IR absorption cross sections of propane broadened by H₂ and He between 150K and 210K

A. Wong a, D.R.T. Appadoo b, P.F. Bernath a,*

a Department of Chemistry and Biochemistry, Old Dominion University, VA 23529, USA
b Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Australia

ARTICLE INFO

Article history:
Received 5 February 2018
Revised 23 June 2018
Accepted 23 June 2018
Available online 12 July 2018

Keywords:
Australian Synchrotron
Infrared cross sections
EFC cell
Cold temperatures
Giant planets

ABSTRACT

Absorption cross sections of cold propane, pure and broadened with H₂ or He, have been recorded in the 650–1250 cm⁻¹ region using an Enclosive Flow Cooling (EFC) cell located at the Australian Synchrotron Far-IR/THz beamline. The chosen temperatures range from 150 to 210K to replicate similar atmospheric conditions of the giant planets. These cross sections have been normalized using data obtained from the Pacific Northwest National Laboratory, and can be used directly in comparisons with observed spectra and in radiative transfer models.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The atmospheres of the giant planets contain numerous hydrocarbons that are formed from the photochemistry of methane [1]. These secondary hydrocarbons, such as acetylene, ethane and propane, can react further to generate larger polycyclic aromatic hydrocarbons, eventually leading to the formation of aerosol particles in polar regions by ion-molecule chemistry [2]. Depending on the location (latitude, longitude and altitude), the atmospheric composition, temperature and pressure can vary greatly due to complex dynamical and chemical processes. These factors result in complex spectra from the signatures originating from many different molecules and make it difficult to retrieve atmospheric concentration profiles.

In order to interpret such spectra and therefore be able to accurately model these planetary atmospheres, it is necessary to first characterize the component spectra (i.e., of small hydrocarbons) as accurately as possible. Unfortunately, there is a lack of accurate spectroscopic data for a number of these molecules. In the absence of accurate line parameters that are derived using traditional analytical methods [3-6] (e.g. assignment of transitions and fitting of molecular constants), it is possible to utilize absorption cross sections instead. Infrared absorption cross sections are empirically derived from laboratory transmission spectra of samples with a known temperature, pressure and composition [7]. Absorption cross sections can be used directly in radiative transfer models to retrieve molecular abundances.

Although several databases such as HITRAN [8], HITEMP [9], PNNL [10] and GEISA [11] exist, data in these sources are typically applicable to the Earth’s atmosphere rather than those of the giant planets. HITRAN (http://hitran.org/) has, however, begun to collect line parameters for broadeners other than air. To address this issue, it is therefore necessary to measure spectra of these small hydrocarbons under conditions that replicate those of planetary atmospheres (composition, temperature and pressure) to produce accurate spectroscopic data.

Propane is one of several small hydrocarbons that have already been detected in planetary atmospheres like Saturn [12] and on one of its moons, Titan [13]. High resolution infrared absorption cross sections for hot propane are available in the 3μm region for applications in hot Jupiter exoplanets [14]. Propane cross sections have been measured for applications to Earth’s and Titan’s atmospheres [15] as well as for combustion environments [16,17]. Previously we have reported absorption cross sections of cold propane in the 600–1250 cm⁻¹ region that have been broadened with H₂ [18] and He [19]. These works were performed at the Canadian Light Source which has a limited temperature range down to 200 K. We present here, absorption cross sections of pure and H₂/He broadened propane in the same spectral region, at even colder temperatures from 150–210K. These studies form part of a larger project to measure and analyze spectra of small hydrocarbons that have been observed (or are expected to be present) in the atmo-

* Corresponding author.
E-mail address: pbernath@odu.edu (P.F. Bernath).

https://doi.org/10.1016/j.jqsrt.2018.06.026
0022-4073/© 2018 Elsevier Ltd. All rights reserved.
spheres of planets, exoplanets and substellar objects such as brown dwarfs.

2. Experimental

Transmission spectra were recorded utilizing a Bruker IFS 125 HR spectrometer located at the Australian Synchrotron FarIR/THz beamline. An enclosive flow cooling (EFC) cell, designed by Bauerecker [20], was used to achieve the desired temperatures from 150 to 210 K and has been previously installed using transfer optics described by Wong et al. [21]. To maximize signal in the region of interest (650–1250 cm⁻¹), the spectrometer and EFC cell were fitted with a KBr beamsplitter and KBr windows. Either the synchrotron radiation or the internal glowbar source was chosen depending on the required resolution; the detector of choice was a liquid N₂-cooled Mercury-Cadmium-Telluride mid-band (MCTm) detector.

The optical path through the cell was set to 20 passes (12.5 m) and cooled to a minimum temperature of 150 K using cold N₂ gas. Spectra were recorded at four temperatures starting from 210 K to 150 K (Table 1) and the cell was left to stabilize at each desired temperature for at least one hour. The cell temperature was measured by five type K thermocouples that are accurate to temperatures as low as 78 K and one Lakeshore thermocouple accurate to temperatures as cold as 4 K; typical thermocouple accuracies are better than ±2 K.

