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SO is found in several astronomical sources such as the atmospheres of Io and Venus. To complete our
work on SO line lists, we used our previous fits for v = 0 to v = 6 for the X3 X" state and v = 0-5 for the
al A state [JQSRT 272, 107772 (2021)] for line positions, and high-level ab initio calculations of electric
dipole moments for line strengths for the vibration-rotation bands. LeRoy’s RKR program was used to pro-
duce pointwise potential energy curves. N- and v-dependent dipole matrix elements were produced with
LeRoy’s LEVEL program and the final line lists were made with Western’s PGOPHER program. All possible
vibrational bands were calculated, and the line strengths included the Herman-Wallis effect caused by
vibration-rotation interaction.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Sulfur monoxide (SO) is a free radical found in several astro-
nomical sources including the Orion nebula [1]. More locally, SO
has been detected by the ultraviolet B3%-- X3~ transition on
Venus [2] as well as on Io [3], one of Jupiter's moons. Microwave
[4,5] spectroscopy has detected SO on both lo and Venus and the
forbidden a' A - X3 transition [6] has been used to characterize
atmospheric SO on lo. However, SO has not been detected yet in
astronomical sources using vibration-rotation spectra, but observa-
tions may be possible in the future using our new line lists.

The SO radical is isovalent with O,, with an X3X" ground state
and a low-lying metastable a'A excited state. Unlike O,, there
is no inversion symmetry; the SO ground state has a substantial
dipole moment of 1.55 D [7] and dipole-allowed vibrational bands.
The X3X- and al'A states have electron spin and orbital angu-
lar momentum, respectively, and the Herman-Wallis effect [8] was
also taken into account for the vibration-rotation line intensities.

SO has been extensively studied by millimeter wave, mi-
crowave, infrared, and far infrared spectroscopy. In this paper, we
relied mainly on the X3X- ground state rotational constants de-
termined by Martin-Drummel et al. [9], the diode laser vibration-
rotation measurements made by Kanamori et al. [10,11], and the
Fourier transform infrared spectra of Burkholder et al. [12]. A more
extensive discussion of SO spectroscopy can be found in our previ-
ous paper [13]. It should be noted that only the principal isotopo-
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logue 32560 was used for this paper. The stable isotopes of sulfur
are 325, 335, 345 and 36S and are found in terrestrial sources with
abundances of 95%, 0.77%, 4.2%, and 0.017%, respectively [14].

2. Methods
2.1. Ab initio calculations

Large scale ab initio calculations have been carried out with
the MOLPRO program package [15,16,17] in order to provide the
electric dipole moment curves for the X3%- and a' A states. These
calculations were performed with the internally contracted mul-
tireference configuration interaction (ic-MRCI) method [18], using
molecular orbitals (MOs) optimized by state-specific complete ac-
tive space self-consistent field (CASSCF) calculations [19,20] based
on an active space including the 14 MOs correlating to the core
and valence atomic orbitals. All electrons are thus correlated at the
ic-MRCI level of calculation, and the Davidson correction for un-
linked excitations [21] adapted to a relaxed reference [22] is taken
into account in all energy calculations (ic-MRCI+Q). The scalar rel-
ativistic contributions were calculated by means of the exact 2-
component (X2C) relativistic Hamiltonian [23] using the aug-cc-
pCV6Z-X2C basis set (ACV6Z-X2C for short) [24,25], specifically
contracted for X2C calculations [16]. This basis set is also opti-
mized for describing the core and core-valence electron correlation
and is augmented by diffuse functions, improving the convergence
of electric properties like the dipole moment.

This convergence has been tested at the equilibrium geometry
of both states by extrapolating the dipole moment to the complete
basis set limit (CBS), using a standard 2-point n-3 extrapolation
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Fig. 1. Ab initio dipole moment curve for the X 3" state of SO, calculated in this

work and by Borin et al. [31] at the ic-MRCI+Q/ACV6Z-X2C/ED+Q and ic-MRCI/cc-
PVQZJEV levels of theory, respectively.

