Direct Observation of the ν_1 and ν_3 Fundamental Bands of NH₂ by Difference Frequency Laser Spectroscopy

T. AMANO, P. F. BERNATH, AND A. R. W. MCKELLAR

Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada

The ν_1 and ν_3 bands of the NH₂ radical were detected in absorption in the 2.9- to 3.2- μ m region using a tunable difference frequency laser and a long-path Zeeman-modulated discharge cell. About 100 rotation-vibration transitions were measured and a simultaneous analysis of the Coriolis-coupled ν_1 and ν_3 states was made. It was found that the ν_1 band is considerably stronger than ν_3 , in contrast to the similar molecule H₂O. These results may prove useful in a search for interstellar NH₂ by means of its rotation-vibration spectrum.

I. INTRODUCTION

The NH₂ radical has been the subject of extensive high-resolution spectroscopic analysis, particularly by means of its $\tilde{A}^2 A_1 - \tilde{X}^2 B_1$ electronic transition in the visible region (1-6), but studies of its infrared spectrum have been relatively limited. In 1965 two features were observed by Milligan and Jacox (7) in the low-temperature matrix isolation spectrum of photolyzed NH₃ at 1499 and 3220 cm⁻¹, which were assigned by them as the ν_2 (bend) and ν_3 (asymmetric stretch) vibrations, respectively, of NH₂. Recently, the v_2 band in the gas phase has been observed and analyzed using laser magnetic resonance spectroscopy (8). In addition to direct infrared observations, information on the excited vibrational states of NH2 also has been obtained from the electronic spectrum. Kroll (4) obtained a vibrational frequency of 3221 cm^{-1} from an analysis of laser-induced fluorescence data and concluded that it was the v_1 (symmetric stretch) vibration rather than v_3 , because of the observed selection rules. By detailed analyses of the visible emission spectrum, Birss et al. (5) have studied the $(v_1v_2v_3) = (020)$ excited bending state and very recently Vervloet and Merienne-Lafore (6) have obtained an improved value of $v_1 = 3219.36$ cm⁻¹ and a tentative value of $v_3 = 3280$ cm⁻¹. Their detection of levels in the $v_3 = 1$ state was made possible by Coriolis perturbations between the (100) and (001) states.

In the present paper, we report the direct detection of the ν_1 and ν_3 fundamental bands of NH₂ in the 2.9- and 3.2- μ m region of the infrared. About 100 rotationvibration transitions have been measured and a detailed analysis of the Corioliscoupled (100) and (001) states has been made. Our results confirm, and considerably extend, those of Vervloet and Merienne-Lafore (6). The observations were made using a tunable difference frequency laser system and a long pathlength Zeeman-modulated discharge absorption cell. The difference frequency laser was developed as a high-resolution spectroscopic tool by Pine (9). Our laser system was constructed by Oka (10) for use in studying unstable molecules and the detection of the spectrum of H₃⁺ by Oka (11) confirmed the value of the technique for such transient species. Vibrational spectra of two further ions, HeH⁺ (12) and NeH⁺ (13), have since been studied using Oka's original apparatus. By adding Zeeman modulation to an absorption cell similar to that used for these ions, a number of paramagnetic free radicals have been detected in the 3- μ m region, of which NH₂ was the first. Similar studies of free radicals have been made in other laboratories using tunable infrared diode lasers (14) and color center lasers (15).

II. EXPERIMENTAL DETAILS

The apparatus used in this investigation is shown schematically in Fig. 1. The difference frequency laser system was almost identical to that of Oka (10, 11). Visible radiation from a cw single-mode tunable dye laser is mixed with that from a single-mode Ar^+ laser in a temperature-controlled lithium niobate crystal. The resulting difference frequency lies in the infrared and may be tuned over a range of about 2.2 to 4.4 μ m with a power of a few microwatts. The infrared linewidth is governed by those of the two visible lasers and was of the order of 10 MHz.

