Laser Spectroscopy of CaBr: $A^2\Pi - X^2\Sigma^+$ and $B^2\Sigma^+ - X^2\Sigma^+$ Systems

P. F. BERNATH¹ AND R. W. FIELD

Spectroscopy Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

AND

B. PINCHEMEL,² Y. LEFEBVRE, AND J. SCHAMPS

Laboratoire de Spectroscopie des Molécules Diatomiques, E.R.A. 303, Université des Sciences et Techniques de Lille, Bât. P5, 59655 Villeneuve d'Ascq, France

Laser excitation spectra have been recorded for $Ca^{79}Br$ and $Ca^{81}Br$ in the spectral region 600-630 nm. The use of a 1-m monochromator as a narrow band pass filter $(1-2 \text{ cm}^{-1})$ has allowed rotational analysis of the 0-0, 1-1, and 2-2 bands of the $B^2\Sigma^+ - X^2\Sigma^+$ transition and the 0-0 and 1-1 bands of the $A^2\Pi - X^2\Sigma^+$ transition. A few additional lines of the 0-1, 1-2, 1-0, and 2-1 bands of the B-X system were used to obtain band origins for vibrational analysis. The main constants for $Ca^{79}Br$ are (in cm⁻¹):

	$X^2\Sigma^+$	A²∏	$B^2\Sigma^+$
	0	15 958.41 (10)	16 383.137 (6)
ω _e	285.732 (9)	288.56 (20)	285.747 (9)
ω _e x _e	0.840 (4)	_	0.954 (4)
Be	0.094466141 (30)	0.0957343 (20)	0.0965151 (20)
αε	0.000403551 (40)	0.0004327 (20)	0.0004483 (15)
γ_e (spin-rot.)	0.00301484 (50)	_	0.068767 (79)
p _e	_	-0.066834 (64)	
A _e	—	59.175 (1)	

(All uncertainties are 1σ .)

The usual isotope relations between the constants for Ca⁷⁹Br and Ca⁸¹Br are satisfied to within 3σ . The A and B states form a unique perturber pair with $l_{eff} = 1.24$.

I. INTRODUCTION

The first CaBr spectra were observed by Walters and Barratt in 1928 (1). The vibrational assignments appearing in Rosen's tables (2) were made by Harrington (3) in 1942. The potential curves of the X, A, and B states are very similar, causing the spectra to be extremely congested and overlapped. In addition, there are two isotopes of bromine (⁷⁹Br, 50.5%; ⁸¹Br, 49.5%) of approximately equal abundance.

² Visiting scientist at MIT.

¹ Present address, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa K1A 0R6, Canada.

Consequently, no rotational analysis of the $A^2\Pi - X^2\Sigma^+$ and $B^2\Sigma^+ - X^2\Sigma^+$ transitions has been previously performed. The use here of a tunable single-mode, cw dye laser, coupled with selective, narrow bandpass fluorescence detection, has allowed us to assign more than 2000 lines belonging to these two transitions. The A - Xand B - X transitions were simultaneously fit using a "direct" approach (4). In addition, some X-state microwave transitions, provided by Möller and Törring (5), were included in the final fits.

II. EXPERIMENTAL DETAILS

A preliminary study of the A-X and B-X systems was performed in Lille. The CaBr radical was generated from CaBr₂ solid, in a King furnace at 1500-2000 K. Fluorescence was excited using a broadband (1 cm⁻¹) CR 590 rhodamine 6G dye laser. Rotational assignments were made using laser-induced fluorescence spectra recorded with a Jobin-Yvon THR 1500 spectrometer and calibrated against thorium lines. This technique has rather limited resolution, ~0.05 cm⁻¹, but the lines recorded and assigned in this way served as a guide for our Doppler-limited laser excitation experiments at MIT.

The excitation spectra were recorded using a Coherent model CR 599-21 dye laser pumped with 4 W from the 5145-Å line of \odot Coherent CR 10 Ar⁺ laser. We obtained single-mode powers (<1-MHz bandwidth) of about 30 mW at 6290 Å and 150 mW at 6000 Å using rhodamine 6G dye. Ten percent of the dye laser output power was divided among an I₂ cell, a 300-MHz semiconfocal Fabry–Perot, and a 1.5-GHz spectrum analyzer. The I₂ fluorescence and Fabry–Perot peaks were recorded as calibration at the same time as CaBr excitation spectra. The I₂ lines were assigned using the I₂ atlas of Gerstenkorn and Luc (6). The absolute accuracy of the lines is ±0.003 cm⁻¹, except for blended lines. The line positions and band origins given in this paper have *not* been corrected by subtraction of 0.0056 cm⁻¹ as suggested by Gerstenkorn and Luc (7).

The CaBr molecule was made in a Broida-type flow system (8) by the reaction of Ca metal with CH₃Br. The pressure was typically 0.5 Torr of argon carrier gas (with less than 1% CH₃Br).

The total laser-induced fluorescence was monitored, through a Corning color glass filter (chosen to eliminate scattered laser light), by a Hamamatsu R212 photomultiplier. A typical excitation spectrum of one of the most uncluttered regions of the $B^2\Sigma^+ - X^2\Sigma^+$ system is shown as the lower trace of Fig. 1. Even with Dopplerlimited resolution there is no clear pattern in this badly overlapped spectrum.

Intermodulated fluorescence spectra (9, 10) were recorded in order to increase the resolution. This technique is not very useful in this case because, although the lines were better resolved, the pattern of overlapped sequence bands and branches was no clearer. The one exception was in the P_1 branch of the 0-1 band of the $B^2\Sigma^+ - X^2\Sigma^+$ transition of Ca⁷⁹Br. The low-N and the returning high-N lines near the P_1 head were clearly resolved using intermodulated fluorescence. Hyperfine structure was observed and is the subject of a separate paper (11).

The problem in the CaBr A - X and B - X systems is that branches from two isotopes and many sequence bands occur in the same spectral region. However,

FIG. 1. CaBr $B^2\Sigma^+ - X^2\Sigma^+$ laser excitation spectrum. This figure illustrates the complexity of the B-X system. One feature, near-overlap of R_1 lines of the 0-0 and 1-1 bands differing by only 1 J unit, would make rotational assignment of a nonlaser spectrum a formidable task. Trace 2 shows the spectrum obtained when total fluorescence is detected. Trace 1 shows the simplification into groups of four lines $[0-0 R_1(J) \text{ and } 1-1 R_1(J+1)]$ for both Br isotopes] that occurs when narrow bandpass fluorescence detection is employed.

FIG. 2. CaBr $A^2\Pi - X^2\Sigma^+$ laser-induced fluorescence spectrum. A Fortrat diagram illustrates the structure of the 0-0 (solid lines) and 1-1 (dotted lines) bands of the A-X system. A 1-cm⁻¹ bandwidth laser is tuned to the region of the Q_{12} and P_1 heads of the 1-1 band. The resulting spectrum, shown at the top of the figure, includes a complex pattern of lines, the sources of which are indicated by the heavy portions of the Fortrat parabolas directly under the laser line. Each excitation line is accompanied by a fluorescence line [shifted by approximately $\pm B''(4N + 2)$] originating from a common upper level. These lines appear above the heavy portions of the Fortrat parabolas for the conjugate branches. Note that the fluorescence is organized into distinct regions, each associated with a different excitation branch and band combination. This is the basis for success of the selective fluorescence detection laser excitation method.

TABLE I: Measured Line Positions for Ca⁷⁹Br (in cm⁻¹, * denotes blended line)