Propane (99%) was purchased from Coregas and used without further purification for all measurements. Conditions for pure propane required enough propane such that the v₂6 band (near 750 cm⁻¹) remained below saturation. Sample pressures were monitored using a BOC Edwards wide range gauge (WRG) usable for pressures of up to 10 kPa (75 Torr). For broadened spectra, small amounts of propane were introduced into the cell before back-filling with either H₂ or He to the desired total pressure (Table 1). At each temperature, 3 total pressures (gas plus broadener) at 1.07 kPa (8 Torr), 4 kPa (30 Torr) and 13.33 kPa (100 Torr) were used. H₂ and He were provided by the Australian Synchrotron (> 99% purity) and these higher pressures were monitored using an Edwards Active Strain Gauge (ASG) capable of operating up to 1 atm. As discussed below, these recorded pressures had to be calibrated.

For each condition, sample gases were left to equilibrate in the pre-cooled EFC cell for approximately 5 minutes to achieve temperature gradients of ±2.5 K across the cell before acquiring spectra. During each measurement, the flow rate of cold N₂ gas was adjusted such that fluctuations remained within ±3 K of the intended temperature.

Individual files consisted of pairs of forward and reverse interferograms that were Fourier transformed using a Blackman-Harris 3-term apodization function to eliminate any residual effect of the instrument lineshape function and a zero-fill factor of 2. A total of 300 scans were recorded for samples followed by an additional 300 scans for backgrounds and were co-added using a weighted average. Transmission spectra were obtained by dividing the single channel spectrum for the sample with the corresponding background. Slight adjustments were made to the background spectra to obtain satisfactory baselines in the transmission spectra. An additional post-zero-fill factor of 8 was applied to the final transmission spectrum before being used for analysis to provide more points when calculating the absorption cross sections. These transmission spectra are available from the authors by request.

3. Results and discussion

3.1. Cross sections

The methods used for obtaining cross sections from the synchrotron data, σ₅₆, and from the PNNL measurements, σ₅₆, and
their corresponding integrated values \(\text{int}(\sigma_{\text{AS}})\) and \(\text{int}(\sigma_{\text{PNNL}})\), are similar to those described previously and are only mentioned briefly here [18,19]. For this work, AS and PNNL refer to data obtained from the Australian Synchrotron and reference data from the Pacific Northwest National Laboratory spectroscopic database [10], respectively. The comparisons with PNNL spectra are given below in the form of absorbance simulations that are converted into cross sections (in cm\(^2\)/molecule) using the factor 9.28697 \times 10^{-16}.

Spectra from this work were Fourier transformed to a reduced resolution of 0.112 cm\(^{-1}\) in order to match what was used by the PNNL database. Absorption cross sections were then calculated using Eq. (1) [7] and integrated between 680 – 970 cm\(^{-1}\). Reference propane data from the PNNL database were also integrated across the same spectral range, after being scaled using a factor \(F = 9.28697 \times 10^{-16}\). The \(\text{int}(\sigma_{\text{AS}})\) values were then normalized with the calibration factor \(\xi\) so that \(\text{int}(\sigma_{\text{AS}}) = \text{int}(\sigma_{\text{PNNL}})\), resulting in new \(P_{\text{eff}}\) values given in Table 2. The \(P_{\text{eff}}\) values were then used to calculate cross sections using spectra recorded at their original resolution and are attached as part of the supplementary material.

\[
\sigma(v, T) = -\xi \frac{10^4 k_B T}{P I} \ln \tau(v, T)
\]

where \(\sigma(v, T)\) is the absorption cross section, \(\xi\) is the calibration factor, \(k_B\) is the Boltzmann constant \([\text{J} \text{K}^{-1}]\), \(T\) is the temperature (K), \(P\) is the pressure (Pa), \(I\) is the pathlength (m) and \(\tau\) is the transmittance as a function of \(v\) (cm\(^{-1}\)) and \(T\).

From the values given in Table 2, it is evident that none of the observed values are in agreement with the calibrated \(P_{\text{eff}}\) values. This in turn reflects discrepancies between the calculated \(\text{int}(\sigma_{\text{AS}})\) and \(\text{int}(\sigma_{\text{PNNL}})\) values and indicates that some error (from poorly calibrated pressure gauges) occurred during the experiment. The WRG pressure gauge used in the experiment is based on the thermal conductivity of gases and is calibrated for air, not propane, \(H_2\) or He; there was also a problem with the ASG gauge calibration. To confirm this assumption and to validate the PNNL calibration method, a cross-check was performed by comparing these results to data from previous work [18,19] that was recorded at the Canadian Light Source (CLS).