The discharge absorption cell used here was similar to that used by Oka for H_3^+ (11) with the addition of provision for Zeeman modulation. It was made from a 2.4-cm-diam. pyrex tube fitted with cylindrical electrodes and Brewster angle end windows. Multiple-reflection mirrors were located outside the cell adjacent to the cell windows and the cell was wrapped with a two layer solenoidal modulation coil with about 8.5 turns/cm. The modulated field length was 1 m, the discharge length

FIG. 1. Schematic diagram of the apparatus used in this investigation.

1.5 m, and the mirror separation 2 m. A sinusoidal modulation current at 3.5 kHz was applied to the coil along with a variable dc bias to achieve zero-based field modulation. The maximum current of about 20 A gave a modulation amplitude of about 200 G (peak to peak). The modulation current, from a high-power audio amplifier, and the bias current were matched to the Zeeman coil with a transformer and tuned LC series circuit as shown in Fig. 1. The cell and coil were cooled by immersion in either ice or dry ice baths.

The infrared laser beam was passed through the cell 16 times for a total effective modulated path of about 16 m. Part of the infrared beam was directed through a reference gas cell for wavelength calibration purposes (see Fig. 1) and each infrared beam was monitored by a liquid nitrogen cooled InSb detector. In addition to the Zeeman modulation, we also employed simultaneous frequency modulation of the infrared radiation at 2.5 kHz in order to record the reference gas spectrum. The spectra of C_2H_4 (16) and N_2O (17) were used for reference and the accuracy of the NH₂ measurements is estimated to be about 0.003 cm⁻¹.

 NH_2 was produced by a dc discharge in flowing NH_3 at a pressure of about 0.8 Torr and a discharge current of about 30 mA. Before searching for the infrared spectrum, we monitored the visible laser-induced fluorescence from NH_2 ; this observation, and the infrared study, showed that the NH_2 production was not critically dependent on the pressure, current or pumping speed.

III. RESULTS AND ANALYSIS

The term values obtained by Vervloet and Merienne-Lafore (6) for the $v_1 = 1$ state were used to predict transition frequencies for our initial searches. After a number of v_1 band lines were found, some strongly perturbed v_3 band lines were also detected on the basis of Ref. (6). Analysis of these preliminary infrared measurements resulted in more accurate and extensive predictions for both bands and ultimately 59 rotation-vibration transitions were identified in v_1 and 37 in v_3 ; the measurements are listed, together with their assignments, in Tables I and II. For each such transition we generally measured two or more fine-structure components.

Examples of ν_1 and ν_3 band transitions detected using the Zeeman-modulation technique are shown in Figs. 2 and 3, respectively. The ν_1 band transitions were generally much stronger than those of ν_3 as is discussed in more detail below. A more detailed look at one part of the absorption spectrum of discharged ammonia is shown in Fig. 4. The upper trace in Fig. 4 is a conventional transmission spectrum recorded by chopping the infrared beam followed by phase-sensitive detection. Two prominent NH₃ lines are evident in this trace. Much greater sensitivity is gained by using frequency modulation as shown in the two middle traces of Fig. 4. With the discharge on, new lines appear in the spectrum, some of which are probably due to hot NH₃. However, three of these new features are due to NH₂, as shown by the lowest trace, which was taken using Zeeman modulation. The region of Fig. 4 is relatively free of NH₃ absorption compared to much of the spectrum that we surveyed and Zeeman modulation was useful for identification but not essential for detection. However, in many other regions the Zeeman modulation was essential for the detection of the NH₂ transitions.

