Vibration – Rotation and Deperturbation Analysis of $A^2\Pi - X^2\Sigma^+$ and $B^2\Sigma^+ - X^2\Sigma^+$ Systems of the Cal Molecule

DAVID E. REISNER, PETER F. BERNATH, AND R. W. FIELD

Department of Chemistry and Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Doppler-limited laser excitation spectroscopy employing narrow-band fluorescence detection was used to obtain a rotational and vibrational analysis in the (0, 0) and (1, 1) bands of the $A^2\Pi - X^2\Sigma^+$ system and the (4, 2) (3, 1), (0, 0), (0, 1), (1, 2), (2, 3), and (3, 4) bands of the $B^2\Sigma^+ - X^2\Sigma^+$ system of CaI. The A and B states are deperturbed to obtain spectroscopic constants and Franck-Condon factors. Deperturbation was necessary because of the small separation of the A and B states relative to the $A \sim B$ interaction strength and the $A^2\Pi$ spin-orbit splitting. The main deperturbed constants (in cm⁻¹) are

	$X^2\Sigma^+$	$A^2\Pi$	$B^2\Sigma^+$
$\overline{T_e}$	0	15 624.67(5)	15 700.52(12)
ω_e	238.7496(33)	241.19(7)	242.63(17)
$\omega_e x_e$	0.62789(64)	0.53(5) (Pekeris)	1.17(12) (Pekeris)
B_e	0.0693254(84)	0.070460(14)	0.071572(22)
$\alpha_e \times 10^4$	2.640(35)	2.15(10)	3.95(2)
A_e		45.8968(52)	
R_e (Å)	2.8286(2)	2.8057(3)	2.7839(4)

where 1σ uncertainties are given in parentheses. The molecular constants provide insight into the orbital composition of the A and B states.

I. INTRODUCTION

The first CaI $A^2\Pi - X^2\Sigma^+$ and $B^2\Sigma^+ - X^2\Sigma^+$ spectra were observed in absorption by Walters and Barratt in 1928 (1). Several vibrational analyses of the A-X and B-X bandheads have been performed (2), the most recent of which was by Rao et al. in 1978 (3). CaI has also been tentatively identified in the spectra of certain cool stars (4). In spite of the early and frequent observation of CaI spectra, no rotational analysis has been reported.

CaI is a very ionic molecule so the charge distribution is well represented by Ca^+I^- . The remaining Ca^+ valence electron resides in a nonbonding metal-centered orbital (5). Transitions from the $X^2\Sigma^+$ state correspond to excitations of the $4s\sigma$ nonbonding electron to higher nonbonding metal-centered orbitals, resulting in nearly identical potential curves for the X, A, and B states. The similarity of the rotational and vibrational constants in the ground and excited states causes the spectrum to be highly congested, precluding the possibility of correct rotational

¹ Present address: Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa K1A 0R6, Canada.

or vibrational analyses by classical techniques. Earlier attempts at vibrational bandhead analyses, including the most recent, were not entirely correct (2, 3). The technique of laser excitation spectroscopy using a tunable single-mode cw dye laser, coupled with selective, narrow-bandpass fluorescence detection, has enabled rotation-vibration assignment of over 1600 lines.

The $A^2\Pi$ and $B^2\Sigma^+$ states are separated by only about 90 cm⁻¹. This separation is similar to the ${}^2\Pi_{3/2} - {}^2\Pi_{1/2}$ separation (60 cm⁻¹) and the ${}^2\Pi \sim {}^2\Sigma^+$ interaction matrix element (40 cm⁻¹), thus the usual expressions for Λ doubling (7), derived using second-order perturbation theory, are inadequate.

Nevertheless, the usual ${}^2\Sigma^+$ energy level expressions (Ref. (6, p. 249)) adequately reproduce the line positions of the $B{}^2\Sigma^+-X{}^2\Sigma^+$ transition. However, the spin-rotation constant of the B state is larger than the rotational constant because of the strong interaction with the nearby $A{}^2\Pi$ state. Thus, the effective rotational constant of the $B{}^2\Sigma^+$ state has no mechanical significance (8).

In order to fit the A-X transition and obtain mechanically significant A-X and B-X constants, $A^2\Pi \sim B^2\Sigma^+$ interaction matrix elements were explicitly included in a "direct approach" fit (7). The (0, 0) A-X and B-X bands were fitted simultaneously, as were the (1, 1) A-X and (1, 2) B-X bands, in order to deperturb the A and B state constants. For the $B^2\Sigma^+$ state, two sets of constants are presented in order to provide effective constants for convenient calculation of energy levels as well as to provide deperturbed constants for the calculation of potential energy curves.

II. EXPERIMENTAL DETAILS

CaI was produced in a Broida-type oven (9) by the reaction of ethyl iodide, C_2H_5I , with calcium vapor produced by heating calcium metal in an alumina crucible. Operating pressure was typically 1 Torr of argon carrier gas. Four watts of 514-nm radiation from a Coherent CR 10 Ar⁺ laser pumped a Coherent Model 599-21 dye laser (1-MHz bandwidth) operated with rhodamine 6G (50 mW) or rhodamine 101 (30 mW). The dye laser was used to excite fluorescence in the $\Delta v = 0$ band sequence of the A-X system and the $\Delta v = 2$, 0, and -1 band sequences of the B-X system.

Fluorescence was viewed (10, 11) through a 1-m monochromator (spectral slitwidth, 1-2 cm⁻¹) which provided the narrow bandwidth detection necessary to isolate transitions in a selected branch. While fluorescence detection was generally done in the same band in which the laser excitation occurred, on occasion it was advantageous to view fluorescence in another band sequence, which might possess more convenient bandhead separations or more favorable Franck-Condon factors.

Each of the bands in the B-X system displays double heads, as expected from the large spin-rotation constant in the B state, and is shaded to the violet. The single-mode dye laser was scanned through a selected P or R branch and fluorescence was detected exclusively in the corresponding R or P branch (of the same parity), respectively. The spectral bandwidth of the monochromator could be adjusted to discriminate against, or controllably allow for, detection of fluorescence from other bands of the sequence. Similar scans were made for the A-X system.

Although many branches occur in the same spectral region, overlapped lines coming from different branches often have different N values. This difference in N means that the separations between resultant P(N+1) and R(N-1) fluorescence lines are different, permitting the lines in a given small spectral region to be sorted into branches. The different branches in the same spectral region give rise to fluorescence that occurs in distinct spectral regions. By using the monochromator as a narrow-bandpass filter, fluorescence arising from excitation in a specific branch can be detected selectively. When the laser is scanned and the monochromator used as a filter, the excitation spectrum is simplified.

Overlapping sequence bands can result in more than 100 lines/cm⁻¹. Without the simplification provided by narrow-band detection, our analysis would have been impossible. The technique is illustrated by Figs. 1 and 2 of Ref. (11).

The fluorescence excitation spectrum was calibrated with respect to I_2 B $0_u^+-X^1\Sigma_g^+$ lines (12) by simultaneously recording I_2 and CaI excitation spectra as well as fringes from a 300-MHz FSR semiconfocal Fabry-Perot etalon. The absolute accuracy of unblended lines is ± 0.003 cm⁻¹. The estimated precision, from rms error of the fit, is 0.003 cm⁻¹. The line positions and band origins given have not been corrected by subtraction of 0.0056 cm⁻¹, contrary to the suggestion by Gerstenkorn and Luc (13).

III. RESULTS AND DISCUSSION

Initial fluorescence excitation spectra of CaI were recorded in the $\Delta v = 2, 0$, and -1 sequences of the B-X system. Attempts to analyze the $\Delta v = 1$ bands were

TABLE I $B^2\Sigma^+ - X^2\Sigma^+ \text{ Bandheads (cm}^{-1})$

	$B^2\Sigma^4$		Band Heads (in cm^{-1})		
(v¹,v")	Ple	P _{2f}	(v',v'')	Ple	P _{2f}
(2,0)	16 191.70	16 187.44	(4,3)	15 950.47	15 953.57
(3,1)	16 190.06	16 186.14	(5,4)	15 950.28	
(4,2)	16 188.36	16 184.79	(6,5)	15 950.00	
(5,3)	16 186.61	16 183.36	(7,6)	15 949.61	
(6,4)	16 184.79	16 181.82	(8,7)	15 949.11	
(7,5)	16 182.91	16 180.20	(0,0)	15 712.22	15 716.29
(8,6)	16 180.95	16 178.47	(1,1)	15 713.59	15 717.28
(9,7)	16 178.92		(0,1)	15 475.17	15 478.85
(1,0)	15 950.59	15 954.68	(1,2)	15 477.79	15 481.10
(2,1)	15 950.59	15 954.36	(2,3)	15 480.33	15 483.32
(3,2)	15 950.54	15 953.97	(3,4)	15 482.79	

Accuracy ± 0.01 cm⁻¹.