4. Comparison with \(\sigma_{\text{CLS}}\)

4.1. Intensities

A transmission spectrum can be calculated using previously reported \(\sigma_{\text{CLS}}\) by interpolating the values of \(T, P\) and \(l\) and then using Eq. (1) to determine \(\tau_{\text{CLS}}\). The derived \(P_{\text{eff}}\) values are then used to calibrate the \(\sigma_{\text{AS}}\) which are then compared to \(\sigma_{\text{CLS}}\) [18,19] to confirm the validity of the calibration method. A subset of He-broadened cross-sections at 210 K \((\sigma_{\text{CLS}})\) and 200 K \((\sigma_{\text{AS}})\) are presented in Fig. 1. Some minor differences between the two sets of data can be seen in part due to the different temperatures. However, in general the calculated \(\sigma_{\text{AS}}\) are in good agreement with previously reported \(\sigma_{\text{CLS}}\) within the 5–10% estimated errors. It is possible to extrapolate the \(\sigma_{\text{CLS}}\) to colder temperatures (i.e. 190 K, 170 K and 150 K), however the expected \(\tau_{\text{CLS}}\) would be less accurate due to extrapolation errors and therefore a comparison at these colder temperatures was not performed.

4.2. \(H_2\) and \(H_2\) Calibration

In addition to calibrating the WRG used for propane, it was also necessary to test the accuracy of the ASG gauge that was used to monitor the total pressure with the added \(H_2\) broadeners. To do so, a series of \(H_2\) and \(H_2\) readings were performed with the ASG gauge and then cross-checked with pressures recorded on a MKS Baratron accurate up to 10 kPa (Fig. 2). The data points were then fitted with linear regressions to determine calibration factors of 2.004±0.003 (for He) and 2.003±0.002 (for \(H_2\)). We assume

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Comparison of the (P) and derived (P_{\text{eff}}) values of propane for each experimental condition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (K)</td>
<td>Pure (P) (Pa)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>210</td>
<td>-</td>
</tr>
<tr>
<td>190</td>
<td>40.89</td>
</tr>
<tr>
<td>170</td>
<td>28.44</td>
</tr>
<tr>
<td>150</td>
<td>20.66</td>
</tr>
</tbody>
</table>

\(^a\) The total observed pressure (obs) after the addition of \(H_2\) or He. The actual observed pressures (cal) are obtained using the factors given in Fig. 2. The calibrated total pressures are therefore 2.66, 8.01 and 26.7 kPa for \(H_2\) and He broadened spectra, not the observed values of 1.33, 4.00 and 13.32 kPa, respectively.\(^b\) These values reflect the observed and calibrated pressures of propane used.\(^c\) The baseline for this scan was not good and therefore the transmittance spectrum was not usable during the analysis.
that the calibration factors for both He and H₂ remain consistent up to a reading of 13.33 kPa on the ASG gauge, which corresponds to 35.61 kPa for both He and H₂. This also accounts for the differences that are observed between the two sets of absorption cross sections given in Fig. 1.

5. Conclusion

Transmission spectra of pure and broadened propane were recorded between 600 – 1250 cm⁻¹ at the Australian Synchrotron Far-IR/THz beamline utilizing the EFC cell to achieve temperatures as cold as 150K. The chosen temperature and pressure ranges, along with broadening conditions, reflect the atmospheric conditions that have been observed on the giant planets.

Absorption cross sections have been obtained from each transmission spectrum and normalized to the PNNL database cross sections of propane. In all, 27 absorption cross sections are provided as supplementary data, corresponding to the 27 distinct experimental conditions reported in Table 2. Large calibration factors were required due to poor calibration and inaccuracies of the pressure gauges used. The data presented was also cross-checked with data from previous studies at the Canadian Light Source by interpolating σ_CLS to calculate expected transmission spectra. These comparisons validated our propane calibration factors. In addition, the gauge used to measure the total pressure used for the He and H₂ broadened spectra was calibrated by comparison with a Baratron pressure gauge. The typical errors in the cross sections based on experience and a more detailed error analysis in ref. [7] are 5–10%.

These new cross sections provide accurate spectroscopic data for pure and broadened propane without the need for high resolution rotational analyses. Line parameters such as broadening coefficients can also be extracted from these cross sections and used in radiative transfer models. Furthermore, the cross sections can be directly used to determine the abundances of propane in the giant planets.

In the FIR region, traditional light sources have low brightness which results in low signal-to-noise ratios for high resolution spectra. As a result, a large amount of acquisition time is required when utilizing the maximum resolution of the spectrometer. In this case, it is necessary to use the synchrotron source in order to obtain the best results. Since synchrotron radiation can be considered as nearly a point source, it overcomes the aforementioned issues of signal-to-noise levels and brightness. However, as the required resolution is decreased (e.g. increased sample pressure) the synchrotron advantage is lost with increasing aperture size and therefore the internal glowbar source is sufficient to provide high quality spectra.

Acknowledgement

Support was provided by the NASA Planetary Data Archiving and Restoration Tools (PDART) program.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jqsrt.2018.06.026.

References