TABLE I

Observed Transitions in the v_1 Fundamental Band of NH_2

Assignment		Observed	0 - C
NKaKc	J	(cm ⁻¹)	(cm ⁻¹)
Assignment $N_{K_a}K_c$ 606+615 431+440 111+220 111+220 111+220 111+220 111+220 111+220 111+220 111+220 111+220 111+220 122+33 132+404 322+331 202+31 202+31 202+31 202+31 202+31 202+31 202+31 2101+21 22102+31 313+22 313+322 101+21 212+221 101+21 212+221 212+221 212+221 212+221 212+221 212+222 212+221 212+220 211+220 303+312 303+312 312+321 312+321 312+321 312+321	J 5.5 + 5.5 6.5 + 6.5 3.5 + 4.5 1.5 + 1.5 1.5 + 1.5 1.5 + 1.5 1.5 + 2.5 1.5 + 2.5 3.5 + 4.5 3.5 + 4.5 3.5 + 4.5 3.5 + 4.5 3.5 + 3.5 3.5 + 4.5 3.5 + 3.5 3.5 + 3.5 + 3.5 3.5 +	Observed (cm ⁻¹) 3126.211 3126.373 3126.147 3126.600 3133.233 3133.453 3133.757 3139.495 3139.767 3145.803 3146.057 3146.057 3150.293 3150.696 3155.519 3155.577 3155.647 3159.243 3162.925 3170.765 3170.880 3171.466 3171.854 3181.445 3181.445 3181.590 3184.259 3184.459 3184.864 3184.990 3185.020 3187.366	0 - C (cm ⁻¹) 0.000 -0.002 -0.006 0.001 0.002 -0.000 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.002 -0.001 -0.002 -0.000 -0.000 -0.002 -0.0000 -0.000000 -0.0000 -0.0000 -0.000000 -0.0000 -0.0000 -0.0000
2 1 1 + 2 2 0 3 0 3 + 3 1 2 3 0 3 + 3 1 2 3 1 2 + 3 2 1 3 1 2 + 3 2 1 0 0 0 + 1 1 1 0 0 0 + 1 1 1	2.5 + 2.5 $2.5 + 2.5$ $3.5 + 3.5$ $2.5 + 2.5$ $3.5 + 3.5$ $0.5 + 0.5$ $0.5 + 1.5$	3184.786 3184.864 3184.990 3185.020 3185.235 3187.366 3187.598	-0.000 0.000 0.003 0.003 0.006 0.001 0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5 + 2.5 1.5 + 2.5 0.5 + 1.5 2.5 + 1.5 1.5 + 1.5 2.5 + 2.5 1.5 + 2.5 1.5 + 2.5	3188.386 3188.546 3196.633 3196.688 3196.881 3196.889 3203.343	-0.000 -0.005 0.003 0.001 -0.003 -0.002 0.004
1 0 1 + 1 1 0 1 0 1 + 1 1 0 1 0 1 + 1 1 0 2 2 0 + 3 1 3 2 2 0 + 3 1 3 1 1 0 + 1 0 1 1 1 0 + 1 0 1	0.5 + 0.5 1.5 + 1.5 2.5 + 1.5 2.5 + 3.5 1.5 + 2.5 1.5 + 0.5 1.5 + 0.5 0.5 + 0.5	3203.376 3203.605 3203.638 3208.760 3209.146 3234.018 3234.052 3234.276	0.002 0.000 -0.001 -0.000 0.000 -0.005 -0.004 -0.002

^dThese less accurately measured transitions were given reduced weight (0.1) in the least-squares fit.

^bThese uncertain measurements were omitted from the least-squares fit.

The lineshapes exhibited by the Zeeman-modulated traces in Figs. 2-4 are functions of the modulation amplitude and the spin-splittings of the energy levels involved in each transition. Identification of the true line center was usually fairly