TABLE II
Franck-Condon Factors Calculated from Deperturbed Constants

		B ² Σ ⁺	- x ² ε ⁺			
v _B \v <u>X</u>	0	1	2	3	4	5
0 1 2 3 4 5	0.814 0.175 0.010 0.001	0.159 0.530 0.286 0.024	0.023 0.232 0.348 0.357 0.040	0.003 0.053 0.256 0.231 0.402 0.054	0.009 0.080 0.254 0.157 0.433	0.001 0.017 0.103 0.238 0.110
		A ² π -	- χ ² _Σ +			
v._v <u>x</u> .	0	1	2	3	4	5
0 1 2 3 4 5	0.942 0.057 0.001 	0.054 0.830 0.113 0.003	0.003 0.104 0.719 0.168 0.006	0.008 0.149 0.612 0.220 0.010	0.001 0.016 0.187 0.510 0.269	0.002 0.026 0.217 0.415
		$B^2\Sigma^+$	- A ² п			
v _R \v _A	0	1	2	3	4	5
0 1 2 3 4 5	0.957 0.043 	0.041 0.888 0.071 	0.002 0.064 0.847 0.086	0.005 0.075 0.828 0.092	0.007 0.076 0.827 0.089	0.010 0.070 0.838

Only values 2 0.0005 have been included.

frustrated by extreme sequence congestion and spectral overlap, as evidenced by the head of heads shown in Table I. The (0, 1) band was found to be relatively free of overlap and was analyzed first to obtain preliminary constants for the X and B states. These constants were then used to guide the analysis of the remainder of the bands in the B-X system. The B-X data were fitted using standard ${}^2\Sigma^+$ energy level expressions (6, p. 249), but γ' and γ'' were strongly correlated.

The X-state constants were then used to assign the $\Delta v = 0$ bands in the A-X system. Analysis of the A-X system and a combined fit of the A-X bands with selected B-X bands provided well determined values for γ'' . The B-X bands were then refit with γ'' fixed.

The standard ${}^2\Pi - {}^2\Sigma^+$ Hamiltonian uses Λ doubling and spin-rotation parameters derived using the Van Vleck transformation (8). In CaI, the ${}^2\Pi \sim {}^2\Sigma^+$ interaction is so strong that second-order perturbation theory cannot adequately explain the Λ doubling of the $A^2\Pi$ state. In order to fit the A-X transition, the ${}^2\Pi \sim {}^2\Sigma^+$ interaction parameters η and ξ (14) were explicitly used in combined A-X and B-X fits. These fits also provided estimates of the "true" mechanical B and ω constants, uncontaminated by magnetic contributions introduced by Born-Oppenheimer breakdown (8).

TABLE III $B^2\Sigma^+ - X^2\Sigma^+$ Observed Transitions (cm⁻¹)

N	Plee Δ	P2H	Δν R _{lee} Δι	R _{2ff} Δν	N	P _{lee} Δν	Patt Du	Riee Δν Raff
18 20 21 22 23 24 25 25 26 27 29 20 31 32 33 34 35 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37	16 188 274 -2 16 189 155 -2 16 189 034 -2 16 189 034 -2 16 187 089 -2 16 187 702 0 16 187 702 0 16 187 498 0 16 187 498 0 16 187 498 0 16 187 110 7 16 187 110 7 16 187 110 7 16 187 110 7 16 187 170 7		10 193-243 10 193-294 10 193-294 10 199-204 10 199-204 10 199-204 10 199-204		29 50 31 32 33 34 35 36 37 38 39 40 41 42 43	15 475-436 1 15 475-384 78 15 475-384 78 15 475-386 15 15 475-284 88 15 475-284 88 15 475-288 48 15 475-210 28 15 475-210 28 15 475-1105 48	15 479 -534 1 15 479 -736 -1 15 479 -736 -1 15 479 -736 -1 15 479 -736 -1 15 480 -136 -1 15 480 -136 -1 15 480 -136 -1 15 480 -166 -1 15 480 -167 -1 15 480 -176 -1 15 480 -176 -1 15 480 -176 -1 15 481 -177 -1	15 48.0.7 0 15 48.1 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
189 120 110 23 4 50 6 17 6 2 7 10 11 12 23 34 5 16 2 16 2 16 2 16 2 16 2 16 2 16 2 16	10 186.742 AW 10 186.486 18 16 186.487 18 16 186.547 28 16 186.557 2 16 186.557 0 16 186.487 0 16 186.487 0 16 186.487 0 16 186.287 1 16 186.297 1 1	10 190 203 10 190 203 10 190 204 10 191 204 10 19	000000000000000000000000000000000000000		77 17 17 17 17 17 17 17	15 475.360 -79 16 475.360 -79 16 475.361 -79 16 475.361 -79 16 475.361 -79 17 476	15 481.572 -2 15 481.972 -3 15 481.975 -1 15 482.948 -2 	15 491.637 0 15 491.016 7 15 493.176 0 15 493.576 0 15 493.985 1
5A 15 16 17 18 19 20 21 27 28 24	16 196.513 8 16 196.399 1 16 186.397 3	12 (v) 14 (s	16 191.27 1 16 191.27 1 16 191.27 1 17 16 191.27 1 17 16 191.27 1	16 194.10A 4 16 194.19A 2 16 194.19A 4 16 194.004 4 16 194.331 0	66 67 68 67 70 71 72 73 74 75 74		15 481,497 28	15 445,195 1 15 445,251 1 15 445,252 1 15 445,253 -1 15 446,364 -1 15 446,364 -1 15 446,364 -1 15 446,364 -1 15 448,360 0 15 448,360 0 15 448,360 0 15 448,360 0 15 448,360 0
25 26 27 27 30 31 42 53 43 45 36 37	1A 18A 095 0 16 186.003 0 16 185.913 0 16 185.743 0 16 185.743 0 16 185.748 1 16 185.748 1 16 185.443 0 14 185.443 0 14 185.318 2		16 191.658 0 16 193.849 1 16 194.341 1 16 194.341 1 17 194.447 5 18 196.650 6 18 196.77 6 18 197.78 6 18 197.78 6 18 197.78 6	10 10 10 24. 1 10 190-15 1 10 190-15 1 10 190-16 16 1 10 10 1 10 1 10 10 1 10 1	:	15 479,767 0 15 479,425 1 16 479,486 2 15 479,384 2 15 479,384 2	15 481.497 28 15 481.436 18 15 481.335 78 15 481.326 48 15 481.226 48 15 481.231 48 15 481.208 48 15 481.208 48	17, 462,659 0 15, 462,790 0 15, 462,790 0 15, 463,067 1 15, 463,067 1 15, 463,367 1, 15, 465,612 15, 463,367 1, 15, 465,612
Fig. 11 1 2 2 2 2 2 4 5 6 7 8 4 6 1 1 1 1 2 2 2 2 2 4 5 6 7 8 4 6 6 6 6 7 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	:	:	16 195.939 -6 16 194.889 7 16 197.126 1 16 197.375 5 16 197.617 -1 16 198.124 -3	:	16 17 18 19 20 21 22 23 24 26 27 28	15 497,027 0 18 272,486 2 18 272,486 2 18 272,486 2 13 477,130 2 13 477,130 2 13 477,100 4 15 478,974 1 15 478,974 1 15 478,974 1 15 478,974 1 15 478,974 1 15 478,484 0 15 478,387 2 15 477,487 3 15 477,487 3 15 477,487 3 15 477,487 3 15 477,487 3 15 477,487 3	15 481.146 0 15 481.176 4 15 481.204 4 15 481.204 3 15 481.284 5 15 481.382 5 15 481.482 5 15 481.482 3 15 481.488 3	
			16 200.296 Oa 16 200.588 1 16 200.864 9 16 201.176 / 16 201.176 / 16 202.000 - 16 202.373 0	:	30 31 32 33 34 35 36 47 38	15 478.003 -2 15 477.935 -1 15 477.914 -3 15 477.914 -3 15 477.847 -2 15 477.820 -5	15 481, 146 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 484.299 2 10 490.150 15 490.202 15 490.200 15 490.201 3 15 490.202 15 490.201 3 15 490.201 15 490.201 1 15 490.201 17 480.201 0 15 490.201 17 480.207 0 15 490.201 18 480.401 1 15 490.201 18 480.401 1 15 490.201 15 480.402 0 19 490.201 15 480.402 0 19 490.201 15 480.402 0 19 490.201
3 4 5 6 7 6 9 11 12 13 14 15 16 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	15 215,818 4 15 215,428 4 15 715,448 -1 15 715,1445 -1 15 715,1445 -1 15 714,1724 5 15 714,1724 5 15 714,424 0 15 714,431	15 716.417 12 714.542 15 714.513 15 714.427 17 714.427 10 714.427 10 714.304 15 714.304	74	15 220 - 188	10 10 10 10 10 10 10 10 10 10 10 10 10 1	15 477,817 - 23 5 477,842 - 1 15 477,872 - 1 15 477,872 - 1 15 477,948 1 15 479,944 1 15 478,948 - 1 15 478,948 - 1 15 478,160 0 15 478,160 0 16 478,160 0 17 4	15 483.013 0 15 483.300 0 15 483.300 0 15 483.745 0 15 483.745 0 15 483.745 0 15 484.01 7 15 484.275 2 15 484.45, 2	13 6464-454 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11127777777777777777777777777777777777	15 715 - 818			1				10, 492, 170, 4 10, 492, 190, 4 10, 492, 190, 4 10, 492, 10, 4 10, 492, 190, 4 10, 492
40 41 42 43 44 45 47 48 49 55 55 55 55 55	15 712, 273 -28 15 712, 301 -29 15 712, 315 -18 15 712, 173 -18 15 712, 173 -18 15 712, 174 -1 15 712, 518 -1 15 712, 518 -1 15 712, 528 -1 15 712, 549 -1 15 712, 549 -1 15 712, 549 -1		15 723.492 0 15 723.996 9 15 724.296 7 15 724.296 1 15 724.286 0 15 726.488 0 15 726.711 1 15 726.483 1 15 726.433 1 15 726.433 1 15 724.433 1 15 724.437 1 15 724.437 1 15 724.447 1	15 730.821 /38 15 731.741 /38 15 731.741 /38 15 731.980 /	22-33 (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	15 481.440 2 15 481.233 1 15 481.233 1 15 481.233 1 15 481.234 0 11 13 481.134 0 11 13 481.24 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 15 480.480 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 461,472 1 15 461,150 1 15 461	13
59 59 61 62 63 64 65 66 67 67 67 67 67 67 67 67 67	15 / 12/31 - 24 15 / 12/31 - 24 15 / 12/31 - 14 15 / 12/31 - 14 15 / 12/31 - 14 15 / 12/31 - 14 15 / 12/31 - 14 15 / 12/31 - 15 / 12/		15 729, BA 1 15 729, PA 6 15 736, H0 0 15 746, H0 0 15 746, HSR -1		41 42 43 44 45 46 46 46 47 50 50 50 50 50 50 50 50 50 50 50 50 50	15 480 , 127 - 1 15 480 , 462 - 2 15 480 , 452 - 3 15 480 , 452 - 3 15 480 , 514 - 3 15 480 , 514 - 3 15 480 , 514 - 3 17 480 , 614 - 3 17 480 , 614 - 3 17 480 , 680 - 3 17 480 , 614 - 3 17 480 , 614 - 3 17 480 , 614 - 3 17 481 , 139 - 1 17 481 , 139 - 1	15 486.754 115 486.154 115 486.154 115 486.154 115 486.154 115 486.154 115 485.154 115 485.154 115 485.154 115 485.154 115 485.154 115 485.154 115 485.154 115 485.154 115 485.154 115 485.154 115 485.154 115 485.154 115	10
56778 4 5 6 7 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	1	15 478v iv 15 428v/5 15 4290.15 15 4290.16 15 429110 15 429120 15 429201 15 429301 15 429301 15 429301	15 4/9 AN - 15 (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1. 401.46.7	548 599 599 599 599 599 599 599 599 599 59	15 481,494 5 15 481,494 5 15 481,494 5 15 481,495 6 15 481,495 6 15 481,495 6 15 481,495 1 15 482,495 1 16 482,195 2	-	10 400 400 7 40 10 10 10 10 10 10 10 10 10 10 10 10 10