v'-v"				0	- 0							1 -	1			
J	P12ff	۵۷	Q _{lfe}	۵۷	R12ff	۵۷	Rlee	۵۷	P12ff	Δν	Q _{1fe}	۵۷	R _{12ff}	۵۰	R1ee	Δυ
0.5				_	15 925.091*	4										
			15 925.091	. 9	25.152	-2										
			25,152	- 5 + -	25.219	-4										
			25.220	* 5	25.369*	-1										
	15 923,229	3	25.357	* 4	25.446*	ō										
	22.929	6	25.428	f 1	25.525*	1										
			25.501	* -1	25.611*	6										
	22.326*	3	25.579	f -1	25.691*	3										
10.5	22.027	2	25.658	-2	25.866*	5	15 928.708	-4								
11.5	21.446	4	25.819	r −7	-		29.050	-4								
	21,152	0	-		-		29.392	-8	15 922.559	* 7						
	20.865	-1	-				29.747	7	23.272	* B						
	20.581	1			26.227	-6	30.097	1	22.983	• 3						
	-		26.177	-9	26.325	-0	30.448	1	22 417	* 0			15 928 811	r a		
	19.741	1	26.276	* -6	26.529	-7			22.138	~1			28.912	• ē		
	19.465	i	26.476	* -4	26.634*	-7	31.514	1	21.861	-1	15 928.849	-4	29.014	7		
	19.193	Э	26.573	* -9	26.742*	-6	31.874	1	21.586	-3	28.945	-5	29.120	7	15 934.248	6
20.5	18.922	4	26.681	* -5	26.852*	-7	32.232	-2	21.315	-1	29.052	-1	29.225	• 4	34,604	1
21.5	18.654	5	26.786	* -7	26.968*	-2	32.599	1	21.049	1	29.155	+3	29.336	• 5	34.961	-4
	-		26.895	* -7	27.091	7	32,969	4	20.781	1	29.263	-2	29.440	3	35,330	0
	18.122	3	27.009	-4	27.203*	2	33.336	3	20.517	1	29.372	~2	29.559	2	35.695	+1
	17.860	3	27.121	-5	27.322	2			20.253	0	29.483	-3	70 700	•	-	
	17.600	3	27.239	3	27.445*	2			19 736	1	29.594	-5	29.910	* -4	16.808	٥
	17.085	1	27.476	í - i	27,693	- 2			19.480	i	29.826	-7	30.032	* -s	37.182	ō
	16.833	2	27.60	2 -1	27.822	5			19.227	2	29.945	-5	30.159	* -3	37.564	4
	16.582	2	27.726	5 -2	27.949*	2			18.973	0	30.070	-6	30.283	* -6	37,943	4
30.5	-		27.854	4 -1	28.081*	2			18.725	1	30.195	-6	30.416	* -3	-	
31.5	-		27.98	3 -1	28,215*	2			18.479	2	30.322	-5	30.548	• -3	10 081	~
	15.842	_7	26.114	• -1	-				17 994	٨	30.582	-6	30.819	÷_3	39.474	ŏ
	15.357	-1	-		-				17.753	3	30,719	-2	30.958	* -2	39.860	-3
	15.121	-2			28.774*	1			17,516	4	30,856	-1	31.100	* -1		
	14.888	-1			28.916*	-3			-		30.994	-1				
	14.656	-1	28.60	60	29.064*	-3			17.045	2						
	14.426	0	28.95	2 2	29,215	-2			16.814	2						
40.5	13.975	2	29.24	7 0	29.519	-			10,505	•						
						-										
41.5	13./51	0	29,39	, 0 , 0	29,0/4* 29,814#								32,148	* 1		
	13.314	2	29.70	7 -2	29.999	-3							32.313	* 8		
	13.099	3	29.86	7# Ö	30.166*	1			15.472	-1	32,174	-2	32.475	* 9		
	12.885	3	30.02	7# -1					15.258	~1	32.331	3	32.637	* 9		
	12.672	1	30.18	8* ~Z					15.046	1	32.488	-5	32.800	. 7		
	12.467	5							14.835	0	32.650	-2	32.90/			
	12.259	4							14.473	3	12 977		13.305	* 4		
50.5	11,053	4			31.198	3			14.223	6	33.147	-7	-			
51.5	11.650	o			31.380	6			14.019	3	33.321	-5	33.664	• 13		
	11.454	ż	31.21	3 ≈ -2	31.560*	5			13.822	6	-		33.B44	14		
	11.258	1	31.39	3* -1	31.745*	6			-		33.664	-9	34.022	12		
	11.066	1	31.57	O≉ -4	31.927	2			-		33.844	-7	34.204	11	48.069	1
	10.873	-1	31.75	J# −5 1⊾_0	32.117*	د ا					36.022	9	34.500		48.937	4
			32.12	5* -6	32.502*	5			12.859	3	34,306	-11	34.764	* 10	49.365	-3
			32.31	2+ -8	32,698	6	47.542	4	12,673	2	34.574	9	34.954	* <u>9</u>	49.801	-4
			32.50	2e -1	0 32.893*	3	47,984	- 4	12.491	3	34.764	-8	35.146	• 7	50,237	∗ -7
60.5			32.69	8 e -9	33.096*	6	48.428	3	12.311	3	34.954	- 9				

TABLE IA. $A^2\Pi_{1/2} - X^2\Sigma^+$ System

fluorescence arising from simultaneous laser excitation of overlapped lines often occurs in different spectral regions, as shown in Fig. 2. Thus, by using a monochromator as a narrow band filter, it is possible to select *only* the fluorescence from a particular branch of a chosen band. The excitation spectrum is then greatly simplified, as shown by the top trace of Fig. 1. In this figure four branches are recorded simultaneously (the R_1 branch of 0–0 and 1–1 bands, for both isotopes) but the pattern is quite clear. By tuning the monochromator from one fluorescence feature to another it is possible to *separately* record all of the branches occurring in a selected region of the spectrum. This technique has been previously applied to CaF (12), CaCl (13), NO₂ (14), and YO (15).

vv.				0	- 0							1 -	• 1		······
J	P _{12ff}	Δν	Q _{ife}	Δv	R _{12ff}	Δν	Riee	Δν	P _{12ff}	Δν	2 _{ife}	Δν	R _{12ff}	Δν	R _{lee} Δν
61.5			15 932.8 33.0 33.2 33.4 33.7 	93 * -10 96 * -7 96 * -7 99 * -8 07 * -6 28 * -3 41 * -3 55 * -3	15 933.296 * 33.499 * 33.707 * 34.128 * 34.341 * 34.555 * 34.772 * 34.991 *	5 1 3 5 6 4 4 2	5 948.875 49.314 49.766 50.217	4 -6 -4 -5	15 912.134 11.954 11.784 11.611 11.446 11.277 11.110 10.949	-9 4 2 6 4 1 2					
70.5			34.7	72 *-3	35.212 *	2									
71.5	15 307.574 7.434 7.294	* 6	34,9 35,2 35,4 35,6	91 * -4 12 * -3 38 * -1 65 * 0	35.438 * 35.665 *	3	55.806 56.284	3							15 955,664 2 56,126 1 56,592 1 57,059 0 57,528 -1
80.5	7.153 7.020 6.892	*-2 * 3 * 0					56,772 57,246 57,726	*11 4 1							
B1.5	6.760 6.636 6.516 6.272 6.157 6.046 5.934	-3 -1 2 -2 -1 1			20.054.4		58,209 58,696 59,184 59,679 60,169	-2 -2 -3 1 -2			15 939.959 * 40.202 * 40.447 * 40.698 * 40.951 * 41.202 *	0 -1 -2 1 4 2	15 939,959 40,202 40,447 40,698 40,951 41,202	* 0 *-1 *-2 * 0 * 2 * 0	
90.5	5.721	i			40.122	-5									
91.5	5.617 5.515 5.415 5.315 5.222 5.039 4.954	4 3 2 • 0 • 0	39.8 40.1 40.3 40.6 40.9	54 * 3 22 * 5 93 * 7 64 * 8 37 * 8	40.393 4 40.664 4 40.937 4	-4									
100.5	4.870	* 2													
101.5	4.709 4,628 4,551 4.479 4.406 4.341 4.275 4.214 4.58	+ 4 -2 -1 -4 -1 -2 0 4													
110.5	4.098	* 2													
111.5	4.038 3.987 3.934 3.688 3.641 3.797 3.754	* -2 * 0 * -2 * 0 * -1 * -2 * -4													

TABLE IA—Continued

A 1-m monochromator with 1200-grooves/mm grating was used, in first order, as a filter. The bandpass of the monochromator was set at $1-2 \text{ cm}^{-1}$. A cooled RCA C31034 photomultiplier with photon counting electronics was used to detect the filtered fluorescence.

III. RESULTS

The lines of the 0-0 and 1-1 bands of the $A^2\Pi - X^2\Sigma^+$ transition and the 0-0, 1-1, and 2-2 bands of the $B^2\Sigma^+ - X^2\Sigma^+$ transition of Ca⁷⁹Br are listed³ in Table I. The corresponding lines³ of Ca⁸¹Br are in Table II. The assignments were made using standard combination difference relations. Initially, mainly ground-state differ-

³ Tables I and II were prepared before the microwave data were available so all residuals were obtained from fits that included only optical data. The change in observed-calculated from the combined microwave-optical fits was typically ± 0.001 cm⁻¹.