	Ass	sign	nent	Observed	0 - C
NKak	′c		J	(cm ⁻¹)	(cm ⁻¹)
110+	1	0 1	0.5 + 1.5	3234.309	-0.003
211+	2	02	2.5 + 1.5	3239.358	0.001
211+	2	0 2	2.5 + 2.5	3239.415	0.001
211+	2	0 2	1.5 + 1.5	3239,553	-0.002
211+	2	0 2	1.5 + 2.5	3239-611	-0.001
321+	3	1 2	3.5 + 3.5	3247.400	-0.001
3 2 1 +	ž	1 2	2.5 + 2.5	3247.592	-0.001
4 2 2 +	5	1 2	15+15	32476592	0 009
4 2 2 +	4	1 3	3.5 + 3.5	3247 764	0.007
312+		0 3	3.5 + 2.5	3249.016	-0.004
3 1 2 +	3	Ň	35+35	3249.010	-0.005
312+	3	6 3	25 - 25	3243.033	-0.001
312	2	~ J	2.5 2.5	2249.417	-0.001
2 2 0 -	2	4 4	2.5 - 3.5	3243+230	-0.002
2 2 0 -	ź		2.3 1.3	3243.740	-0.002
220	- 2	4 4	2.0 - 2.0	3243.330	-0.002
220 -	~			3230.237	0.001
220+	2	11	1.5 + 2.5	3250.462	0.002
111+	0	0 0	1.5 + 0.5	3250.429	0.000
111+	0	0 0	0.5 + 0.5	3250.656	0.005
523+	5	14	5.5 + 5.5	3254.031	-0.004
523+	5	14	4.5 + 4.5	3254.130	-0.001
221+	2	12	2.5 + 2.5	3262.939	-0.001
2 2 1 +	2	12	1.5 + 1.5	3263.301	-0.001
413+	4	04	4.5 + 4.5	3263.141	0.000
413+	4	0 4	3.5 + 3.5	3263.263	-0.000
212+	1 (01	2.5 + 1.5	3266.148	0.002
212+	1 (01	1.5 + 0.5	3266.254	-0.001
212+	1 (01	1.5 + 1.5	3266 . 290	0.001
431+	4	22	4.5 + 4.5	3266.747	-0.000
431+	4	22	3.5 + 3.5	3267 .01 4	-0.002
303+	2	12	2.5 + 1.5	3268.655	-0.002
303+	2	12	3.5 + 2.5	3268.727	0.002
303+	2	12	2.5 + 2.5	3268.805	0.001
322+	3	13	3.5 + 3.5	3269.816	-0.005
322+	3	13	2.5 + 2.5	3270.096	0.001
330+	3	21	3.5 + 3.5	3273.254	0.005
330+	3	21	2.5 + 2.5	3273.620	0.001
331+	3 3	22	3.5 + 3.5	3278.922	0.002
3 3 1 +	3	22	2.5 + 2.5	3279.295	0.001
423+	4	14	4.5 + 4.5	3278.963	0.003
423+	4	14	3.5 + 3.5	3279.203	0.0094
313+	2 (0 2	3.5 + 2.5	3279.674	-0.003
313+	2 (02	2.5 + 1.5	3279.740	0.000
313+	2 (0 2	2.5 + 2.5	3279.790	-0.007
4 1 3 +	3	2 2	3.5 + 2.5	3279.835	-0.004
413+	3	2 2	4.5 + 3.5	3280.029	-0.004
432+	4	2 3	4.5 + 4.5	3280.695	-0.001
432+	4	23	3.5 + 3.5	3280.982	-0.003
533+	5	2 4	5.5 + 5.5	3284.445	-0.002
533+	5	2 6	4.5 + 4.5	3284 682	-0.003
404+	3	13	3.5 + 2.5	3286.736	-0.005
404+	3	1 3	4.5 + 3.5	3286.767	-0.002
524+	5	1 5	5.5 + 5.5	3290.054	0.055
	~			~~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

TABLE I-Continued

clear but uncertainties in doing this sometimes contributed errors of the same magnitude ($\sim 0.003 \text{ cm}^{-1}$) as our absolute measurement accuracy.