 $^{^{\}rm 0}$ Observed minus calculated in 10 $^{\rm -3}$ cm $^{\rm -1}$ Lines marked with an asterisk are blended.

ν _B =	0	1	2	3	4
x 10 ²	7.16292(19)	7.13135(34)	7.09543(35)	7.065704(66)	7.03562(36)
v × 10 ⁸	3.099(12)	3.069(27)	3.079(31)	3.100 ^b	3.100 ^b
v	-0.140017(26)	-0.123334(40)	-0.108778(38)	-0.095699(83)	-0.084701 (58)
_{DV} × 10 ⁶	2.306(17)	2.250(25)	2.274(22)	1.981(41)	2.004(60)
v _X =	0	1	2	3	4
v × 10 ²	6.91928(19)	6.89300(19)	6.86814(33)	6.83842(33)	6.81461(19)
, × 10 ^{8 °}	2.34	2.34	2.34	2.34	2.34
v × 10 ⁴ d	56.01	55.70	55.39	55.08	54.77

TABLE IV $B^{2}\Sigma^{+}-X^{2}\Sigma^{+} \text{ Rotational Constants (cm}^{-1})$

Numbers in parentheses are lo uncertainties.

The B-X bands were also fit alone, since the simple ${}^2\Sigma-{}^2\Sigma$ energy level expressions adequately reproduce the spectra. However, the B-state constants are to be treated as effective parameters because of the strong ${}^2\Pi - {}^2\Sigma^+$ interaction. These constants must never be used to derive RKR potentials.

A. $B^2\Sigma^+ - X^2\Sigma^+$ Analysis

The most recent vibrational bandhead analysis was performed by Rao et al. (3), but they made several vibrational band misassignments. In addition, the parity assignment of the P_1 and P_2 bandheads was reversed. Extreme spectral congestion rendered it virtually impossible to disentangle a head of heads that occurs in the $\Delta v = 1$ sequence. Also, small Franck-Condon factors (see Table II) for the (2, 0) and (3, 1) bands prevented their observation by nonlaser methods, and led to an incorrect absolute numbering of the bands in the $\Delta v = 2$ sequence. A list of measured bandheads appears in Table I.

Even in our initial laser excitation survey of bandheads, detecting total fluorescence, the heads belonging to the (2, 0) and (3, 1) bands were overlooked. The rapid decrease in Franck-Condon factors (Table II) with decreasing v'' level outweighs the increase in population. The weak (2, 0) and (3, 1) bands were buried

 $^{^{}a}$ The $B^{2}\Sigma^{+}$ constants are not deperturbed and must not be used for generation of potential energy curves.

Fixed at the value for v' = 0.

 $^{^{\}text{C}}$ Values calculated using program DHL (13).

 $^{^{}d}$ Values obtained from A-X fits for v''=0 and 1 and extrapolated for v''=2,3,4 using α_{γ} = -0.00031.

² Proper assignment of e/f parity (15) should have been possible on the basis of the known ordering of the A and B states in CaI. The presence of a $B^2\Sigma^+$ state to higher energy than the $A^2\Pi$ state suggests a negative value of the spin-rotation constant (γ). This information is sufficient to determine the correct parity assignments of the P_1 and P_2 heads using the standard energy level expressions (6, p. 222).

TABLE V	
$B^2\Sigma^+ - X^2\Sigma^+$ Band Origins	(cm ⁻¹)a

			-
(4,2)	16 189.694(2)	(1,2)	15 481.635(1)
(3,1)	16 191.213(1)	(2,3)	15 483.975(1)
(0,0)	15 716.750(1)	(3,4)	15 486.263(2)
(0,1)	15 479.257(1)		

Numbers in parentheses represent lo uncertainties.

under the stronger lines of other bands in the sequence. Our preliminary vibrational analysis suggested their presence. The bandheads were then located using excitation spectroscopy with narrow-bandpass detection of fluorescence, which eliminated most of the lines from the stronger bands of the sequence.

Rotational assignments were established by the standard method of combination differences between transitions from a common N' level. Measured line positions for the $\Delta v = 2$ [(4, 2), (3, 1)], 0 (0, 0) and -1 [(3, 4), (2, 3), (1, 2), (0, 1)] bands appear in Table III. Blended lines are marked with an asterisk. In most cases, blended lines arise from accidental overlap between transitions of similar N values in the same branch but belonging to different vibrational bands of the same sequence. The Cal bands were so severely overlapped that it was seldom possible to isolate a single branch.

A useful preliminary estimate of $\gamma' \sim -0.17$ cm⁻¹ was supplied by the pureprecession relationship (16) with l=1. The magnitude of γ' was thus expected to be 2 to 3 times larger than the rotational constant, B'. The very large γ' explained the sizable P_1 , P_2 bandhead separations of Table I.

The B-X system was successfully fitted by the direct approach of Zare $et\ al.\ (8)$, using standard $^2\Sigma^+$ matrix elements (17). However, in the initial fits, γ' and γ'' were badly correlated. In order to break this correlation, values for γ''_0 and γ''_1 were obtained from A-X fits (see Section IIIB). Values for γ''_r for v=2 through v=4 of the X state were then extrapolated and fixed in the fits of the B-X system. The B-X (0, 0) and (0, 1) bands were fitted together as were the (4, 2), (1, 2) and (3, 1), (3, 4) pairs of bands. The (2, 3) band was fitted alone. The rotational constants determined from the fits appear in Table IV. Seven band origins were determined from the B-X fits and appear in Table V. In the final fits the D'' values were fixed to the values computed using the program DHL of Albritton $et\ al.$ (18). This program was found to give accurate values for the $X^2\Sigma^+$ state of CaBr (11).

Values of the rotational constants, B' and B'', as well as γ' , were fitted by weighted least squares to the usual polynomials in (v + 1/2) (6, p. 106) with

$$\gamma_v = \gamma_e + \alpha_{\gamma}(v + 1/2) + \gamma_{\gamma}(v + 1/2)^2.$$
 (1)

The band origins of Table V were also fitted to the usual polynomial expression (6, p. 151). The results of these fits comprise a table of effective equilibrium mo-

^aTo be used only with the constants of Table TV.

	x ² Σ ⁺	B ² Σ ⁺
T _e	0.0	15 716.1713(30)
^ω e	238.7496(33)	239.9183(37)
^ω e [×] e	0.62789(64)	0.64985(79)
$B_e \times 10^2$	6.93254(84)	7.17916(116)
$\alpha_e \times 10^4$	2.640(35)	3.255(66)
D ₀ × 10 ⁸	2.34 ^b	3.099(12)
Ye × 10 ⁴	56.17(9) ^d	-1 490.65(22)
$\alpha_{\gamma}^{c} \times 10^{4}$	-0.31(11) ^d	185.74(31)
$\gamma_e^c \times 10^4$ $\alpha_{\gamma}^c \times 10^4$ $\gamma_{\gamma}^c \times 10^4$		-9.492(65)
R _e (Å)	2.8286	

TABLE VI

Equilibrium Molecular Constants for $B^2\Sigma^+$ and $X^2\Sigma^+$ States

$$\gamma_{v} = \gamma_{e} + \alpha_{v} (v + \frac{1}{2}) + \gamma_{v} (v + \frac{1}{2})^{2}$$
.

lecular constants (Table VI), in the sense that the A- and B-state interaction has destroyed the simple mechanical meaning of the B-state rotational and vibrational constants. The B-X fits were made without consideration of contributions from electronic perturbation parameters, and hence do not remove these electronic contributions from the molecular constants. This problem will be discussed in the next section on the A-X system. Note that the X-state constants of Table VI are free of perturbation effects and can be considered as mechanical constants.