[26], with n=5 and 6, n being the cardinal number of the ACVnZ-
X2C basis set series. In these tests, the dipole moment was eval-
uated as the expectation value (EV) of the dipole moment opera-
tor and as the energy derivative (ED) with respect to an external,
weak and uniform electric field, for zero field strength [27]. The
derivative has been calculated numerically by the two-point cen-
tral difference formula with a field strength fixed to 3 x 104 a.u..
The derivative formalism, being based on the energy and not on
the wave function, also permits the inclusion of the Davidson cor-
rection for unlinked clusters into the dipole moment calculations
(ED+Q).

The ACV6Z-X2C results are found to be close to the CBS ones,
the latter being smaller by less than 0.01 D. The tests also show
that the ED+Q values are larger than the EV ones by 0.18 and
0.22 D for the X3X- and al A states, respectively. These significant
differences indicate that the wave function still does not satisfy
the Hellmann-Feynman theorem. As energies converge faster than
wave functions, the ED formalism is expected to provide dipole
moment values closer to the experimental ones (see [27-29] and
references therein). We have thus adopted the ED+Q approach
for calculating the dipole moment curves. They are shown in
Fig. 1 and 2. We report here the projection of the dipole moment
on the internuclear z-axis pointing arbitrarily from S to O. The
S(00) polarity explains the negative sign of the dipole moments.
The calculations have been carried out at 57 points corresponding
to internuclear distances (R) ranging from 1.1 to 2 A, by steps of
0.025 A, and from 2 to 3 A, by steps of 0.05 A. The curves were
then interpolated using B-splines to create a set of 1592 points for
each dipole moment curve. Both the calculated and interpolated
data points are provided as supplementary material.

The value of the dipole moments for v=0, computed from our
ACV6Z-X2C/ED+Q curves (see Tables 1 and 2, and discussion in the
text) are 1.591 D and 1.444 D, for the X3~ and al A states, respec-
tively. They can be compared to the corresponding experimental
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Fig. 2. Ab initio dipole moment curve for the a 'A state of SO, calculated in
this work, by Borin et al. [31] and by Xing et al. [30] at the ic-MRCI+Q/ACV6Z-

X2C/ED+Q, ic-MRCl/cc-pVQZ/EV and ic-MRCl/aug-cc-pV6Z/EV levels of theory, re-
spectively.

values of Powell and Lide [7] of 1.55 + 0.02 D for the X3X" state,
and of Saito [30] of 1.336 + 0.045 D, for the al A state. Our calcu-
lated values overestimate these experimental findings by 2 and 7%,
respectively.

Our dipole moment curves are compared in Figs. 1 and 2 to
those previously calculated by Borin and Ornellas [31] at the ic-
MRCI/cc-pVQZ/EV level of theory and by Xing et al. [32] at the ic-
MRCl/aug-cc-pV6Z[EV level. These curves surprisingly agree with
ours within a few percent, despite the many approximations im-
pacting the dipole moment value they both use: EV formalism,
frozen-core and non-relativistic approximations, averaging of the
CASSCF optimization over many excited states, neglect of the Q
correction in the dipole calculation, and in addition for Borin’s cal-
culations, use of a non-augmented lower zeta basis set. Some of
these approximations tend to increase the dipole moment value
while others to decrease it. One may thus explain the observed
agreement by fortuitous compensations between them. Note how-
ever that their relative effect changes with the nature of the elec-
tronic structure, i.e. from one electronic state to another, but also
as a function of internuclear distance. This directly impacts the
shape of the calculated dipole functions. It can be seen from the
figures that their slope at short and long distances changes from
one calculation to another, which may influence the accuracy of
high vibrational band intensities. Let us note the presence of unex-
pected deformations in Borin’s curves.