The net electron spin, S = 1/2, of NH₂ in its ²B₁ ground electronic state results in a splitting of each rotational energy level, denoted by N_{KaKc} , into two components. The resulting angular momentum is J = N + S, and in NH₂ the level with J = N - 1/2 ("F₂") is located above the level with J = N + 1/2 ("F₁"). Our analysis was carried out using a doublet asymmetric rotor computer program originally developed to analyze laser magnetic resonance spectra of Coriolis-coupled bands

Assignmen	nt	Observed	0 - C
N _{KaKc}	J	(cm ⁻¹)	(cm ⁻¹)
$\begin{array}{r} & {}^{N}\kappa_{a}\kappa_{c} \\ \hline 5 & 2 & 4 + & 5 & 1 & 5 \\ 4 & 1 & 4 + & 3 & 0 & 3 \\ 4 & 1 & 4 + & 3 & 0 & 3 \\ 5 & 4 & 1 & + & 5 & 3 & 2 \\ 5 & 4 & 1 + & 5 & 3 & 2 \\ 2 & 2 & 1 + & 1 & 1 & 0 \\ 2 & 2 & 1 + & 1 & 1 & 0 \\ 2 & 2 & 1 + & 1 & 1 & 0 \\ 2 & 2 & 1 + & 1 & 1 & 0 \\ 2 & 2 & 1 + & 1 & 1 & 0 \\ 2 & 2 & 1 + & 1 & 1 & 0 \\ 2 & 2 & 1 + & 1 & 1 & 0 \\ 2 & 2 & 1 + & 1 & 1 & 0 \\ 2 & 2 & 1 + & 1 & 1 & 1 \\ 0 & 1 & 5 + & 6 & 0 & 6 \\ 6 & 1 & 5 + & 6 & 0 & 6 \\ 6 & 1 & 5 + & 6 & 0 & 6 \\ 4 & 4 & 0 + & 4 & 3 & 1 \\ 4 & 4 & 0 + & 4 & 3 & 1 \\ 4 & 4 & 0 + & 4 & 3 & 1 \\ 4 & 4 & 0 + & 4 & 3 & 1 \\ 4 & 4 & 0 + & 4 & 3 & 1 \\ 4 & 4 & 0 + & 4 & 3 & 1 \\ 4 & 4 & 1 + & 4 & 3 & 2 \\ 5 & 4 & 2 + & 5 & 3 & 3 \\ 5 & 4 & 2 + & 5 & 3 & 3 \\ 2 & 2 & 0 + & 1 & 1 & 1 \\ 2 & 2 & 0 + & 1 & 1 & 1 \\ 2 & 2 & 0 + & 1 & 1 & 1 \\ 5 & 0 & 5 + & 4 & 1 & 4 \\ \end{array}$	$\begin{array}{c} & & & \\ & &$	(cm ⁻¹) 3290.276 3292.469 3293.567 3293.825 3295.665 3295.912 3296.741 3296.741 3296.901 3297.519 3298.886 3299.196 3300.555 3300.698 3301.712 3301.991 3302.222 3302.954	(cm ⁻¹) 0.063 ^t -0.001 0.001 0.001 0.003 -0.003 -0.001 -0.001 -0.001 -0.005 -0.009 ^d -0.002 -0.005 -0.009 -0.000 -0
5 1 5 + 4 0 4 5 1 5 + 4 0 4 3 3 1 + 2 2 0 3 3 1 + 2 2 0 3 3 0 + 2 2 1 3 3 0 + 2 2 1 4 3 2 + 3 2 1 4 3 2 + 3 2 1 4 3 1 + 3 2 2 5 3 3 + 4 2 2 5 3 3 + 4 2 2	5.5 + 4.5 4.5 + 3.5 3.5 + 2.5 2.5 + 1.5 3.5 + 2.5 4.5 + 3.5 3.5 + 2.5 3.5 + 3.5 3.5 + 2.5 3.5 + 2.5 5.5 + 3.5 5.5 + 4.5 4.5 + 3.5	3305.562 3341.046 3341.305 3342.468 3342.718 3358.247 3358.484 3365.186 3365.405 3371.884 3372.089	0.006 0.009 0.002 0.003 0.004 0.002 -0.001 -0.002 -0.000 -0.002 -0.001 -0.004