The large vibrational dependence of γ' results from the increasing size of the nondiagonal Franck-Condon factors as v increases (Table II). This allows the interaction of vibrational levels of the $A^2\Pi$ state lying above a given v level of the B state to partially cancel the effects of the $A^2\Pi$ vibrational levels lying below this v.

B. $A^{2}\Pi - X^{2}\Sigma^{+}$ Analysis

The appearance of the A-X band system of CaI is characteristic of a transition between a Hund's case (a) ${}^2\Pi$ state and a ${}^2\Sigma^+$ state. The Q_{2ef} , P_{21ee} , P_{2ff} and Q_{12ef} , P_{1ee} , P_{12ff} branches belonging to the ${}^2\Pi_{3/2}$ and ${}^2\Pi_{1/2}$ subbands, respectively, all form bandheads shaded to the violet. Laser-induced fluorescence was observed in the (0,0) and (1,1) bands of the $\Delta v=0$ sequence. The bandheads are listed in

 $^{^{}a}$ B state values are effective constants that reproduce line positions. These constants must not be used to generate potential energy curves for the $B^{2}\Sigma^{+}$ state.

 $^{^{}m b}$ Value calculated using program DHL (13).

^CSpin-rotation expansion constants obtained from expression

 $^{^{}d}$ Value obtained from A-X fits for $v^{(i)} = 0$ and 1.

TABLE VII $A^{2}\Sigma - X^{2}\Sigma^{+} \text{ Bandheads (cm}^{-1})$

band	P _{12ff}	Q _{12ef} + P _{1ee}	a P _{2ff}	P _{2lee}	Q _{2ef}
(0,0)	15 572.87	15 588.53	15 637.66	15 647.12	15 647.35
(1,1)	15 578.16	15 592.71	15 640.59	15 650.01	15 650.22

Accuracy ±0.01 cm⁻¹.

Table VII. The large ${}^2\Pi \sim {}^2\Sigma^+$ interaction causes the Q_{12ef} and P_{1ee} heads to occur at very low J and hence prevents their resolution. Rotational assignments in the A-X system were made in the same fashion as in the B-X system, with the added advantage that good X-state constants were available. The measured line positions for the (0,0) and (1,1) bands appear in Table VIII.

Attempts were made to fit the A-X transitions using the standard ${}^2\Pi$ Hamiltonian with Λ -doubling parameters derived using the Van Vleck transformation (17). This approach was not successful because the $A\,{}^2\Pi_{3/2}-A\,{}^2\Pi_{1/2}$ separation of $\sim 60~{\rm cm}^{-1}$ is about the same size as the ~ 90 -cm⁻¹ $A\,{}^2\Pi-B\,{}^2\Sigma^+$ separation. The two spin components of the A state thus have significantly different separations from the $B\,{}^2\Sigma^+$ state. The usual definition of a single set of o, p, and q parameters for both spin components of the $A\,{}^2\Pi$ state is clearly not appropriate in the case of CaI. In addition, the ${}^2\Pi$ \sim ${}^2\Sigma^+$ interaction is so large that |p| \sim 2B, thus an approach based on second-order perturbation theory will neither have the correct functional form nor provide physically meaningful parameters.

The Λ doubling was fitted by explicit introduction of perturbation matrix elements, η and ξ , that connect the $A^{1}\Pi$ and $B^{2}\Sigma^{+}$ states (14):

$$\eta_{vv'} = (1/2)\langle n^2 \Pi v' | B(R) l_+ | n^2 \Sigma^+ v \rangle, \qquad (2a)$$

$$\xi_{vv'} = (1/2)\langle n^2 \Pi v' | A(R) l_+ | n^2 \Sigma^+ v \rangle.$$
 (2b)

The interaction matrix elements are

$$H(^{2}\Pi_{1/2}, ^{2}\Sigma^{+}) = \xi - \eta(J - 1/2) \qquad (e)$$
$$= \xi + \eta(J + 3/2) \qquad (f), \tag{3}$$

$$H(^{2}\Pi_{3/2}, ^{2}\Sigma^{+}) = -\eta[J^{2} + J - 3/4]^{1/2}. \tag{4}$$

Since the A- and B-state potential curves are similar, the interaction is approximately diagonal in v for v=0 and 1. Thus the major portion of the Λ doubling of v=0 of the A state results from v=0 of the B state, so the (0,0) A-X and B-X bands were fitted together. Similarly, the (1, 1) A-X and (1, 2) B-X bands [the (1, 1) B-X band was not analyzed] were fitted together.

It was found that ξ was badly correlated with T_{Σ} , T_{Π} (band origins), A, and η and so could not be independently determined. Equations (2) suggest that

^aQ_{12ef} and P_{lee} heads are overlapped.

 $TABLE\ VIIIa$ Observed Transitions in $A\,^2\Pi_{1/2} - X^2\Sigma^+\ (0,\ 0)$ Subband (cm $^{-1})$