2.1.1. Line list calculations

We produced line positions and intensities up to J=75 with
PGOPHER [33] for v=0-6 for X3 and v=0-5 for a' A. We included
all of the possible vibration-rotation bands in the X3~ and a'A
states. The line positions were calculated using the spectroscopic
constants from our previous paper on line lists for the b! X +-X3%-
and al A-X3X- electronic transitions [13]. The values of the final
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Table 1
Dipole and transition dipole moments for the vibrational levels of the SO X3~ state in D.
v-v" 0 1 2 3 4 5 6
0 -1.591 -0.07090 0.01480 -0.002515 0.0003611 -2.426E-05 -7.185E-06
1 -0.07090 -1.592 -0.09726 0.02502 -0.004932 0.0008160 -7.199E-05
2 0.01480 -0.09726 -1.593 -0.1586 0.03457 -0.007644 0.001423
3 -0.002515 0.02502 -0.1586 -1.594 -0.1299 0.04361 -0.01060
4 0.0003611 -0.004932 0.03457 -0.1299 -1.595 -0.1407 0.05223
5 -2.426E-05 0.0008160 -0.007644 0.04361 -0.1407 -1.595 -0.1496
6 -7.185E-06 -7.199E-05 0.001423 -0.01060 0.05223 -0.1496 -1.596
Table 2
Dipole and transition dipole moments for the vibrational levels of the SO a' A state in D.
v-v" 0 1 2 3 4 5
0 -1.444 -0.06359 0.01331 -0.002527 0.0004743 -7.970E-05
1 -0.06359 -1.446 -0.08765 0.02256 -0.004947 0.001047
2 0.01331 -0.08765 -1.448 -0.1046 0.03121 -0.007650
3 -0.002527 0.02256 -0.1046 -1.449 -0.1176 0.03944
4 0.0004743 -0.004947 0.03121 -0.1176 -1.451 -0.1279
5 -7.970E-05 0.001047 -0.007650 0.03944 -0.1279 -1.452
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Fig 3. Fortrat diagram of the a' A 1-0 band.

fitted constants as well as an exhaustive list of experimental data
used in the fit can be found in our previous paper [13].

To calculate the line strengths, we used Rydberg-Klein-Rees
(RKR) potentials [32] from the SO equilibrium constants [13]. The
RKR potentials and dipole moment points were input to LeRoy’s
LEVEL program [35] to obtain the dipole moment vibrational ma-
trix elements <v/,N'||v”/,N”> for the X3~ and al' A states. LEVEL
assumes singlet states so the rotational dependence of the vibra-
tional wavefunctions (from the centrifugal potential [36]) depends
on N. This N-dependence of the vibrational wavefunction is the
vibration-rotation interaction that leads to the Herman-Wallis ef-
fect. The matrix elements are used as input to PGOPHER to calcu-
late line strengths; however, PGOPHER needs J-dependent matrix
elements, not the N-dependent results from LEVEL for the X3X-
state.

Brooke et al. [37] derived a formula for the conversion of
Hund’s case (b) N-dependent vibrational matrix elements to
Hund’s case (a) J-dependent matrix elements for the vibration-
rotation bands of NH X3X-. The formula was coded in Python by J.

Hodges and used for the OH* [38] and NH A3I1- X3%- [39] tran-
sitions. We include this program as supplementary data. The table
output from our Python program was included in PGOPHER as the
line strengths utilizing the custom transition moment function. The
line strength tables for the X3%- and a' A states as well as the line
lists are provided as supplementary data.

3. Results and discussion

The selection rules for electric dipole transitions require AJ=0,
+1 and +<>- for total parity [36]. For a' A vibration-rotation tran-
sitions, there are nominally 6 branches "Res, 9Qg/r, and PP in each
band. All of the lines are doubled by lambda doubling, labeled by
e or f in the lower state, which is very small and unresolved. The
lines are labeled in PGOPHER using the notation: “NAJ,»e(J") in
which p, q and r refer to AN=-1, 0, 1, respectively; P, Q, and R refer
to AJ=-1, 0, and 1, respectively. For the singlet al A state N=J. The
Fortrat diagram and simulated spectrum for SO at 300 K are dis-
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Fig 4. Absorbance spectrum of the a' A 1-0 band of SO at 300 K.
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Fig 5. Fortrat diagram of the X3 1-0 band

played as Figs. 3 and 4. Notice the relatively weak Q branch which
deceases rapidly in relative intensity as J increases.

For the X3 X" state, each rotational level (N) is split into 3 J lev-
els due to electron spin with J=N+1, J=N and J=N-1, labeled con-
ventionally as F;, i=1, 2 and 3, respectively. The transitions are la-
beled in PGOPHER as AN AJgg»(J”). Primes and double primes re-
fer to the upper and lower states, respectively. There are 6 main
branches: PPy, PP,, PP3, 'Ry, 'R; and "Ry with AF;=0 plus a num-
ber of weaker satellite branches that change F;. The Fortrat dia-
gram and a simulated spectrum for the 1-0 band are presented in
Figs. 5 and 6. The lines are tripled due to electron spin and the
weak satellite lines mostly track the main branches.