TABLE I-Continued

(18). The A-reduced asymmetric rotor Hamiltonian of Watson (19) was used together with the spin-rotation Hamiltonian of Brown and Sears (20) (see, for example, Eqs. (1) and (2) of (21)). It was necessary to analyze the v_1 and v_3 band data simultaneously because of the *c*-type Coriolis interaction between the (100) and (001) states. This interaction gives rise to an additional term in the rotational Hamiltonian connecting the two states given by

$$H_{\rm cor} = i\xi_{13}^c N_c + Z(N_a N_b + N_b N_a).$$
(1)

The resulting matrix elements are given by

$$\langle v, J, N, k | H_{cor} | v', J, N, k \pm 1 \rangle = [\pm (1/2)\xi_{13}^c + Z(k \pm 1/2)] \times [N(N+1) - k(k \pm 1)]^{1/2},$$
 (2)

where v = (100) and v' = (001). The constant ξ is related to the usual Coriolis coupling constant ζ by

$$\xi_{13}^c = \xi_{13}^c C[(\nu_1/\nu_3)^{1/2} + (\nu_3/\nu_1)^{1/2}], \qquad (3)$$

and Z is a higher-order term which is essentially a K-dependent correction to ξ . Our Z is equivalent to h_{43} of Flaud and Camy-Peyret (22) and to F of Tanaka and Morino (23). The resulting molecular Hamiltonian was set up in a Wang-type