TABLE IB. $A^2 \prod_{3/2} - X^2 \Sigma^+$ System

vv.					D - O								1	- 1		
	P2ff	Δ٧	2 ₂₁ fe	Δ٧	R _{2ff}	Δ٧	R _{21ee}	Δν		P _{2ff}	Δν	Q _{21fe}	Δν	R.2	ff ^{Δv}	R _{21ee} Δv
5.5 In.S	15 987.60 97.33 87.06 86.80 96.54 86.28 86.03 85.77 85.52	0*7 875 555 9*7 89 87 8 9 72	15 989.872 89.975 90.090 90.206 90.321 90.443 90.570 90.695 90.825	1 * 7 5 -2 -1 -6 3 * -6 3 * -6 3 * -5 3 * -6	15 989.872* 89.989* 90.107* 90.227* 90.357 90.475* 90.601* 90.732* 90.866* 91.007*	-13 -10 -9 -2 -8 -10 -9 -7 -7 -2	15 991.294 91.602 91.909 92.218 92.528 92.837 93.152	-4 1 3 3 -1								15 994.014 5 94.311 -2 94.615 -4 94.926 -1 95.558 7 95.5866 -1 96.183 -3
20.5			90,961 91,093 91,234 91,375 91,515 91,666 91,806 91,806 91,954 92,100 92,265 92,100	1 0 7 1 5 3 5 2 5 2 5 1 6 0 5 0 2 1 9 1	91.146 91.286 91.427 91.576 91.722 91.871 92.023 92.180 92.335 92.496 92.658 92.658	1 0 3 2 1 0 3 1 2 1 0	94.770 95.102 95.434 95.768 96.109 96.49 96.792 97.140 97.486	2320421	15	986, 988 86, 750 86, 277 86, 049 85, 822 85, 822 85, 375	4 -4 -3 -2 -4 -3	15 993.776 93.915 94.061 94.203 94.352 94.499 94.652 94.652 94.807	2	15 993 93 94 94 94 94 94 94		96.303 -2 96.825 -5 97.153 -3 97.481 -3 97.812 -3
30.5	82.30 82.08 61.88 81.67 81.46 81.26 81.06 80.86 90.67	1 2 9 1 0 1 4 1 3 -5 4 -4 4 -4 7 -5 7 1	92.37 92.90 93.06 93.23 93.41 93.58 93.75 93.93 94.11 94.30	7 -1 1 -2 9 + 0 9 + 1 1 + 1 3 + -1 8 + -1 8 + -3 5 + -1	92.021 92.989 93.159* 93.331* 93.506* 93.670* 93.860* 94.044* 94.227*	1 0 1 -12 -2 0 -2	98.545 98.545 98.904 99.260 99.622	1 1 -3 -5				95.125 95.286 95.450 95.617 95.788 95.953 96.128 96.303 96.488 96.673	********	99 99 99 99 99 99 99 99 99		,16 001.975 0 2.342 5 2.704 1 3.069 -2 3.440 -1
40.5	80,25 80,11 79,92 79,74 79,56 79,36 79,25 79,25	1 -1 1 -1 6 -3 5 -3 6 -3 8 -5 6 -4 13 -6	94.68 94.87 95.06 95.26 95.45 95.65 95.85	3 * 2 5 * 3 6 * 2 6 * -2 6 * -3 9 * -6 7 * -4	94.801* 94.997* 95.369* 95.569* 95.792* 95.999* 96.213* 96.425*	4 6 2 -1 -1 4	16 002,246 2,632 3,014 3,402 - 4,190 4,587	4 6 1 5 5		82.347 82.163 81.984 81.807 81.629 81.457 81.295	2 1 -1 -1 7	96,853 97.040	* 0 * 1	9	7.162* 11	4.192 4 4.569 4 - 5.328 0 5.710 -2 6.098 -2 6.487 -1 6.878 -3 7.275 0
50.5	78.7: 78.54 78.31 78.22 78.00 77.7: 77.6: 77.4: 77.4: 77.3:	4 0 17 -4 38 + 2 28 + 3 73 + 3 71 + 0 23 + 0 76 + 1 34 + 1 33 + 0	96.28 96.49 96.92 97.14 97.35 97.58 97.58 97.80 98.03 98.26 98.49	2 * 2 3 * 2 6 * 6 4 * 6 9 * 1 8 * 6 6 * -1 4 * 0 0 * -5 5 * -2	96.636 97.074 97.290 97.512 97.735 97.961 98.188 98.425 98.425 98.60	2 4 0 -2 -2 -8 -11 -8 -4	5,385 5,797 6,192 6,599 7,013	3 2 0 -1 2		81,118 80,953 90,790 90,633 90,476 90,321 80,168 90,017 79,870	-2 -2 -2 1 1 1 1 1 2					
60.5	76.9 76.9 76.6 76.6 76.4 76.4 76.2 76.1	22 ± 2 30 ± 3 58 ± 2 26 ± 2 03 ± 0 79 ± 0 56 ± 3	98.96 99.20 99.44 99.70 99.94 16 000.18	9 ± -1 8 ± -2 7 ± -5 3 ± 6 8 ± 4 19 ± -4	99,144 99,386 99,633 99,887 16 000,137	-2 -4 -2 4 4				- 79.036 78.904 78.775 78.648 78.525 78.403 78.279	1 3 2 0 1 0 5					
70.5	75.8 75.7 75.5 75.4	11*-1 03* 1 97* 4 92* 4	2.01	9 * 1	1.962 2,221 3 2.494	12 1 3				78.164 78.051 77.944 77.937	-5 -4 0 * 1					
80.5	75.29 75.29 75.19 75.09 74.65 74.57	3 3 0 0	2,54 2,82 3,10 3,31 3,65 3,91 - 4,50 4,75	19 ± 3 13 ± 4 10 ± 6 12 ± 0 13 ± 1 15 ± 0 15 ± -2 15 ± -2	3.044 3.317 3.599 3.884 4.451 4.742 5.038 5.335	2 -2 -1 1 -6 -5 -2 0	16 018.101 18.574 19.055 19.537 20.020	1 -2 0 2 2 2								
	74.49 74.41 74.34 74.26 74.20 74.14 74.08	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5,06 5,36 5,66 5,91 6,21 6,51	39 * 0 34 * 2 34 * 5 82 * 4 85 * 6 89 * 6	5.633 5.935 6.237 6.541	1 3 4 3	20.990 21.401 21.974 22.471 22.968	-2 -1 -1 1								

ences were used since, by analogy with CaF and CaCl, the spin-rotation parameter, γ , was expected to be small.

Lines were fit using a weighted (reciprocal, squared uncertainty), nonlinear, least-squares approach ("direct approach") (4). The model Hamiltonian includes standard ${}^{2}\Pi$ and ${}^{2}\Sigma$ matrix elements (17). Lambda doubling and spin-rotation

v'-v"							0 - 0										. 1	- 1					
J	-	R ₁	Δν		R2	Δν	P ₁	Δν		P2	Å٧	-	R ₁	Δν		R ₂	Δν		P ₁	Δν	P.	2	Δv
1.5							16 382,276 82,067	0	16	382.672* 82.531* 82.395* 82.267*	1 0 4										16 362 82	2.321 2.185	0 -1
10.5	16 3	84,288 84,471 84,663 84,854 85,054 85,262	-9 -11 -8 -10 -7 0	16	385.616 85.882 86.153 86.445	-1 -4 -9	81,863 81,659 81,459 81,273 81,089 80,906	-4 -8 -2 2 3		82.133* 82.010*	-2	16	385.038*	8	16	365.923* 86,198*	-10 -10	16 :	380.697	6	8	1.931 1.812	49
		85.464 85.674 85.882 86.103 86.325 86.553	-3 -2 -7 -3 -3 0		86.729 87.013 87.589 87.885 88.185	11 10 4 3 2	80.728 80.554 80.379 80.215	5 7 3 7		81.256 * 81.166 * 81.079 * 80.996 *	1 2 3 4		85.242 + 85.446 + 85.654 + 85.865 86.080 86.303	964044		86.485 86.767 87.054 87.348 87.644 87.943	-2 -3 -3 0 1		B0.513 B0.344	2 9 4	9	0.765	2
20.5		86,783 87.017 87.253 87.497 87.735 87.988 88.244	1 0 2 -5 -2 1		88.493 88.799 89.114 89.427 89.752 90.074 90.405	5240302	- 79.579 79.432 79.290 79.150 79.012 78.883	1 2 2 -1 1		80.916* 80.843* -	3 6		86.528 86.757 86.992 87.481 87.733 87.974	-5 -7 -6 2 8 -2		88.245 88.549 88.859 89.174 89.494 89.815 90.143	0 -3 -3 -1 -2 -1		79.514 79.360 79.215 79.069 78.916 78.785 78.645	1 -1 3 -9 + -1 * -12	94 94	0.707 0.633	4 5
30.5		88,497 88,761 89,028 69,299 89,573 89,852 90,132	-4 -2 0 1 3		90.735 91.0731 91.4161 	-1 0 2 -3	78,755 78,635 78,515 78,399 78,288 78,181 78,083	-1 3 1 -1 -1 3					88.229 88.487 88.749 89.017 89.286 89.560 89.843	-1 -1 -1 0 6		90.472 90.807 91.146 91.489 91.832 92.180 92.535	-2 -1 0 2 -1 -2 1		78.516 78.402 78.284 78.166 78.054 77.943 77.835	* -14 -3 -1 -2 -2 -2 -4 -7			
		90.420 90.704 91.001 91.301 91.604 91.908 92.219	3 -2 3 4 2 3		94.662 95.041 95.419	1 -1 -7	77,981 77,684 77,794 77,709 77,627 77,547 77,477	0 -3 -2 -2 -2 -4 0					90.117 90.407 90.695 90.989 91.291 91.586 91.892	-2 2 1 2 6 1 2		92.891 93.620 93.990 94.363 94.738 95.119	-2 0 2 2 1 2		77.739	-3 * -10 -2 -3			
40.5	,	92.532	2		95.809 96.204 96.601 96.006 97.409 97.811 98.226	-6 -3 -2 2 1 -5 -2	77.410 77.340	3 -2					92.201 92.516 92.829* 93.150* 93.471* 93.799* 94.136	2400-3		95.494 95.887 96.281 96.676 97.080 97.483* 97.891*	-7 -2 0 -7 4 5		77.149 77.075 77.005 76.947 76.891 76.843 76.790	-3 -4 * -10 * -7 * -6 * -1			
50.5		94.842 95.187 95.535 95.891 96.245 96.608 96.972 97.343 97.718 98.091 98.473	4 3 1 4 0 1 0 1 3 -2 -1		98.642 99.062 99.486 99.915	-2 -1 -1 1				80.660* 80.727* 80.807* 80.87*	-4 -2 9 5		94.471 94.812 95.157 95.503 95.852 96.214 96.569 96.936 97.301 97.674 98.046	01202404242		98.294 98.711 99.129 99.554 99.979	3 -1 -1 1 0		,0113				
60.5	4	98.859 99.245 99.639 00.035	0 -4 -3 -5							80.954* 81.034* 81.119*	6 5 6		98.424 98.806 99.190 99.583	2 1 0 2									
61.5												16	399.975	0									
70.5									16	381.706 81.820 81.937 82.054 82.189	2451												
71.5										82.437	' 1 ' 1												
				16	410.811* 11.327* 11.849 12.373 12,898	5 2 2 2 0 4 0																	
90.5																							
81.5																							
													411.033 11.530 12.024 12.521	-4 3 3 2									
90.5													13.023	3									