	Rlee	$\Delta \nu^0$	R _{12ff} △v	Q_{lfe} $\Delta \nu$	P _{l2ff} △	ν
5 5 5	-		~		15 584.500 -	8 7 5
	-		-		15 586,239 - 15 585,979 -	- 4
	-		-		15 585,720	4
	15 592.59	25 -4 12 -3	=	=	15 585,720 - 15 585,466 - 15 585,216 15 584,963 -	0
	15 592.59 15 592.91 15 593.23	.2 -3 31 -4#	-	-	15 584.711 -	.6
	15 593.55 15 593.88	8 2 1 1	-	-	15 584.463 - 15 584.221 -	8
	15 593.55 15 593.86 15 594.20 15 594.52	9 -5	*	=	-	
	15 594.86	2 -3	-	-	-	
	15 594.86 15 595.19 15 595.53	6 -2	-	-	15 583.045 -	4*
	15 595.87 15 596.21	2 0	15 589,147 4 15 589,203 4 15 589,257 1	-	15 582,819 - 15 582,593 - 15 582,369 -	2
	-		15 589.257 1 15 589.318 1	15 589.063 1 15 589.113 -1 15 589.168 -1 15 589.264 -1 15 589.287 0 15 589.348 -2	15, 500, 140 -	٠.
	15 597.24 15 597.59 15 597.94 15 598.29	5 0	15 589.318 1 15 589.382 1 15 589.443 -4 15 589.513 -2 15 589.585 -1	15 589.113 -1 15 589.168 -1 15 589.226 -1	15 581,931 - 15 581,715 - 15 581,502 - 15 581,288 -	2
	15 597.59 15 597.94 15 598.29	6 -1	15 589,382 1 15 589,443 -4 15 589,513 -2 15 589,585 -1	15 589.287 0 15 589.348 -2	15 581.502	3
	15 598,29 15 598,65 15 599,01	9 -1 6 -1	15 589,585 · 1 15 589,658 - 1 15 589,736 1	15 589.348 -2 15 589.418 -3	15 581 082	6
	15 598.65 15 599.01 15 599.37	5 0 8 2	15 589.736 1 15 589.814 0	15 589.418 -3 15 589.483 0 15 589.535 2	15 500 077 -	3
	-		15 589.895 0	15 5B9.624 -2	15 580.476 ~	õ
	15 600.10 15 600.47 15 600.84	5 1 5 3	15 589.977 0 15 590.066 2 15 590.152 0	15 589.700 -1 15 589.779 0 15 589.858 -2	15 580.279	1
	15 600.84	3 1	15 589,977 0 15 590,066 2 15 590,152 0 15 590,243 -1 15 590,339 2	15 589.858 -2 15 589.942 -1	-	
	15 401.59 15 401.96	3 5 5 0	15 590.243 -1 15 590.339 2 15 590.434 1	15 590.028 1 15 590.113 -2	-	
	15 602.34 15 602.72	4 .0	15 590.534 3 15 590.635 2	15 590.028 1 15 590.113 -2 15 590.208 2 15 590.305 6	~	
	15 601.59 15 601.96 15 602.34 15 602.72 15 603.10	9 1	15 590.434 1 15 590.534 3 15 590.635 2 15 590.739 3 15 590.844 2 15 590.951 0	15 589,858 -7 15 589,942 -1 15 590,028 1 15 590,113 -2 15 590,208 2 15 590,305 6 15 590,393 -1 15 590,492 0 15 590,592 -1	15 528.288 -	2* 3*
	15 803.49	7 48	15 590.951 0	15 590.592 -1	15 578,441 -	3*
	-		15 591.177 1	15 570 675 5	15 578.272 · 15 578.105 ·	2* 2 2 0 2 2 2 2
			15 591,295 3 15 591,413 1	15 590.910 0 15 591.022 1	15 577.941 -	2
	-		15 591.534 1 15 591.658 1	15 591.022 1 15 591.136 2 15 591.250 0 15 591.369 1 15 591.490 11 15 591.613 0 15 591.739 1	15 578.105 - 15 577.941 - 15 577.782 15 577.624 15 577.468 15 577.164 15 577.164 15 577.016 15 576.872	2
			15 591.784 1 15 591.914 2	15 591.369 1	15 577.314	ž
	=		15 591.914 2 15 592.043 -1 15 592.176 -1	15 591.490 11 15 591.613 0	15 577.164	3 4 5
			15 592.176 -1 15 592.311 -3 15 592.451 -2	15 590.400 0 15 591.022 1 15 591.136 2 15 591.236 1 15 591.436 1 15 591.496 1 15 591.496 1 15 591.496 1 15 591.496 1 15 591.888 1 17 591.995 3 15 592.265 3 15 592.265 3 15 592.265 3 15 592.265 3 15 592.265 3	15 576 872	5
			15 592.176 -1 15 592.311 -3 15 592.451 -2 15 592.594 -1 15 592.739 -1	15 591.868 1 15 591.995 3 15 592.128 -4 15 592.265 3 15 592.401 5 15 592.545 2 15 592.689 3	15 576.588 15 576.449 15 576.314 15 576.180	6
			15 592.739 -1 15 592.885 -1	15 592,265 -3 15 592,401 -5	15 576.449 15 576.314 15 576.180	6 5 6 5
			15 593.036 0 15 593.186 -2	15 592,545 -2	15 576.050 15 575.921	5
	-		15 593.036 0 15 593.186 -2 15 593.341 -2 15 593.497 -2	15 592,545 -2 15 592,689 -3 15 592,836 -2 15 592,986 -1	15 575.798	6
	-		15 593,497 -2 15 593,657 -2	15 592.986 -1	15 575.798 15 575.672 15 575.553	6 3 5
	-			15 593.289 -3 15 593.447 -2 15 593.605 -3	15 575,436 4 15 525,494 3	,
			15 594,320 -2	15 593.605 -3	15 575.211 & 15 575.104 £	5
	-		15 594.492 -3 15 594.668 -2	Ī.	15 575,104 E 15 574,999 10 15 524,894 9	
	-		15 594.320 -2 15 594.492 -3 15 594.668 -2 15 594.844 -3 15 595.022 0	15 594,265 -4 15 594,438 -3	13 374.874 7	
	-		15 595.027 0 15 595.215 5 15 595.401 6	15 594.265 -4 15 594.438 -3 15 594.613 -3 15 594.790 -2		
			15 595,215 5 15 595,401 6 15 595,585 2 15 595,781 8	15 594.290 -2 15 594.921 -1 15 595.156 2		
	1		15 595.585 2 15 595.781 8 15 595.972 7	10 594,438 -3 15 594,613 -3 15 594,790 -2 15 594,921 -1 15 595,156 -2 15 595,344 5 15 595,723 -8 15 595,723 -8		
			-	15 595.344 5 15 595.333 8 15 595.723 8 15 595.723 8	15 574-142 4 15 574-059 5 15 573-982 -5	
			-	15 595.915 8 15 596.110 8	15 1,73,909 -0	
	-		*		15 573.833 -6 15 573.765 4	
	-		15 597.603 5	_	15 573.498 -4 15 573.633 -4	
	-		15 597.603 5 15 597.817 3 15 598.037 5 15 598.256 3 15 598.703 2 15 598.703 2 15 598.931 1 15 599.141 0 15 599.142 1 15 599.493 -1 15 599.493 -1		15 573,633 -4 15 573,569 6 15 573,512 4	
			15 598.037 5 15 598.256 3 15 598.478 2	15 597.542 5 15 597.757 6	15 573,512 4 15 573,454 4	
	-		15 598.478 2 15 598.703 2	15 597.974 5	15 573,454 4 15 523,402 -2 15 523,455 2	
	-		15 598.931 1 15 599.161 0	15 598.192 3	15 573,305 1 15 573,258 0	
			15 599.393 -1 15 599.629 -1 15 599.867 -1	15 598.414 3 15 598.639 2	15 573,258 0	
	-		15 599.867 -1	15 598.867 2 15 599.095 0	15 573,174 1 15 573,135 0 15 573,098 -2	
	:		15 600.350 -2	15 598.639 2 15 598.637 2 15 598.967 2 15 599.095 0 15 599.328 0 15 599.563 0 15 599.801 0	15 573,098 -2 15 573,066 0 15 573,034 -2	
			15 600 844 4		15 523.034 -2 15 523.005 3	
			15 601.101 3	15 600.282 -3 15 600.529 -1 15 600.726 -2 15 601.033 4 15 601.286 4 15 601.840 3	-	
			15 601.610 2	15 600.776 -2	-	
	•		15 602.125 3 15 602.386 -5	15 601.286 4	-	
			15 602.655 -3	15 601,540 3 15 601,299 3 15 602,055 0 15 602,318 -1 15 602,586 1 15 603,123 -1 15 603,123 -1 15 603,394 -3	-	
			15 602.655 -3 15 602.922 -5 15 603.191 -7 15 603.465 -7	15 601,299 3 15 602,056 0 15 602,318 -1	-	
	•		15 403-465 2	15 602,586 1 15 602,851 -1 15 603,123 -1		
			-	15 603,123 -1 15 603,394 -3		

 $^{^{\}rm d}$ Observed minus calculated in $10^{-3}\,{\rm cm}^{-1}$. Lines marked with an asterisk are blended.

TABLE~VIIIb Observed Transitions in $A\,^2\Pi_{3/2} - X^2\Sigma^+~(0,~0)$ Subband (cm $^{-1})$

J	$R_{2lee} \Delta v^{0}$	R _{2ff} Δν	Q _{21fe} Δν	P _{2ff} △
2.5 3.5	er m	15 648.929 8 15 649.007 7	- 15 648,906 5	
4.5		15 649.092 10	15 648,980 4	-
.5	15 649,963 1 15 650,180 1	15 649.172 7 15 649.259 8	15 649.055 3 15 649.135 5	15 642,295 2
.5 .5	15 650.403 4 15 650.622 1	15 649.343 6 15 649.433 6	15 649.211 2 15 649.296 6	15 646.909 5
.5	15 650.844 1	15 649,525 8	15 649.378 5	15 646.71B 4
.5 .5	15 651.070 2 15 651.296 2	15 649.61B 9 15 649.713 9*	15 649,461 3 15 649,548 4	
. 5	15 451.526 3	15 649.812 13*	15 649,636 2	15 646+198 2
.5 ,5	15 651.753 1 15 651.985 1	15 649,908 11* 15 650,004 7*	15 649.728 4* 15 649.813 -3*	15 645,973 -1 15 645,790 -1
.5	15 652,218 1 15 652,452 0	15 650,100 2* 15 650,203 2*	15 649,909 -1* 15 650,004 -1*	15 645.613 -1 15 645.437 0
.5	15 652.689 0	15 650 305 -1*	15 650.102 -1*	15 645.262 1
.5	15 653.163 -4	15 650.406 -6* 15 650.514 -7*	15 650.204 2* 15 650.305 2*	15 645.088 0 15 644.912 0
.5 .5	15 653,406 -4	new .	15 650.406 0*	15 644.747 0
.5 .5	15 653.649 -3 15 653.893 -5	15 650.747 3 15 650.864 6	15 650.514 3* 15 650.626 7*	15 644,578 1 15 644,413 0
. 5	15 654.144 -1	15 650.978 4	15 650.731 4*	15 644.247 -2
.5	15 654.391 -3 15 654.645 1	15 651.096 4 15 651.214 3	15 650.841 4 15 650.951 2	15 644.084 -2 15 643.923 -3
.5	15 654.897 1	15 651.336 3	15 651.064 1	15 643.765 -2
.5 .5	15 655.147 -3 15 655.395-10	15 651.459 2 15 651.583 1	15 651.179 0 15 651.298 1	15 643.608 = 3 15 643.455 = 2
.5	15 655.653-10	15 651.712 3	15 651.416 -1	15 643.305 2
,5 ,5	15 655.912 -9 15 656.175 -7	15 651.840 3 15 651.974 6	15 651.663 2	15 643.152 0 15 643.002 2
.5	15 656.435-10 15 656.701 -7	15 652,104 3 15 652,239 3	15 651.789 3 15 651.915 2	15 642.855 -1 15 642.710 -1
. 5	15 656,701 -7	15 652,374 1	15 652.043 0	15 642.567 0
.5 .5	-	15 652,513 2 15 652,652 1	15 652.173 -1 15 652.309 3	15 642.425 -1 15 642.285 -1
. 5	2	15 652,795 2	15 652.441 -1	15 642,147 ~2
. 5 . 5	-	15 452,939 1 15 653,084 0	15 652.576 -1 15 652.715 -1	15 642.008 -5 15 641.875 -5
. 5	-	15 653,232 0	15 652.856 -1	15 641.744 -4
5	•	15 653,380 -1 15 653,532 -2	15 652.998 -2 15 653.142 -2	15 641.613 -5 15 641.487 -4
.5	-	15 653,687 0	15 653.287 -3 15 653.436 -2	15 641.362 -3
.5	-	15 654,002 1	15 653 585 -3	15 641.114 5
. 5	_	15 654,162 2 15 654,323 1	15 653.738 -3 15 653.893 -1	15 640.994 -6 15 640.877 -5
.5	an .	15 654,487 1	15 654.050 1	15 640.761 5
.5 .5		15 654.652 0 15 654.818 -1	15 654,209 0 15 654,367 -2	15 640,648 -5 15 640,536 -4
.5		15 654.989 1 15 655.159 -1	15 654.530 -1 15 654.693 -1	15 640.426 - 5 15 640.319 - 5
. 5	-	15 655.332 2	15 654.858 - P	15 640,214 4
.5 .5		15 655.508 -1 15 655.684 -3	15 655.026 -2 15 655.195 -3	15 640.111 -4 15 640.010 3
. 5		15 655.863 -3	15 655.365 - 5	15 639,909 - 5
5		15 656.048 0 15 656.233 2	15 655.539 5 15 655.715 -5	15 639.812 3 15 639.717 -3
.5 .5	-	15 656.419 2 15 656.604 0	l5 655.894 -4 15 656.077 -1	15 639.622 5 15 639.533 -3
.5		15 656.795 1	15 656,258 -2	15 639 442 -5
٠,			15 656.441 -2 15 656.627 -3	15 639.354 =6 15 639.270 5
, 55 , 5,	-	-	-	15 639.189 · 3 15 639.109 · 3
, e,		-	15 657,202 2*	15 639 028 -5
.5			15 657.398 3* 15 657.591 1*	15 638+953 -4 15 638+878 -4
.5			15 657.790 1* 15 657.990 1*	15 638.806 4
.b			15 658.193 l*	15 638.669 3
-5		÷ .	15 458.398 2* 15 458.403 0*	15 638.606 0 15 638.544 1
.5 .9		•		15 638,483 2
.5	-	:		15 638 425 4 15 638 366 2
. 5			-	15 638.314 4 15 638.258 1
1.5 1.5	-	-		15 638 211 5
. 5		-	-	15 638,161 4 15 638,115 4
. 5	•	-		15 638,070 3
1.5	-	-		15 638,030 5 15 637,991 4
1.5 1.5		-		15 837,955 7
1.5	-			15 637,919 6 15 647,888 7
1.5	-		*	15 637.856 6
1.5		-	-	15 637,826 5 15 637,802 7 15 637,779 8