TABLE II

Observed Transitions in the v_3 Fundamental Band of NH₂

	• • •			As	siç	Inme	nt				Obser	ved	0 - C
		Nĸ	(al	K.c				J			(cm	-1)	(cm ⁻¹)
<u>u</u>	1	4	+	5	1	5	4.5	+	5.5		3208.	826	-0.004
'n	1	'n.	+	5	i.	5	3.5	+	4.5		3208.	868	0.005
5	~	5			~		2.5		1 5		2220	674	0.000
5	×	2	j.	7	×		J.J		3.5		3224.	EEA	-0.007
3	0	3	Τ.		2	4	2.5	τ.	3.5	:	3224.	330	-0.002
3	1	3	•	4	1	4	3.5	•	4.5	:	3220.	101	0.005
3	1	3	+	4	1	4	2.5	+	3.5		3226.	101	0.001
2	2	1	+	3	2	2	2.5	+	3.5		3233.	395	0.002
2	2	1	+	3	2	2	1.5	+	2.5	1	3233.	470	0.001
4	1	4	+	4	1	3	4.5	+	4.5		3252.	632	-0.002
4	1	4	٠	4	1	3	3.5	+	3.5		3252.	562	-0.006
1	1	0	٠	2	1	1	1.5	+	2.5		3252.	999	0.003
1	1	0	+	2	1	1	0.5	+	1.5		3253.	039	0.001
1	٥	1	÷	2	0	2	1.5	+	2.5		3259.	989	0.001
1	õ	1	+	2	Õ	2	0.5	*	1.5		3259.	965	-0.001
1	1	1	+	2	1	2	1.5	+	2.5		3262.	470	0.001
÷.			+	5	1	2	0 5	÷.	1 5		3262	534	0 001
	÷	-	÷	-		2	0.5	÷	1 6	- 1	2020	002	-0.000
-	- 2	2	Ī.	7	4	5	3 5		3 6		22000	003	-0.000
	4	2		7	~	-	3.5	T	3.5		2200.	6 11 0	-9.001
4	4		•	4	4		4.5	+	4.5		J∠04.	040	-0.001
4	4	1	+	4	4	0	3.5	+	3.5		3284.	554	-0.001
2	1	2	*	2	1	1	2.5	+	2.5		3285.	291	0.001
2	1	2	+	2	1	1	1.5	+	1.5	-	3285.	224	0.000
3	2	2	+	3	2	1	2.5	+	2.5	:	3290.	59C	-0.003
3	2	2	٠	3	2	1	3.5	+	3.5		32 90.	614	-0.002
3	3	1	+	3	3	0	2.5	+	2.5		3291.	390	0.002
3	3	1	+	з	3	0	3.5	÷	3.5		3291.	452	-0.000
3	з	0	+	3	3	1	2.5	+	2.5		3291.	875	0.000
3	3	0	+	3	3	1	3.5	+	3.5		3291.	932	0.000
5	3	2	+	5	3	3	5.5	+	5.5		3292.	065	0.003
5	ž	2	+	5	ž	Ä	4.5	+	4.5		3292.	189	-0.005
1	1	1	+	1	1	ñ	0.5	+	0.5	-	3295.	139	-0.004
-	1	1	+	1	4	ň	1 5	+	1 5		3205	105	-0.003
5	2	-	+	;	5	Ň	1 5	4	1 5		2205	175	_0_002
4	5	4	÷	2	4	Ň	2.5	÷	2.5		2222.	616	-0.002
4	4		Ξ.	4	~		2.5		2.5	:	2273.	170	-0.002
4	4	v.	T	4	4	1	2.5		2.5		3290.	475	0.003
4	2	0	Ť	4	4	1	1.5		1.2		3298.	130	0.002
3	2	1	+	5	2	4	2.5	•	2.5		302.	012	0.002
3	2	1	+	3	2	2	3.5	+	3.5		3302.	030	-0.001
1	1	0	+	1	1	1	0.5	+	C.5	-	3304.	773	0.000
1	1	0	+	1	1	1	1.5	+	1.5		3304.	755	-0.003
2	1	1	+	2	1	2	2.5	+	2.5		3313.	947	0.002
2	1	1	٠	2	1	2	1.5	+	1.5		3313.	994	0.003
1	0	1	+	0	0	0	1.5	+	C.5		3322.	031	-0.001
1	0	1	٠	0	C	0	0.5	÷	0.5		3322.	068	0.002
2	1	2	+	1	1	1	2.5	+	1.5	2	3337.	050	-0.002
2	1	2	+	1	1	1	1.5	+	1.5	:	3337.	189	-0.001
2	0	2	+	1	Ó	1	1.5	+	0.5		3341	387	0.000
5	ō	2	+	1	ŏ	1	2.5	+	1.5		3341	359	-0.003
5	ž	ĩ	+	i	1	ò	1.5	+	0.5		3346.	599	-0.003
5	4	÷	+	1	÷	ň	2.5	+	1.5		3346	672	+0.001
5	4	5	÷	5	4	ž	2.5	÷	2 5		23500	201	-0.007
2	4	2	-	4	-	2	3.3	÷.	1 5	;	33EN 23240	364	-0.003
3	1	2	-	4	1	4	2.0	-	1.0	:	2334. 3360	100	-0.004
3	U	3	*	2	v	2	3. 5	+	2.5		2728.	212	0.002

prolate symmetric rotor basis set and the resulting matrices were numerically diagonalized to obtain the molecular energy levels as part of the fitting program (18).

In the least-squares fit the constants of the (000) ground vibrational state were fixed at the values obtained by Birss *et al.* (21). The parameters resulting from the fit are listed in Table III and the quality of the fit may be judged from the residuals in Tables I and II. The rms deviation was 0.003 cm⁻¹, which is just equal to our