In Tables 1 and 2 we report the rotationless dipole and tran-
sition dipole moments for the vibrations of the X3%- and a'A
states. Additionally, we replaced the dipole moment function with

the one from Borin and Ornellas [31] to produce dipole and tran-
sition dipole moment values. The 1-0 band transition dipole mo-
ments from this calculation were 0.0678 D for the X3X- state and
0.0682 D for the al A state. Compared with our dipole moment
values in Tables 1 and 2, the values calculated using the Borin and
Ornellas data agree with experiment slightly less than our own for
the X3 state and is closer to experiment for the al A state than
our value; all of the values calculated agree within 10% of the ex-
perimental values. For our 1-0 transition dipole moments, we cal-
culated values of 0.07968 D and 0.06359 D for the X3 X" state and
the al A state, respectively, for our data, in reasonable agreement
with Borin and Ornellas. Intensities in our spectra for the X3%-
state agree roughly to Fig. 1 in Burkholder et al. [12].

The Einstein A;o value for the X3X- 1-0 band is calculated
to be 2.93 s! from equation 5.141 from Bernath’s book [36],
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Fig 6. Absorbance spectrum of the X3~ 1-0 band of SO at 300 K.

A = 3.136 x 107135, with the frequency v in cm™! and the band
strength S in debye?. The vibrational lifetime T = 1/A; is there-
fore 0.341 s. To check this value, we summed the three Einstein
Ay v values arising from J=2f and also found an A value of 2.93

s~1. Similarly, for the a' A 1-0 band, a value of A;.g = 1.69 s'! and
a vibrational lifetime of T = 0.590 s was obtained. A similar check
using J'=3f yields the same results.

The size of the Herman-Wallis effect was assessed by using a
single band strength for each vibration-rotation band from LEVEL
and ignoring the N-dependence. These values for the X3~ and
a' A states are provided as Tables 1 and 2. After input into PGO-
PHER, the Einstein A values for the corresponding lines with and
without the Herman-Wallis effect were compared. For the X3X-
state, the three main PP branches all increased in Einstein A val-
ues while the "R branches saw a significant decrease, particularly
for large ] values. For example, the "R;(10) line of the 1-0 band
changed from an Einstein A of 1.15 s'! to 1.11 s'!, a 3% decrease,
while the 'R;(73) line was altered from 1.39 s'! t0 0.954 s, a 31%
decrease. In the P branches, the PP;(10) value rose 2% from 1.18 s™!
to 1.21 s! while PP;(71) was raised 9% from 0.821 s~ to 0.898 s!.
In the satellite branches, we saw a very small increase of around
0.4% in the Einstein A for the PQ;y, PQy3, "Q3p, and 'Qy branches.
Similarly, in the 1-0 band of the alA state, the PPer branch saw
a noticeable increase while the 'R branch mostly decreased. The
PP¢(8) line increased from 0.821 s™! to 0.841 s™! and the PP(71)
line rose from 0.586 s°! to 0.649 s'!, a boost of 2% and 11%, re-
spectively. The opposite occurred in the "Re branch, as "Rejr (8)
decreased 3% from 0.789 s'! to 0.769 s'! and "Re (71) fell 31%
from 1.01 s to 0.697 s°!. The 9Q.)s branch was mostly unchanged
or saw a very small shift in A value. We provided the .pgo file as
a supplementary material for those who would like to visually ex-
plore any transitions. Note this file requires use of the PGOPHER
program [33].

4. Conclusion

We have calculated vibration-rotation line lists for v=0-6 for
the X3~ and v=0-5 a'A states from fitting spectroscopic data
from the literature to obtain line positions, and ab initio dipole mo-
ment calculations for line intensities. The 1-0 bands of the X3%-
state and the metastable a' A state may be observable with the

Mid-Infrared Instrument (MIRI) on the James Webb Space Tele-
scope that was launched in December 2021. The line lists include
quantum numbers, line positions and lower state energies in cm™?,
and Einstein Ap_» values. If necessary, these Einstein A values can
be converted to other units such as oscillator strengths or HITRAN
units using formulas found in Bernath’s book [34,38,40]. Partition
functions for SO as needed for astronomical retrievals are available,
for example, from Barklem and Collet [41].
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