical atmospheres at appropriate temperatures, such as those of exoplanets and brown dwarfs.

Acknowledgments

Funding was provided by the NASA Planetary Atmospheres Program (Grant number: NNX14AG78G).

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jms.2016.06.006.

References