Observed minus calculated in 10⁻³ cm⁻¹. Lines marked with an asterisk are blended.

 $TABLE\ VIIIc$ Observed Transitions in $A^2\Pi_{1/2} - X^2\Sigma^+\ (1,\ 1)$ Subband (cm⁻¹)

J	R _{lee}	Δu^{a}	Q _{1fe}	$\Delta \nu$	R _{12ff}	Δν	P _{12ff}	Δν
15.5	15 597.514		-		-		15 588.757	
16.5 17.5	15 597.825 15 598.144	-7 -4	_		-		15 588.526 15 588.289	
18.5	15 598.462		15 593,246	-12*	_			
19.5	15 598,781		15 593.299	-14*				_
20.5	15 599,104 15 599,430		15 593.356 15 593.416		15 593.246	A ¥	15 587.609 15 587.389	
21.5 22.5	13 377.430	-3	15 593.477		15 593.299	~5≭	15 587,171	
23.5	15 600.091		15 593.544	-11*	15 593.356	-4×	15 586.954	-5
24.5	15 600.422 15 600.755	3	15 593,613 15 593,682		15 593.416 15 593.477		15 586.742 15 586.531	
25.5 26.5	15 600.755 15 601.092	3	15 593.682 15 593.759	-5*	15 593.477 15 593.544	0*	15 586.531 15 586.324	-1
27.5	15 601.429	2	15 593.832	-5∗	15 593,613		15 586.120	0
28.5	15 601.770	2	15 593.910 15 593.991		15 593.682 15 593.759	3* 8*	15 585.918 15 585.716	
29.5 30.5	15 602.116 15 602.460	6 * 5	15 575.771	-4*	15 593.832		15 585,519	1
31.5	15 602.807	5	15 594.150	-11*	15 593.910	9*	15 585.325	3
32.5	15 603 156		15 594.238		15 593.991	10*	15 585.130	
33.5 34.5	15 603,506	4	15 594.325 15 594.426		15 594.150	4*	15 584.941 15 584.756	
35.5	_		15 594.522	-3*	15 594.238	6*	-	
36.5	-		15 594.619	3*	15 594.325		15 584.381	
37.5 38.5	***		15 594.719 15 594.824		15 594.416 15 594.509	3* 2*	15 584.199 15 584.024	
39.5	-		15 594.928	-1	15 594,608	4*	15 583.848	-2
40.5	-		15 595.035		15 594.707 15 594.807	3* 1*	_	
41.5 42.5			15 595.146 15 595.256	-1 -3	15 594.807 15 594.913		_	
43.5	-		15 595,372	-3	15 595,021	4	15 583.174	
44.5			15 595,490 15 595,612		15 595.129	3 2	15 583.014 15 582.856	
45.5 46.5	_		15 595.612 15 595.739		15 595.240 15 595.355	2	15 582,856 15 582,698	
46.5 47.5			15 595.861	0	15 595.471	0	15 582.544	1
48.5	-		15 595.987		15 595.592	2	15 582,394	
49.5 50.5	-		15 596.116 15 596.252		15 595.713 15 595.836	0 -2	15 582.245 15 582.100	
51.5	_		15 596.386	-2	15 595.963		15 581.957	4*
52.5	-		15 596.525	-1	15 596.096 15 596.228	0	15 581.817 15 581.677	5 4
53.5 54.5	-		_		15 596,228 15 596,363		15 581.542	
55.5			-		15 596.501	0	15 581.410	5
56.5	- - - -		-		-		15 581.290 15 581.153	
57.5 58.5	_		15 597.413	2	-		15 581.026	
59.5	-		15 597.568	1	-		15 580.897	-17*
60.5 61.5	_		15 597.728 15 597.890	3	-		15 580.783 15 580.666	
62.5	_		15 598.053		15 597.540	1	15 580.551	4
63.5	-		15 598 222	3	15 597.698	0		_
64.5 65.5			15 598.389 15 598.559		15 597.860 15 598.024	1 1	15 580.331 15 580.223	5 4
66.5	****		15 598.734	0	15 598.191	2	-	•
67.5 68.5			15 598,914 15 599,094	2	15 598.358 15 598.529	0	_	
69.5	-		15 599.094	3	15 598.704	0	_	
70.5	-		15 599.459	Ō	15 598.881	0	-	
71.5	_		-		15 599.062 15 599.241	1 -1	-	
72.5 73.5	_				15 599.428	1	_	
74.5	-		-		15 599.615	1	-	
75.5	-		15 600,425 15 600,625	3	-		-	
76.5 77.5	_		15 600,625 15 600,827	1	_		_	
78.5	-		15 601.033	2	15 600.390	1	-	
79.5 80.5	-		15 601.239 15 601.451	-1 0	15 600.590 15 600.792	1	-	
81.5	Ξ		15 601.663	-2	15 600.998	1	-	
82.5 83.5	-		15 601.879 15 602.098	-1	15 601.205 15 601.414	0 -2	_	
83.5 84.5	_		15 602.098		15 601.414	-2 -2	-	
85.5	-		15 602.543	-2	15 601.843	1	-	
86.5 87.5	_		15 602.769 15 602.997	-2 -3	15 602.061 15 602.281	-1 -2	_	
88.5	_		15 603,228	-4	15 602.505	-2	_	
89.5			15 603.461	-5	15 602.730	-3		
90.5 91.5	-		-		15 602.960 15 603.190	-2 -3	_	
92.5	-		-		15 603.424	-3	-	

 $^{^{\}rm a}$ Observed minus calculated in ${\rm IO}^{-3}\,{\rm cm}^{-1}$. Lines marked with an asterisk are blended.

 $TABLE\ VIIId$ Observed Transitions in $A^{\,2}\Pi_{3/2}-X^{\,2}\Sigma^{+}$ (1, 1) Subband (cm⁻¹)