				2 -	2		
	R _] Δυ	Rg	Δ٧	٩	۵۷	Rz	۵۷
11.5		16 386 86 86	.305 ~5 .591 -4 .880 ~3				
20.5	16 385.832*-1 86.056*-2 86.280*-3	87 88 88 88	.774 1 .078 2 .385 0 .697 1 .015 4				
	87,481 2 87,734 4 87,988 4 88,244 2			16 377 77 77	.833* 6 .708 0 .594 1		
30.5	89.591 -1 89.870 -3 90.158 0			77 77 77 71 71	.481 -1 .377 1 .274 1 .172 -1 .078 0		
40.5	90.737 - 91.037 91.338 91.643 : 92.264 92.264 92.579 93.213 - 93.540 -	3 1 2 2 3 3 2 2 1 6 6		76 76 76 76 76 76 76 76 76 76 76 76 76 7	.989 2 .897 -2 .813 -3 .737 1 .558 -2 .581*-7 .520* 0 .453*-3 .393*-3 .340* 1 5.290* 3		
50.5	93.872 - 94.213 94.552 94.892 - 95.241 95.591 95.940 - 96.299 - 96.662 97.027	5 1 2 1 3 2 2 1 1		76 76 71	5.244* 5 5.201* 7 5.161* 8		
60.5	97.398 97.765 - 98.140 - 98.521 - 98.907 99.295 99.686 16 400.080	4 2 3 2 0 1					

TABLE IC—Continued

effects were accounted for in each state with the usual second-order perturbation theory expressions (4). The uncertainties of well resolved and blended lines are taken at 0.005 and 0.01 cm⁻¹, respectively. For each isotope, the v = 0 levels of *B*, *A*, and *X* states were fit simultaneously. Similar fits were made for v = 1. The 2-2 band of the *B*-*X* system of Ca⁷⁹Br was fit alone with γ'_D fixed at the value obtained for the v = 0 level. For the *B*-*X* 2-2 band of Ca⁸¹Br, *D*" and γ " were fixed at values linearly extrapolated from v'' = 0 and 1 levels.

After our optical analysis was complete, Möller and Törring provided 40 microwave transitions for $X^2\Sigma^+ v'' = 0$, 1, and 2 of both isotopes. These data include high-N (~50) and low-N (~50) transitions of about 40-kHz (1.3 × 10⁻⁶ cm⁻¹) accuracy. These transitions were included in our final fits. The microwave transitions greatly improved the ground-state constants and reduced the correlation between ground- and excited-state constants.

TABLE II: Measured Lir	e Positions for	$Ca^{s_1}Br$ (in cm ⁻¹ ,	* denotes blended line	e)
------------------------	-----------------	-------------------------------------	------------------------	----

TABLE IIA. $A^{2}\Pi_{1/2} - X^{2}\Sigma^{+}$ System

V'-V"				0) - 0								1 - 1			
J	P _{12ff}	Δν	°₁f•	Δυ	R _{12ff}	Δν	Ries	٥٧	P _{12ff}	Δν	Q _{ife}	۵ν	R _{12ff}	Δυ	R _{les}	۵ν
0.5					15 925.091*	10							_			_
			15 925.091	1* 14	25.152*	3										
			25,152	2* 11	25.220*	2										
			25.220	0* 13	25.287*	-2										
			25.287	7 11	25.367	6										
	15 923.229	-7	25.357	7 11	25.446*	7										
	22.929	/	25.420	9 9	25.525											
			25.501		25.611*	13										
	22,335	10	25.575	a* a	25.091-	12										
10.5	21.758	2	25.73	7* 5	25.866*	16										
			75 810				15 020 010	_7								
11.5	21.404	-3	20.013	9- J			29 351	-7	15 923 559	*7						
	20,893	- 2							23.272	*_9						
	20.611	-1			26.227*	A	30.047	-3	22.994	* - 5						
			26.17	7* 4	26.325*	ā	30.396	-1								
			26.276	6* 8	26.426*	9			22.439	-2			15 928.774	-2		
	19.778	Ð	26.374	4 9	26.529*	10			22,165	0			28.874	-2		
	19,504	D	26.470	6* 12	26.634*	11	31,451	-4	21.891	0	15 928.011	* -9	28,979	0		
	19,234	1	26.57	3* 8	26.727	~3	31,010	-2	21.619	-1	20,912	• -8	29.084	0	15 934.175	4
20.5	18,967	3	26,66	5 -3	26.837	-2	32,168	- 3	21.350	0	29.014	* -8	29.193	2	34.528	0
21.5	18.699	2	26.77	2 - 2	26.949	-1	32.529	-3	21.085	2	29.120	• -6	29.299	-1	34.888	1
			26.87	B -4	27.061	-2			20.820	1	29.225	• -7	29.411	-1	35.250	1
	18.172	1	26.98	3*-10	27.173	-6	33.263	2	20.557	1	29,336	* -5	29.524	-1	35.614	1
	17.913	2	27.09	1* -14	27,291	-6	33,630	2	20.296	1	29.446	* -5		-		
	17.656	3	27.20	3*~17	27.413	-4					29.559	-5	29.754	-5		
					27,536	-3			19.784	2			29.876	- 3	36./1/	2
	17,147	1	27,44	5* -11	27.661	~2			19.530	2	29.790	~6	29.996	-6	37.087	-1
	16.894	1	27.56	8-10	27.786	-3			19.279	ź	29.910		30.121	-4	37 841	
30.5	16.645	ų	27,69	2* -5	28.916	-2			18,782	2	30,159	• _2	30.382	0	37.041	•
31.5		_	27.94	9* ~6	28,182	-1			18.537	2	30.283	* -3	30.512	-1	20.070	
	15.912	0	28.08	1* -5							30,417	2	30.646		36,9/6	- 2
	15.672	-1							18.055	2	30.550		30,754		39.320	
	15,432	-,			29 729	-1			17.583	Å	30 819	* 7	31.061	2	33.149	
	14 966	-2			28.750	-÷			17.505		30.958	* 9				
	14.735	-2	28.77	4* 3	29.030	ŏ			17.115	0						
	14.512	3	28.91	64.2	29,177	-2			16.887	1						
	14.284	i	29.06	4* 4	29.330	0			16.658	-1						
40.5	14.059	0	29.21	5* 6	29.481	-2			16.436	1						
41.5	13.838	0	29.36	5* 6	29.637	-2										
		•	29.51	8* 6	29.794	-3							32.104	• 6		
	13.406	2	29.67	4+ 7	29,956	-1							32.256	• 1		
	13,191	1	29.82	4* 1	30.117	-2					32.120	* -1	32,418	• 3		
	12.980	2	29.98	2* -1					15,348	2	32,280	* 2	32.580	¥ 3		
	12.770	2	30.14	2* -2					15.136	0	32.440	* 4	32.745	4		
									14,925	-1	32,596	* -2	32.907	. 0		
	12.361	5							14.720	-1	32.755	* -6	33.082	* B		
	12.158	- 4							14.519	2	32.923		31,253	. 8		
50.5	11.958	5			31,143*				14.315	. 1	33.082	10	,			
51.5	11.757	2			31.321*	• 2			14.110	2	33.253	* - 10				
	11.564	- 4	31.15	8* -2	31.492	-6			13,919	1			33.775	6		
	11.369	3	31.33	6* -2	31.679	-2			13.726	2			33,954	5	48	
	11.177	1	31.51	8* 1	31.867	1					33.775		34.134	: 1	47.887	-2
	10,990	ĩ	31.60	9*-10	32.054	2					33.954	= -9	34.317		48.316	
	10.804	3	31.67	/* -6	32,250	. 8					34.134	= -9 = ^	34.502		48./45	
			32.06	5 -4	32.4391	6			12 793		J4.317 34 502	9 +_9	34.692		49,181	-6
			32.25	94 -9	32.033		47.701	3	12,601	-2	34,692	* -6	35,072	• 3	50.036	* -9
60.5			12.43	3* -8	33.0744		48,231		12.424	ō	34,881	* ~6				
00.5			34.63		33.0241	- 3	40.231									