J	$R_{21ee} \Delta_{\nu}^{o}$	$R_{2ff} \Delta \nu$	Q_{21fe} $\Delta \nu$	P _{2ff} Δν
9.5 0.5	15 653.674 4 15 653.898 3	-		
1.5	15 654.125 5		-	-
2.5 3.5	15 654.346 -2 15 654.578 1	-	·	-
4.5 5.5	15 454.810 1 15 455.043 2	- -	-	-
6.5	15 655,277 1	-	-	-
7,5 8,5	15 655.513 1 15 655.750 -1	-	-	_
9.5 0.5	15 655.990 -1 15 656.232 0	-	-	
1.5	15 656,475 0	-	-	-
2.5 3.5	15 656,720 -1	-	-	15 647.270 2
1.5	15 657.216 0 15 657.466 0	15 653.929 6 15 654.049 6	-	15 646.947 3 15 646.786 2
.5	15 657.716 -2	15 654.169 4	15 653.899 4	15 646.629 3
.5 .5	15 657.970 -3	15 654.292 5 15 654.417 5	15 654.014 3 15 654.132 4	15 646.470 -1 15 646.315 -2
.5	-	15 654.544 4	15 654.251 3	15 646.164 -2
.5		15 654.672 3 15 654.804 4	15 654.372 2 15 654.494 l	15 646.015 -1 15 645.865 -2
.5	÷	15 654.936 4	15 654.622 4	15 645.721 -1
.5 .5	-	15 655.071 3 15 655.206 2	15 654.747 1 15 654.877 2	-
• 5	-	15 655.341 -1	15 655.010 4	15 645.294 0
.5 .5	-	15 655.481 -1 15 655.624 -1	15 655.141 2 15 655.271 -3	15 645.155 -1 15 645.019 -1
. 5		15 655.769 0	15 655.409 -3	15 644.884 -1
5		15 655.914 -2 15 656.065 2	15 655.546 -3 15 655.688 -2	15 644.752 -1 15 644.619 -3
5	-	15 656.217 3	15 655.831 -2	15 644.490 -4
5 5	-	15 656.363 -2 15 656.521 2	15 655.977 0 15 656.124 1	15 644.362 -5 15 644.237 -6
5	-	15 656.521 2 15 656.678 3	15 656.272 1	15 644.114 -6
5 5		-	15 656.423 1 15 656.574 1	15 643.994 -5 15 643.876 -4
5	in .	-	15 656.728 1	15 643,762 -2
5 5		15 657.320 3 15 657.484 1		15 643.646 -3 15 643.533 -3
5 5		15 657.650 1 15 657.820 0	15 657,202 0 15 657,364 0	15 643.422 -3 15 643.308 -9
5		15 657,993 1	15 457.528 0	15 643.209 -1
,	***	15 658.165 0 15 658.339 -2	15 657.693 0 15 657.861 0	15 643,102 -4 15 643,001 -2
5	**	15 658.515 -3	15 658.031 0	15 642,900 -2
5 5		15 658.695 -2	15 658,200 -3 15 658,374 -3	15 642.802 -2 15 642.707 0
5	-	-	15 658.550 -3 15 658.728 -3	15 642,610 -3 15 642,517 -3
5	_	-	10 000+700 -0	15 642,429 -2
5		-	-	15 642.341 -1 15 642.255 -1
5	-		well	15 642,170 -2
5	-		-	15 642,085 -5 15 642,002 -4
5	en	-		15 641,929 -3
5 .5	-	***	-	15 641.852 -5 15 641.781 -2
5		-	-	15 641.708 -3 15 641.639 -3
5	-	en en		15 641.575 0
. 5 . 5	-	-	-	15 641.508 -1 15 641.445 -2
. 5	-	-	-	15 641 385 -1
.5 .5	-	-	-	15 641.327 0 15 641.269 -1
. 5	-	-		15 641,215 -1
.5 .5	***	-	•	15 641.163 -1 15 641.113 -1
.5	-		-	15 641.066 1 15 641.019 0
.5 .5		-	-	15 640,977 1
.5			-	15 640.937 3 15 640.895 1
. 5		-		15 640.862 5
.5 .5	-		• -	15 640.827 5 15 640.794 5
.5		-		15 640.764 6
. 5	-	-		15 640.737 7 15 640.713 10

a Observed minus calculated in 10⁻³ cm⁻¹. Lines marked with an asterisk are blended.

TABLE IX
Deperturbed $A-X$, $B-X$ Constants (cm ⁻¹)

	V=	0	1	2
8 ² Σ ⁺	B _v × 10 ²	7.13747(93)	7.09797(176)	
ΒΣ	D _v × 10 ⁸	2.344(24)	2.054(35)	
	n _v × 10 ²	6.2311(10)	5.7758(12)	
Interaction	n _{Dv} × 10 ⁷	-1.72(23)	-9.32(49)	-~
Matrix Elements	ξ_V^a	40.4828	37.8377	
	ξ _{DV} x 10 ⁴	0.39(11)	2.03(24)	
				~
	٧	7.03523(45)	7.01369(93)	
	$D_v \times 10^8$	2.401(11)	2.604(15)	
A ² II	A	45.7075(29)		
	A x 10 ⁵	-1.18(43)	-8.72(87)	
		-1.3674(38)		
	2			*
	V		6.89192(25)	
$x^2 \varepsilon^+$	$D_{v} \times 10^{8}$	2.34 ^b	2.34 ^b	2.34 ^b
	Y _v × 10 ⁴	56.007(69)	55.698(81)	55.35 ^c

Numbers in parentheses refer to $1\sigma\,\text{uncertainties.}$

$$\xi_v \approx A_v \frac{\langle v(^2\Pi) | v(^2\Sigma^+) \rangle}{\langle v(^2\Pi) | B | v(^2\Sigma^+) \rangle} \eta_v, \tag{5}$$

where A is the $A^2\Pi$ spin-orbit constant. The $\langle v(^2\Pi)|B|v(^2\Sigma)\rangle/\langle v(^2\Pi)|v(^2\Sigma)\rangle$ ratio of vibrational integrals was computed from the vibrational wavefunctions. The ratio was found to be within 1% of B_{Π} , so

$$\xi_v \approx \frac{A_v}{B_{vll}} \, \eta_v. \tag{6}$$

In subsequent fits, the parameter ξ was fixed at the value determined from Eq. (6). This procedure removed the correlation between ξ and the origins as well as between ξ and η . While η and ξ account for most of the interaction between the A and B states, there still exists a nonnegligible interaction with other ($\Delta v \neq 0$) vibrational levels. This is especially true for v > 0, because the Franck-Condon factors become increasingly nondiagonal as v increases.

^aDetermined by the approximate expression $\xi = \frac{1}{2} \langle A \ell_{+} \rangle \sim A \eta / B_{\pi}$.

^bFixed at values determined by program DHL (13) .

 $^{^{}C}$ Fixed at a value linearly extrapolated from v'' = 0 and 1 levels.

TABLE X	
Deperturbed Band Origins (cm ⁻¹)	

(v¹,v'')	$A^2\pi - x^2\Sigma^+$	$B^2\Sigma^+$ - $X^2\Sigma^+$
(0,0)	15 625.905(2)	15 702.326(3)
(1,1)	15 628.549(2)	15 705.124(3)

Numbers in parentheses are $l\sigma$ uncertainties.

Residual p and γ parameters must be inserted into the Hamiltonian to account for the remaining interactions with $\Delta v \neq 0$. However, strong correlation between p and γ prevents their simultaneous variation. This correlation was artificially broken by setting γ (residual) to zero. Consequently, η , ξ , and p(residual) are effective parameters that have accommodated the small interaction parametrized by γ (residual). The results of this direct interaction fit are the deperturbed constants of Table IX.

It was found necessary to include distortion terms in the interaction parameters:

$$\eta_v(\text{eff}) = \eta_v + \eta_{Dv} J(J+1), \tag{7a}$$

$$\xi_{\nu}(\text{eff}) = \xi_{\nu} + \xi_{D\nu}J(J+1). \tag{7b}$$

Band origins determined from the rotational fits are presented in Table X. The difference between the deperturbed (0,0) band origin and the effective band origin in the B-X transition would correspond to the value of the parameter $o^{\Sigma}(8)$, had a second-order perturbation theory approach been possible.

The values of B_0 and B_1 in the A and B states, determined from the combined A-X, B-X fits, allowed determination of "true" mechanical constants, free of electronic perturbation. The results are shown in Table XI. The rotational constant α_e was determined from B_0 and B_1 , and used to determine the vibrational constant $\omega_e x_e$ from the Pekeris relationship (6). The ground-state constants (ω_e'' and $\omega_e'' x_e''$) and the (0, 0) and (1, 1) band origins determined from the combined fits allowed determination of values for $\Delta G'_{1/2}$ and then ω_e' using $\omega_e' x_e'$ (Pekeris). T_e values were then obtained from the standard expression containing T_0 , ω_e , and $\omega_e x_e$:

$$T_0 = T_e + \frac{\omega'_e}{2} - \frac{\omega'_e x'_e}{4} - \frac{\omega''_e}{2} + \frac{\omega''_e x''_e}{4}. \tag{8}$$

The deperturbation of the A and B states can account for a puzzling feature of the Λ doubling of the $A^2\Pi$ state. For CaI, the e Λ component is higher in energy than the f component of the ${}^2\Pi_{1/2}$ spin component, as expected, but f is higher than e in the ${}^2\Pi_{3/2}$ component. For CaF and CaBr (10, 11), e is higher than f in both $A^2\Pi_{1/2}$ and $A^2\Pi_{3/2}$ spin components. When o, p, and q are used to try to fit the Λ doubling of CaI $A^2\Pi$, p is negative but q is positive. This is disconcerting, because examination of the summation definitions of p and q, derived using the Van Vleck transformation, indicate that p and q must have the same sign (8). The direct perturbation approach accounts for the unusual Λ -doubling pattern with physically reasonable values of η and ξ .

	Α² π	B ² Σ ⁺
T _e a	15 624.67(5)	15 700.52(12)
a "e	241.19(7)	242.63(17)
ω _e x _e (Pekeris)	0.53(5)	1.17(12)
B _e × 10 ²	7.0460(14)	7.1572(22)
α _e × 10 ⁴	2.15(10)	3.95(20)
D ₀ × 10 ⁸	2.40(1)	2.34(2)
R_ (Å)	2.8057(3)	2.7839(4)

TABLE XI

Deperturbed Equilibrium Molecular Constants for $A^2\Pi$ and $B^2\Sigma^+$ States

Deperturbed constants for $\chi^2 \varepsilon^+$ are in Table VI. Numbers in parentheses are 1σ uncertainties.

The deperturbation of the A-X and B-X transitions is not entirely satisfactory. The obs. — calc. column of Table VIII is not completely random, although the variance of the fits indicate that lines are fitted to within their estimated experimental error. In addition, the vibrational variation of several parameters, η , η_D , ξ , and ξ_D , in particular, seems unrealistically large (Table IX). These problems result from inclusion of only a single pair of ${}^2\Pi$, ${}^2\Sigma^+$ vibrational levels in the effective Hamiltonian matrix. The magnitudes of the perturbation parameters, however, seem reasonable in the sense that $\eta/\eta_D \approx B/D$ and $|\xi/\xi_D| \approx A/A_D$.

C. Cal Orbital Character

The interaction matrix elements η and ξ provide some insight into the orbital composition of the $A^2\Pi$ and $B^2\Sigma^+$ states. It is possible to define a nonintegral l_{eff}

$$\frac{2\eta}{B_{\Pi}} = (l_{\rm eff}(l_{\rm eff} + 1))^{1/2} \tag{9}$$

that characterizes the ${}^2\Pi \sim {}^2\Sigma^+$ interaction. If the molecular orbitals are M_L components of pure atomic orbitals, then $l_{\rm eff}$ will have integer values and the states are said to be in pure precession. Note that the converse of this statement is not necessarily true (20).

For CaI, $l_{\rm eff}=1.35$, indicating some d character in the A and B states. This value of $l_{\rm eff}$ can be combined with the ratio of the A-X and B-X transition dipole moments (19) to estimate the excited-state molecular orbital composition (20). The results are that the $A^2\Pi$ state is 70% $4p\pi$ (Ca⁺) and 30% $3d\pi$ (Ca⁺) while the $B^2\Sigma^+$ state is 57% $4p\sigma$ (Ca⁺) and 43% $3d\sigma$ (Ca⁺). The A- and B-state mixing coefficients can be used to estimate a more accurate value of ξ , the off-diagonal $^2\Pi-^2\Sigma^+$ spin—

 $^{^{\}text{a}}\text{Determined using }\omega_{\text{e}}^{\text{L}}x_{\text{e}}^{\text{L}}$ (Pekeris) which was assumed to have an uncertainty of 10%.

orbit matrix element. The A- and B-state wavefunctions are written as

$$\psi(B^{2}\Sigma^{+}) = e \left| 4p\sigma \left(\text{Ca}^{+} \right) \right\rangle - (1 - e^{2})^{1/2} \left| 3d\sigma \left(\text{Ca}^{+} \right) \right\rangle,$$

$$\psi(A^{2}\Pi) = f \left| 4p\pi \left(\text{Ca}^{+} \right) \right\rangle - (1 - f^{2})^{1/2} \left| 3d\pi \left(\text{Ca}^{+} \right) \right\rangle. \tag{10}$$

The diagonal spin-orbit interaction is given by

$$A = f^2 \zeta_{4p} + (1 - f^2) \zeta_{3d}. \tag{11}$$

With $\zeta_{4p}/\zeta_{3d}=6.1$, determined from the Ca⁺ atom, $A=45.7~{\rm cm^{-1}}$ for CaI, and mixing fractions 0.70 (4p) and 0.30 (3d), then $\zeta_{4p}=61$ and $\zeta_{3d}=10~{\rm cm^{-1}}$. The AL·S operator acting between the $A^2\Pi$ and $B^2\Sigma^+$ states gives

$$\xi = \frac{1}{2} \langle A l_+ \rangle = \frac{2^{1/2}}{2} e f \zeta_{4p} + \frac{6^{1/2}}{2} (1 - e^2)^{1/2} (1 - f^2)^{1/2} \zeta_{3d}. \tag{12}$$

This leads to $\xi = 31 \text{ cm}^{-1}$, which is 22% smaller than the value of 40 cm⁻¹ provided by Eq. (6).

The value of ξ calculated using Eq. (12) is different from that obtained from Eq. (6) because the A and B states are not pure p or d states. Experimentally, the two values cannot be distinguished because the variance of the fit is insensitive to the magnitude of ξ . For instance, changing ξ to 36 cm⁻¹ changes the variance by less than 10%.

The values of p(res) and $\gamma(\text{res})$, due to interaction with $\Delta v \neq 0$, can be estimated from the values of η and ξ (v = 0), $\langle v'(^2\Sigma) | v'(^2\Pi) \rangle$, and $B_{\Sigma\Pi}$. In particular, retaining only the $\Delta v = 1$ term:

$$p_0(\text{res}) \approx \frac{8\eta_{10}\xi_{10}}{\nu_{0.2\Pi_{10}} - \nu_{1.2\Sigma^+}} \approx \frac{8\eta_{00}\xi_{00}}{\Delta\nu_{1.0}} \left(\frac{\langle 1(^2\Sigma) | 0(^2\Pi) \rangle}{\langle 0(^2\Sigma) | 0(^2\Pi) \rangle} \right) \left(\frac{B_{1.0}}{B_{0.0}} \right) , \quad (13)$$

$$\gamma_{0}(\text{res}) \approx \frac{8\eta_{01}\xi_{01}}{\nu_{1,2\Pi_{1/2}} - \nu_{0,2\Sigma^{+}}} \approx \frac{8\eta_{00}\xi_{00}}{\Delta\nu_{0,1}} \left(\frac{\langle 0(^{2}\Sigma) | 1(^{2}\Pi) \rangle}{\langle 0(^{2}\Sigma) | 0(^{2}\Pi) \rangle} \right) \left(\frac{B_{0,1}}{B_{0,0}} \right) . \tag{14}$$

The results are $p_0(\text{res}) = -0.0021 \text{ cm}^{-1}$ and $\gamma_0(\text{res}) = +0.0084 \text{ cm}^{-1}$. Since only the difference between $\gamma_0(\text{res})$ and $p_0(\text{res})$ could be determined and $\gamma_0(\text{res})$ was set equal to zero in the fit, $p(\text{res}, \text{eff}) = -0.011 \text{ cm}^{-1}$. This compares favorably with the observed value of -0.014 cm^{-1} .

IV. CONCLUSION

CaI is suited neither to classical experimental techniques nor to classical techniques of spectroscopic analysis. Extreme spectral congestion makes single-mode laser excitation spectroscopy and narrow-band fluorescence detection a necessity. The small energy separation between the $A^2\Pi$ and $B^2\Sigma^+$ states requires the use of deperturbation techniques on a system that would not normally be considered to be perturbed because of the absence of level crossings. This deperturbation is necessary to fit the A-X data and derive estimates of true molecular constants (8) for the A and B states. In particular, this allows calculation of Franck-Condon factors, quantities of value in the determination of product distributions of chemical

reactions. Of perhaps even greater value is the insight obtained into the orbital composition of the electronic states.

ACKNOWLEDGMENTS

We thank Bernard Pinchemel and Claude Dufour for communicating their preliminary $CaIA^2\Pi - X^2\Sigma^+$ fluorescence results. P.F.B. was supported, in part, by a Natural Sciences and Engineering Research Council of Canada postgraduate fellowship. Support for this research was provided by Grants AFOSR-76-3056, NSF CHE-78-18427, and CHE-78-10178.

RECEIVED: December 30, 1980

REFERENCES

- 1. O. H. WALTERS AND S. BARRATT, Proc. Roy. Soc. Ser. A 118, 120-137 (1928).
- P. S. MURTY, Y. P. REDDY, AND P. T. RAO, J. Phys. B. 3, 425-429 (1970); L. K. KHANNA AND V. S. DUBEY, Indian J. Pure Appl. Phys. 11, 375-376 (1973); A. B. DARJI AND S. P. VAIDYA, Indian J. Pure Appl. Phys. 11, 923-925 (1973).
- 3. M. L. P. RAO, D. V. K. RAO, P. T. RAO, AND P. S. MURTY, Acta Phys. Pol. A54, 343-353 (1978).
- 4. P. M. RYBSKI, Publ. Astron. Soc. Pac. 85, 751-755 (1973).
- 5. P. F. BERNATH, B. PINCHEMEL, AND R. W. FIELD, J. Chem. Phys. 74, 5508-5515 (1981).
- G. HERZBERG, "Spectra of Diatomic Molecules," 2nd ed., Van Nostrand-Reinhold, New York, 1950.
- 7. J. A. Coxon, J. Mol. Spectrosc. 58, 1-38 (1975).
- 8. R. N. ZARE, A. L. SCHMELTEKOPF, W. J. HARROP, AND D. L. ALBRITTON, J. Mol. Spectrosc. 46, 37-66 (1973).
- J. B. WEST, R. S. BRADFORD, J. D. EVERSOLE, AND C. R. JONES, Rev. Sci. Instrum. 46, 164
 – 168 (1975).
- 10. M. Dulick, P. F. Bernath, and R. W. Field, Canad. J. Phys. 58, 703-712 (1980).
- P. F. BERNATH, R. W. FIELD, B. PINCHEMEL, Y. LEFEBVRE, AND J. SCHAMPS, J. Mol. Spectrosc. 88, 175-193 (1981).
- S. GERSTENKORN AND P. LUC, "Atlas du Spectre d'absorption de la molecule d'iode," CNRS, Paris, 1978.
- 13. S. GERSTENKORN AND P. LUC, Rev. Phys. Appl. 14, 791-794 (1979).
- H. LEFEBVRE-BRION, "Atoms, Molecules, and Lasers," pp. 411-448, International Atomic Energy Agency, Vienna, 1974.
- J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, and R. N. Zare, J. Mol. Spectrosc. 55, 500-503 (1975).
- 16. R. S. MULLIKEN AND A. CHRISTY, Phys. Rev. 38, 87-119 (1931).
- A. J. Kotlar, R. W. Field, J. I. Steinfeld, and J. A. Coxon, J. Mol. Spectrosc. 80, 86– 108 (1980).
- D. L. Albritton, W. J. Harrop, A. L. Schmeltekopf, and R. N. Zare, J. Mol. Spectrosc. 46, 25-36 (1973).
- 19. P. J. DAGDIGIAN, H. W. CRUSE, AND R. N. ZARE, J. Chem. Phys. 60, 2330-2339 (1974).
- 20. P. F. Bernath, Ph.D. thesis, Massachusetts Institute of Technology, 1980.