The spectroscopic constants obtained from these fits are given in Table III. One extra digit is retained so that the constants will reproduce the original data.

In order to perform a vibrational analysis of the $B^2\Sigma^+ - X^2\Sigma^+$ system, we recorded a few lines from bands of $\Delta v = \pm 1$ sequences. These lines are listed in Table IV. The assignments were made by calculating spectra using the constants of Table III and estimated band origins obtained from the bandheads given in Table V. These lines were then used to determine the band origins in Table VI.

Table VII contains the equilibrium constants of X, A, and B states for both isotopes. For the A state we used the Pekeris relationship (18) to obtain $\omega_e x_e$. All Franck-Condon factors greater than 0.001 for vibrational levels less than v = 5 for the A-X and B-X transitions appear in Table VIII. They were calculated using standard RKR (19) and FCF (20) programs from Ca⁷⁹Br equilibrium constants.

V'-V"				0	- 0							1	- 1			
J	P _{12ff}	٥٧	Q _{ife}	Δν	R _{12ff}	Δν	Riee	٥v	P12ff	Δν	Q _{lfe}	٥v	R _{12ff}	Δν	Rlee	Δν
61.5			32.02 33.02 33.22 33.42 33.63 33.94 34.05 34.25	7# -9 4* -10 6* -7 12* -7 12* -7 10* -5 10* -6 5* 0	33.220 33.420 33.632 33.840 34.050 34.265 34.470 34.694	5 + 5 3 + 4 2 + 3 3 + 4 2 + 3 3 + 4 5 + 5 5 + 8 3 + 8 4 + 8	48,679 49,123 49,570 50,010 50,461	5 4 3 -4 -5	12.248 12.078 11.907 11.565 11.397 11.237 11.072	0 4 5 -1 -3 -1 -6	35.072	-6				
70.5			34.69	4* 1	35.12	7* 2			10.915	-1						
71.5			35,12 35,34 35,57 35,60	27* -3 19* -3 15* -1 13* 1	35.349 35.57 35.80	9* 1 5* 3 3* 3									55.88 56.34 56.80 57.27	4 * 3 5 * 2 4 *-4 4 * 1
80.5	7.293* 7.165* 7.034*	-7 -4 -5					56,028 56,508 56,983 57,464	1 6 3 4								
01 .5	6.909* 6.784 6.663 6.545 6.429 6.311 6.199 6.089 5.984	-3 -4 -3 0 -2 -2 -2 1					57.938 50.421 58.907 59.396 59.886 60.375	-4 -4 -2 -5 -2			39.846 40.088 40.332 40.578 40.832 41.082 41.335	* * * * * * * * * * 9 9 9	39.84 40.084 40.333 40.577 40.83 41.08 41.33	5 * -6 3 * -6 2 * -7 3 * -7 2 * -3 2 * -4 5 * -5		
90.5	5.882	4			40.00	0 * -4										
91.5	5.775 5.677 5.579 5.484 5.390 5.305 * 5.213 *	1 3 4 3 9 5 5	40.00 40.26 40.53 40.80 41.01	00 + 6 54 - 4 55 + 6 17 - 7 81 + 7	40.26 40.53 40.80 41.08	4 * -7 5 * -6 7 * -5 1 * -6										
100.5	5.039 4.954	2														
101.5	4.870 4.791 4.720 4.650 4.581 4.513 4.452	-7 -10 -6 -5 -5 -6 -3														
110.5																

TABLE IIA --- Continued

IV. DISCUSSION

In the calcium halides, the $X^{2}\Sigma^{+}$ state is derived from the slightly antibonding $4s\sigma$ molecular orbital centered on Ca⁺. The $A^{2}\Pi$ and $B^{2}\Sigma^{+}$ states seem to form a 4p complex, split by the ligand field of the halide. Thus the A - X and B - X transitions are the molecular analogs of the atomic resonance lines of a one valence electron atom. By analogy with CaF (12, 21) and CaCl (13, 22), the A and B states are expected to form a unique perturber pair (4) with l slightly greater than 1. Using l = 1, the pure precession relationship (23) predicts $\gamma_0 \approx p_0 = -0.0529$ cm⁻¹. As can be seen from Table III, $\gamma_0 \approx p_0$ but both are 27% larger than this value. This implies an $l_{\text{eff}} = 1.24$ for the expression

$$\frac{2ABl_{\rm eff}(l_{\rm eff}+1)}{\Delta\nu_{\Sigma-\Pi_{1/2}}} \ .$$

The simplest explanation of this is that the p complex contains some 3d character which increases the l value toward 2. There is a trend in the calcium halides for an increase in l_{eff} from 1.04 in CaF (12), 1.12 in CaCl (13) to 1.34 in CaI (24).

The Franck-Condon factors for the A-X and B-X systems (Table VIII) are

TABLE IIB. $A^2\Pi_{3/2}-X^2\Sigma^+$ System

v'-v"		c	- 0						1	- 1				
J	P _{2ff} Δv	Q _{21fe} Δv	R2ff Av	R _{21ee}	Δν	P _{2ff}	Δν	Q _{21fe}	Δν		R _{2ff}	Δν	R _{21ee}	Δν
5.5 10.5	15 987.600 * -2 87.331 * -5 87.068 * -5 86.805 * -9 86.545 * -11 86.289 * -12	15 989.872 * 16 89.975 * 9 90.090 * 10 90.206 * 11 90.321 * 7	15 989.872*3 89.989*0 90.107*2 90.227*3 90.357*1 90.475*6	15 991,200 * 91,580 91,880 92,184 92,493	3 3 0 -1 0								15 993.974 94.273 94.575 94.883	0 -2 -3 0
20.5	86.046 * -3 85.790 * -8 85.547 * -3	90.443* 8 90.570*12 90.695*12 90.923*11 90.950* 8 91.080*4 91.214*3 91.253 4 91.495 5 91.636 3	90.601*6 90.732*8 90.866*11 90.994*5 91.130*4 91.268*4 91.408 3 91.553 5 91.698 3 91.845 2	92.800 93.115 95.048 95.377 95.707	-3 -1 2 0 -3	15 987.008 86.769 86.305	2 -2 -4	15 993.802 94.023	3	15	993.792* 93.936* 94.081 94.230	3 1 1 1	95.194 95.506 95.823 96.131 96.451 96.770 97.093 97.419 97.747	1 7 -1 0 -1 -1 -1 -1
21.5	82.352 1 82.143 2 81.936 3 81.731 2	91.760 1 91.929 2 92.079 1 92.222 1 92.367 1 92.542 -2 92.702 -2 92.666 -1 93.031 -1 93.199 -1	91.994 0 92.149 1 92.303 -1 92.621 -2 92.787 0 92.951 -1 93.120 -1 93.290 -2 93.465 -1	96.046 96.384 96.727 97.069 97.412 97.760 98.111 98.462 98.819 99.172	1 4 3 0 1 -1 1 -5	86.071 85.856 85.632 85.413	-10 -1 -2 -1	94.167 94.313 94.461 94.612 94.765 94.921 95.240 95.403 95.569	3 2 1 1 1 1 1 2		94.379 94.531 94.605 94.841 95.002 95.163 95.326 95.492 95.663 95.829	1 1 5 2 2 1 3 -2		
31.5	B1.323 -4 B1.126 -4 80.931 -4 80.737 -6 80.362 -4 80.180 -2 79.998 -1 79.817 -3	93.370 -1 93.540 -3 93.715 -3 93.983 -3 94.073 -3 94.455 -3 94.465* -2 94.628* -2 94.818* -2 94.818* -2	93.638 -2 93.916 -3 93.996 -3 94.180 -2 94.372 4 94.372 4 94.560 4 94.748 2 94.944 5 95.137 3 95.137 3	99.531 16 002.514 2.895	-6 4 2	82,407 82,227	0	95.738 95.897 96.071 96.246 96.433 96.613 96.785 96.973	2 *-9 *-8 * 1 * 2 *-8 *-5		95.998 96.176 96.354 96.540 96.725 96.908 97.094	-6 -4 -3 2 4 1 0	16 002.237 2.602 2.960 3.324 4.073 4.448 5.198	3 6 -1 -4 3 5 -1
41.5	79.641 -2 79.464 -4 79.292 -4 79.122 -5 78.955 -5 78.794 0 78.433 0 78.4315 -1 78.161 -1	95.197*-10 95.397*-7 95.597*-6 96.005*-5 96.213*-4 96.425*-2 96.636*-1 97.074*+6	95.533 1 95.734 0 96.146 0 96.356 0 96.568 0 97.005 5 97.217 -2 97.438 -3	3.279 4.060 4.452 5.243 5.642 6.046 6.450 6.856	0 4 2 -1 0 -2 -3	82.046 81.871 81.697 81.358 81.190 91.029 80.867 80.708 80.554	0 -1 -2 -3 -2 -1 -3 0						5.582 5.964 6.350 6.738 7,130	1 -1 -1 -1 -1
51.5	76.005* -4 77.858 -2 77.712 -1 77.567 -1 77.425 -1 77.285 -2 77.149 -1 76.885* 2	97.286* 0 97.509* 1 97.736* 5 97.964* 6 98.188* 2 98.425* 9 98.887* 2 99.124* 1	97.664 -1 97.888 -4 98.115*-6 98.344*-9 98.580*-6 98.818*-4 99.058*-4 99.288*-3 99.288*-3 99.549 4	7.269	0	80.401 80.247 80.100 79.953	1 -1 0 -1							
61.5	76.760 B 76.632 5 76.512 10 76.387 6 76.266 5 76.156 12	99.365* 2 99.611* 5 99.856* 5 16 000.101* 2	99.795 5 16 000.046 7			79,125 78,994 78,867 78,745 78,624 78,506 78,387	-2 -2 0 1 3							
70.5 71.5	75.811# 3 75.703# 2 75.597# 1 75.492# -2 75.390* -4 75.290* -7 75.198* -5 75.105* -6 75.019* -3	1.909* 12 2.165* 1 2.436* 4 2.705* 2 2.960* 4 3.255* 3 3.528* -2 3.812* 1 4.374* - 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.854 18.326 18.799	0 -1 -2 3	78,279 78,164 78,051 77,944 77,837	8 5 2 3 0							
80.5 81.5	74.610* 0 74.535* 0 74.464* 0 74.400* 6 74.32* 6 74.269* 8 74.202* 3 74.140* 1 74.081* 0	4.3/4" -5 4.661* -5 4.952* -4 5.248* 1 5.542* 0 5.839* 1 6.139* 2 6.441* 2	•.904 -4 5.494 -1 5.793 1 6.092 0 6.396 2 6.700 2	19.759 20.240 20.722 21.205 21.697 22.106 22.602 23.178	3 3 -2 1 -2 1 -2 1 1									
90.5														

TABLE IIC. $B^2\Sigma^+ - X^2\Sigma^+$ System

vv					u - u				<u> </u>			1	- 1			
J	R1	Δν	R2	Δν	P ₁	Δν	F2	Δv	R1	Δν	R ₂	۵۷	P1	۵۷	P2	4∨
0.5							16 303 673									
					16 382.276	1	82,531 82,395	3							16 382.321 82.185	2 5
	16 384.288	7			82.067 81.863	-2	82.267 82.133	-2							61.931	4
	84.471 84.663 84.853	11 9	16 385.593 85.855	4 -1	91.459 81.273	-14 -10	B1.906	13							61.612	0
10.5	85.052	13	86.124	- 2	81.089	-8										
11.5	85.247 85.457 85.654	9 15 5	86,401 86,681 86,965	0	80,912 80,728 80,554	-2 -8 -7			16 385.419	4	16 386.445 86.729	-5 -2	16 380.697 80.520 80.350	-5		
	85.864 86.082	4	87.542	1	80,383 80,215	-8 -6	81,256 81,166	-6 -5	85.630 85.841	6	87.013	~3	60.180 80.006	1 - 7		
	86.302 86.524 86.751	5	67.838 88.136 88.437	3 2 0			80.996 80.916	-6 -6 -7	86.278 86.499	0 3 -1	87.589 87.885 88.185	-8 ~8 -9	79.695 79.541	4 5	80.785 80.709	-7 -4
20.5	86.985 87,225	6 11	88.744 89.053	1 -1	79.592 79.454	-9 -1	80.843	-5	86.725 86.960	-4 -2	88.492 88.798	-5 -7	79.388 79.237	4 - 1	80.633 80.564	-4 ~1
21.5	87.442 87.690	12	89.369 89.687	1	79.312	-1 -1	80.709	-1	87.442	3	89.112 89.427	-5 -6	79.093 78,951	-1 -4		
	87.939 68.193	-6 -4	90.010 90.336	1	79.040 78.915	-2 3			87.690	9	89.750 90.074	- 3 - 2	78.820 78.680	1 -8		
	88.449 88.711 88.976	-4	90.666 91.001 91.341	1	78.739 78.666 78.554	2					90,404 90,735 91,073	0 -1 2	78.546 78.434 78.318	-15 -3		
	89.245 89.514	2	91.684 92.027	3	78.437 78.325	3					91.416 91.753	6	78.197 78.060	-5 -10		
30.5	89.791	0	92.376	-1	78.219	0			89,502	-1	92.104	5	77.984	1		
31.5	90,352 90,637	-1 -4			78.014	-5 -4			90.063	6	92.813	8	77,779	Ď		
	90.932 91.229	0			77.836	0			90.628 90.919	0	93.530 93.896	6				
	91.529 91.831 92.140	3 0 2	94.941 95,321	3 2	77.591	-1 1			91.518 91.617	5 2	94.639 95.015	6 4				
40.5	92.454	5	95.700 96.091	-4 -3	77,453	3			92.124 92.434	3 2	95.393 95.777	1 0				
41.5			96.487 96.885	0					92.745 93.065	-1 1	96.163 96.558	-2 0	77.070 77.005	12		
			97.283 97.693	-1 4					93.380 93.708	-6 -3	96.959 97.356	4	76.947 76.891	6		
	94.740	2	98.095 98.507 98.924	-3 -3					94.374 94.711	0	97.763 98.164 98.576	-2	76.790	-6		
	95.428 95.778	1 0	99.345 99.769	-1 -1					95.050 95.396	-3 -1	98.990 99.409	- 3 - 3				
50.5	96.132	0	400,197	-1					95,743	-3	99.834	-1				
51.5	96.856 97.220	3							96.454 96.813	0						
	97.591 97.965	2					80.807	-2	97.179 97.546	1 1						
	98.723 99.106	0					80,954 81,034	-0 -4 -4	98.295 98.670	2						
60,5	99.496 99.888	-2 -3					B1.119	-2	99.053 99.437	-1 -3						
61.5									99.830	-1						
							81.706 81.820 81.937	* -1 * 2 * 4								
							82.058 82.189	* 6 * 14								
70.5							82.305	* 4								
			410.572 11.082	6 1			01.43									
			11.596 12.115	-2												
			12.638	-/												
80.5																
81.5																
									410.799 11.284	1 -1						
00 F									11.775	0						
90.5									12./06							

				2-2			
J	R ₁ ۵۷	R ₂	Δν	Pl	Δν	P2	Δυ
1.5							
10.5		16 - 205 - 40					
		10 386.21 86.5 86.8	59 - 3 16 - 2				
20.5	16 385.805 -2 86.028 -1 86.257 2	87.7 88.0 88.3	32 1 32 0 36 -2				
21.5		88.6- 88.9	46 ~1 54 5				
	87.444 2 87.692 2 87.946 3 88.197			16 377.746 377.636	-3		
30.5				377.522	0		
31.5	89.534 0 89.817 0 90.099 0 90.679 2 90.980* 9 91.275* 5			377.320 377.220 377.124 377.034 376.947 376.861 376.789	2 1 -1 0 -4		
40.5	91.881* 4			376.639	i		
41.5	92.190* 4 92.504* 5			376.574 376.516 376.453 376.393 376.340 376.290 376.290 376.244 376.201 376.201	* 3 * 9 * 5 * 1 *-1 *-3 *-5 *-5		
50.5	95.136*-2			5701101	·		
51.5 60.5 61.5	95.486*1 95.832*-2 96.189*0 96.544*-2 96.905*-2 97.272 -1 97.637 -4 98.009 -5 98.388 -2 98.787 0 99.155 0 99.546 5 99.546 3						

TABLE IIC—Continued

similar to those for the other calcium halides. The vibrational structure of the transitions, particularly for low v, is very diagonal. The $\Delta v \neq 0$ CaBr Franck-Condon factors are, respectively, larger and smaller than those for CaF (12) and CaI (24). As for the other calcium halides, the $v \neq 0$ sequences of CaBr become significantly stronger at high v.

Rotation-vibration analysis for two isotopes of CaBr allows a test of the usual isotopic relationships between parameters (16). The agreement between our experimental isotopic parameter ratios and those predicted from the reduced masses is satisfactory ($<3\sigma$).

Brown and Watson (25, 26) showed that it is possible to separate A_p (effective)

					npade	uscupic cons	HAILIS OF CADE					
[>	Bv	0v × 10 ⁸	Å	A _D × 10 ⁵	۸d	PD_ × 10 ⁷	q _v × 10 ⁴	°,	۲۷	γ _D × 10 ⁷
	Ca ⁷⁹ Br	~-0	0.09539098(203) 0.09584311(50) 0.09629057(71)	4.350(38) 4.451(13) 4.398(15)							-0.069922(62) -0.069544(42) -0.068988(38)	2.58 ^b 2.56(22) 2.58(14)
2-0	ca ⁸¹ Br	~ - 0	0.09460563(227) 0.09505133(63) 0.09549450(84)	4.344(44) 4.364(17) 4.385(18)							-0.069309(62) -0.068738(65) -0.068359(37)	2.40 ^b 1.64(29) 2.40(14)
A2	ca ⁷⁹ Br	-0	0.09508517(252) 0.09551790(47)	4.2132(82) 4.2142(29)	59.067(1) 59.139(1)	-3.646(53) -3.091(15)	-0.068379(37) -0.067349(31)	1.799(145) 1.552(55)	-1.2766(478) -1.3189(79)	-5.310 -5.212		
- H	ca ⁸¹ Br	-0	0.09429751(238) 0.09472437(55)	4.1580(81) 4.1341(37)	59.065(1) 59.136(1)	-3.540(43) -3.002(16)	-0.067838(37) -0.066815(34)	1.957(155) 1.580(58)	-1.2061(453) -1.2826(85)	-5.311 -5.214		
	ca ⁷⁹ Br +	0~0	0.093460329(86) 0.093861918(19) 0.094264488(18)	4.13247(171 4.13136(38) 4.13028(38)	~						0.00295781(56) 0.00298013(55) 0.00300355(49)	
3-Y	ca ⁸¹ Br	0-0	0.092688896(71) 0.093085456(25) 0.093482984(13)	4.0670 ^C 4.06503(52) 4.06300(28)							0.0029312 ^c 0.00295515(73) 0.00297907(53)	
\$	mbers in	pare	intheses are lo unc	certainties.								

Spectroscopic Constants of CaBr (in cm⁻¹)

TABLE III

 $^{\rm b}{\rm Fixed}$ at value for v = 0. $^{\rm c}{\rm Fixed}$ at values linearly extrapolated from v = 0 and 1.

^acalculated from unique perturber relationship ov = $\frac{A_V p_V}{8B_V}$ (Ref. 4)

TABLE V

Measured CaBr Bandheads (in Å)

into "true" γ and A_D , provided that isotopic data are available.⁴ In our case, the isotopic A_D values differ so slightly that this procedure is unlikely to give reliable values. The values of γ_0 (true) and A_D obtained from isotopic data are:

$$\gamma_0 = 0.057 \text{ cm}^{-1}$$

 $A_{D_0} = 4.1 \times 10^{-5} \text{ cm}^{-1}.$

The pure precession estimates of γ_0 (true) is (26):

$$\gamma_0 = -p/2 = 0.034 \text{ cm}^{-1}$$
.

In order to check the significance of some of our small parameters, we have used the customary Pekeris (18) and Kratzer relations (16). The values are included in the table of equilibrium constants (Table VII) and the agreement is 10% for $\omega_e x_e$ and <1% for D_e .

In addition, the program of Albritton *et al.* (27) was used (along with the RKR curve) in order to calculate D_v values. The agreement is excellent (±0.1%) even in the excited states. For example, calculated values for the v = 0 levels of Ca⁷⁹Br are $D_0 = 4.128 \times 10^{-8}$ cm⁻¹ ($X^2\Sigma^+$), 4.220×10^{-8} cm⁻¹ ($A^2\Pi$), and 4.404×10^{-8} cm⁻¹ ($B^2\Sigma^+$). The calculated values were fit to extract D_e and β_e and these values are included in Table VII.

Veseth (28) has derived a formula for estimating γ_{D_v} :

$$\gamma_{D_v} = \gamma_v \left[\frac{A_{D_v}}{A_v} - \frac{2D_v}{B_v} - \frac{B_{\Pi} - B_{\Sigma}}{\Delta \nu_{\Pi \Sigma}} \right] \,.$$

For γ_{D_0} of Ca⁷⁹Br, this equation gives 2.25×10^{-7} cm⁻¹, which is close to the experimental value, 2.58×10^{-7} cm⁻¹. A similar expression for p_{D_r} gives $p_{D_0} = 2.16 \times 10^{-7}$ cm⁻¹. The unique perturber model requires $p_D \approx \gamma_D$. The γ_D and p_D values predicted by Veseth's equations are in reasonable agreement with each other and fall *between* the respective experimental values. However, our phenomenological A_D is a factor of 7 larger than the value predicted by Merer's relationship (29).

⁴ This separation of γ and A_D is supposed to yield a γ value which contains both spin-rotation and second-order spin-orbit contributions.

TABLE VI

	Β ² Σ+-Χ ² Σ	;+	Α ² π-X ² Σ ⁺			
v'v"	Ca ⁷⁹ Br	Ca ⁸¹ Br	Ca ⁷⁹ Br	Ca ⁸¹ Br		
0-1 1-2	16 099.066(5) 16 100.533(6)	16 100.237(2)				
0-0 1-1 2-2	16 383.114(1) 16 382.901(1) 16 382.462(1)	16 383.108(1) 16 382.895(1) 16 382.464(1)	15 959.774(1) 15 962.230(1)	15 959.770(1) 15 962.213(1)		
1-0 2-1	16 666.956(1) 16 664.835(5)	16 665.777(2) 16 663.674(2)				

CaBr Band Origins (in cm⁻¹)

Numbers in parentheses are lo uncertainties.

TABLE VII

Equilibrium Constants (in cm⁻¹)

	X ² E ⁺		Rn		β²Σ ⁺	
	Ca ⁷⁹ Br	Ca ⁸¹ Br	Ca ⁷⁹ Br	Ca ⁸¹ Br	Ca ⁷⁹ Br	Ca ⁸¹ Br
T _e	0 285.7315(92)	0 284.5430(135)	15 958.41(10) ^{c,d} 288.56(20) ^{c,d}	15 958.41(10) ^{c,d} 287.35(20) ^{c,d}	16 383.137(6) 285.7465(92)	16 383.133(8) 284.5491(143)
w x	0.8400(39)	0.8333(48)	-	•	0.9540(39)	0.9428(50)
^w e ^x e	0.9480(2)	0.9315(4)	1.024(9)	1.014(14)	1.046(8)	1.040(4)
B	0.094466141(32)	0.093682111(68)	0.0957343(20)	0.0949378(20)	0.0965151(20)	0.0957166(11)
a	0.000403551(38)	0.000398496(80)	0.0004327(20)	0.0004269(29)	0.0004483(15)	0.0004437(8)
Y X 10 ⁷	4.91(38)	4.84(80)		-	-	
D × 10 ⁸	4.129737(90)	4.06199(68)	4.2142(29) ^b	4.1341(37) ^D	4.398(15) ^b	4.385(18) ^b
0 x 10 ^{8 f} (calc.)	4.1271(1)	-	4.213(3)	-	4.4013(2)	-
D _e x 10 ⁸ (Kratzer)	4.1303(2)	4.0619(4)	4.215(7)	4.145(6)	4.4043(6)	4.3322(4)
s_ × 10 ¹¹	1.084(76)	2.03(80)	-	-	-	-
$B_e \times 10^{11} f$	1.88(7)	-	14.4(2)	-	5.7(1)	-
Ύe	0.00301484(50)	0.00299103(116)	-	-	-0.068767(79)	-0.068115(63)
(spin-rotati	-0.2289(31)	-0.2392(126)	-	-	-4.84(55)	-4.64(45)
P.	-	-	-0.066834(64)	-0.066304(70)	-	-
a 8	-	-	-0.001030(68)	-0,001023(71)	-	-
۲ ۸	-	-	59.175(1) ^d	59.172(1) ^d	-	-
e a. a		-	-0.072(1) ^d	-0.071(1) ^d		
R _e (Â)	2.593585	2.593584	2.5764	2.5764	2.56769(3) ^e	2.56759(2) ^e

Numbers in parentheses are 1σ uncertainties.

_

^aOur a's (except α_e) are defined by $X_v = X_e + \alpha_X(v + \frac{1}{2})$ with $X = \gamma$, p, A.

 ${}^{b}\mathrm{D}_{_{O}}$ is listed rather than $\mathrm{D}_{_{e}}.$

 $^{C}Only$ 0-0 and 1-1 A-X bands were analyzed so the $w_{a}x_{a}$ used to obtain T and w_{e} came from the Pekeris relationship. This relationship seems to work to about 10% accuracy in the other CaBr states. The uncertainties of T and w_{e} reflect this fact.

 d The o parameter used in our fit is completely correlated with the band origin and the spin-orbit constant. Thus this parameter affects the values of $T_e, v_{e1}, v_{e1}, v_{e2}$ (see the spin-orbit table.

 e The values for R, were computed from the B, values by correcting for q^{Σ} . The unique perturber model predicts q^{Σ} = $^{e}-q^{II}$ so $B_{e}^{-\Sigma}$ = $B_{e}+q^{II}$ (4).

 $\mathbf{f}_{\text{Calculated using the program of Ref. 27.}}$

TABLE VIII

\v"			B ² Σ ⁺ -X ² Σ ⁺			
Ľ	Ō	1	2	3	4	5
0	0.919	0.075	0.006	-	-	-
1	0.080	0.774	0.129	0.016	0.002	-
2	0.001	0.148	0.652	0.167	0.030	0.004
3	-	0.003	0.207	0.551	0.193	0.040
4	-	-	0.006	0.257	0.466	0.208
5	-	-	-	0.009	0.300	0.395
`			A ² π-X ² Σ ⁺			
<u>v'</u>	0	<u> </u>	2	3	4	5

Franck-Condon Factors for Ca79Br

0	0.968	0.031	0.001	-	-	-
1	0.032	0.907	0.058	0.003	-	-
2	-	0.062	0.851	0.080	0.006	-
3	-	-	0.089	0.801	0.099	0.009
4	-	-	0.001	0.114	0.756	0.115
5	-	-	-	0.001	0.137	0.715
						-

Only values greater than 0.001 are listed.

V. SUMMARY

The spectrum of CaBr is typical of alkaline earth halides and, more generally, transitions involving nonbonding electrons. Laser excitation spectroscopy with narrow band detection allows the dense and badly overlapped spectrum to be analyzed. Narrow band detection allows the experimenter to select the branches and bands of greatest interest from the jumble of overlapped lines in the spectrum. The use of a continuously tunable single-mode, dye laser provides very high-quality data (± 0.003 -cm⁻¹ accuracy).

Simultaneous fitting of the A-X, B-X and microwave data reduces correlations in the molecular constants. The combined fit molecular constants obey the expected isotopic relations. The molecular constants allow accurate Franck-Condon factors to be calculated. These Franck-Condon factors are required for the conversion of laser-induced fluorescence intensities into molecular populations in monitored chemical reactions. The molecular constants, particularly lambda doubling and spin-rotation parameters, provide some insight into the orbital structure of CaBr. The A and B states form a unique perturber pair with $l_{eff} = 1.24$, suggestive of 3d character in these states.

ACKNOWLEDGMENTS

We are greatly indebted to K. Möller and Professor T. Törring for providing us with their microwave data in advance of publication. P. F. Bernath was supported, in part, by a Natural Sciences and Engineering Research Council of Canada postgraduate fellowship. The MIT portion of this research was supported by Grants AFOSR-76-3056, NSF CHE-78-18427, and CHE-78-10178, NATO 1177. Note added in proof. Uncertainties for the $X^2\Sigma^+$ state constants, γ_v (Table III), γ_e and α_γ (Table VII), must be increased by a factor of 50 because unresolved hyperfine structure in the $N \sim 15$ -mm wave data caused a systematic error in measured spin splittings. The effect on all other parameter values and uncertainties is negligible. Higher-precision radiofrequency measurements of $X^2\Sigma^+$ state hfs and γ values by W. J. Childs, D. R. Cok, G. L. Goodman, and L. S. Goodman indicated the existence and source of this problem.

RECEIVED: November 13, 1980

REFERENCES

- 1. O. H. WALTERS AND S. BARRATT, Proc. Roy. Soc. Ser. A 118, 120-137 (1928).
- 2. B. ROSEN, in "International Tables of Selected Constants," Pergamon, New York, 1970.
- 3. R. E. HARRINGTON, Ph.D. thesis, Berkeley, 1942.
- R. N. ZARE, A. L. SCHMELTEKOPF, W. J. HARROPP, AND D. L. ALBRITTON, J. Mol. Spectrosc. 46, 37-66 (1973). The fitting routines used were generated by R. C. Stern and revised by T. H. Bergeman, R. A. Gottscho, and A. J. Kotlar.
- 5. K. MÖLLER AND T. TÖRRING, private communication.
- 6. S. GERSTENKORN AND P. LUC, "Atlas du Spectre d'Absorption de la Molecule d'Iode," CNRS, Paris, 1978.
- 7. S. GERSTENKORN AND P. LUC, Rev. Phys. Appl. 14, 791-794 (1979).
- 8. J. B. WEST, R. S. BRADFORD, JR., J. D. EVERSOLE, AND C. R. JONES, *Rev. Sci. Instrum.* 46, 164-168 (1975).
- 9. M. S. SOREM AND A. L. SCHAWLOW, Opt. Commun. 5, 148-151 (1972).
- 10. P. F. BERNATH, P. G. CUMMINS, AND R. W. FIELD, Chem. Phys. Lett. 70, 618-620 (1980).
- 11. P. F. BERNATH, B. PINCHEMEL, AND R. W. FIELD, J. Chem. Phys., in press.
- 12. M. DULICK, P. F. BERNATH, AND R. W. FIELD, Canad. J. Phys. 58, 703-712 (1980).
- 13. L. E. BERG, L. KLYNNING, AND H. MARTIN, Phys. Scr. 21, 173-178 (1980).
- W. DEMTRÖDER, in "Case Studies in Atomic Physics" (M. R. C. McDowell and E. W. Mc-Daniels, Eds.), Vol. 6, North-Holland, Amsterdam, 1976.
- 15. C. LINTON, J. Mol. Spectrosc. 69, 351-364 (1978).
- 16. G. HERZBERG, "Spectra of Diatomic Molecules," 2nd. ed., p. 107, Van Nostrand, New York, 1950.
- 17. A. J. KOTLAR, R. W. FIELD, J. I. STEINFELD, AND J. A. COXON, J. Mol. Spectrosc. 80, 86-108 (1980).
- 18. C. L. PEKERIS, Phys. Rev. 45, 98-103 (1934).
- 19. R. J. LEROY, private communication.
- 20. R. N. ZARE, J. Chem. Phys. 40, 1934-1944 (1964).
- 21. P. F. BERNATH AND R. W. FIELD, J. Mol. Spectrosc. 82, 339-347 (1980).
- 22. L. E. BERG, L. KLYNNING, AND H. MARTIN, Phys. Scr., in press (1980).
- 23. R. S. MULLIKEN AND A. CHRISTY, Phys. Rev. 38, 87-119 (1931).
- 24. D. E. REISNER, P. F. BERNATH, AND R. W. FIELD, J. Mol. Spectrosc., in press.
- 25. J. M. BROWN AND J. K. G. WATSON, J. Mol. Spectrosc. 65, 65-74 (1977).
- 26. J. M. BROWN, E. A. COLBOURN, J. K. G. WATSON, AND F. D. WAYNE, J. Mol. Spectrosc. 74, 294–318 (1979).
- D. L. ALBRITTON, W. J. HARROP, A. L. SCHMELTEKOPF, AND R. N. ZARE, J. Mol. Spectrosc. 46, 25-36 (1973).
- 28. L. VESETH, J. Phys. B. 3, 1677-1691 (1970).
- 29. A. J. MERER, Mol. Phys. 23, 309-315 (1972).