Assignment									Observed	0 - C
	NKaKc					J		(cm ⁻¹)	(cm ⁻¹)	
3	0	3	+	2	0	2	2.5 +	1.5	3358.238	0.004
3	2	2	+	2	2	1	3.5 +	2.5	3359.830	-0.002
3	2	2	+	2	2	1	2.5 +	1.5	3359.689	-0.001
3	2	1	٠	2	2	0	3.5 +	2.5	3364.763	0.001
3	2	1	+	2	2	0	2.5 +	1.5	3364.619	0.001
Э	1	2	+	2	1	1	3.5 +	2.5	3368.528	-0.008 ⁸
3	1	2	+	2	1	1	2.5 +	1.5	3368.528	-0.001
4	1	4	٠	3	1	3	4.5 +	3.5	3371.333	-0.035
4	1	4	٠	3	1	3	3.5 +	2.5	3371.357	-0.033
4	3	2	+	3	3	1	3.5 +	2.5	3376.239	0.006
4	3	2	+	3	3	1	4.5 *	3.5	3376.367	0.013
4	3	1	*	3	3	0	3.5 +	2.5	3377.505	0.002
4	3	1	+	3	3	Ö	4.5 +	3.5	3377.619	0.007
4	2	3	÷	3	2	2	4.5 +	3.5	3379.320	-0.002
4	2	3	÷	ā	2	2	3.5 +	2.5	3379.260	-0.001
4	2	2	+	ž	5	ĩ	4.5 +	3.5	3389.115	-0.007
u	2	2	٠	ã	5	1	3.5 +	2.5	3389.053	-0.005
5	ĩ	5	*	ū	â	÷	5.5 +	ñ.5	2398.560	0.002
5	3	2	٠	4	ž	1	4.5 ~	3.5	3398.612	-0.004

TABLE II-Continued

reduced weight (0.1) in the least-squares fit.

^bThese uncertain measurements were omitted from the least-squares fit.

estimated experimental uncertainty. The Coriolis parameters ξ_{13}^c and Z were highly correlated in the fit (correlation coefficient = -0.999958). A fit of virtually the same quality could be obtained by fixing ξ_{13}^c equal to zero, as indeed was done by Flaud and Camy-Peyret (22) in their analysis of the analogous bands of H₂O, but

FIG. 2. The lower trace shows the $l_{11} \leftarrow 2_{20}$ transition in the ν_1 band of NH₂ recorded using the Zeeman-modulation technique. The upper trace is a spectrum of C₂H₄ for wavelength calibration recorded simultaneously using frequency modulation.

FIG. 3. The lower trace shows the $l_{01} \leftarrow 0_{00}$ transition in the ν_3 band of NH₂ recorded using Zeeman modulation. The upper trace, due to N₂O, is for wavelength calibration.

we feel that in the present case it is more realistic to allow both parameters to vary. All other correlation coefficients in the present fit had absolute values less than 0.95 and all but three were less than 0.90.

The (100) state parameters agree fairly well with those of the less precise determination by Vervloet and Merienne-Lafore (6). Many of the differences that do exist between the two sets of parameters may be ascribed to the fact that we explicitly included the Coriolis interaction with (001) and allowed more higherorder parameters to vary. Our value for the ν_1 band origin is just 0.01 cm⁻¹ above that of (6). However, our value of ν_3 , 3301.110 cm⁻¹, is considerably different from their estimate of 3280 cm⁻¹ even though their analysis (6) of perturbed ν_3 state levels agrees completely with ours.

IV. DISCUSSION AND CONCLUSIONS

Except for its unpaired electron spin, the structure of NH₂ is quite similar to that of H₂O and the known ν_1 and ν_3 spectra of H₂O (22) provided a useful guide for the present analysis. The changes in the rotational constants of the two molecules

Spectroscopy of an NH₃ Discharge

FIG. 4. A small portion of the absorption spectrum of discharged ammonia. The top trace is the conventional transmission spectrum showing two strong NH_3 lines. The two middle traces demonstrate the increase in sensitivity gained by using frequency modulation. With the discharge on a number of new lines appear in the spectrum. Three of these are due to NH_2 as is shown in the lower trace, which was taken using Zeeman modulation.

among the (000), (100), and (001) vibrational states resemble each other closely and even the values of the Coriolis parameter Z are alike ($Z = -0.303 \text{ cm}^{-1}$ for NH₂ and -0.319 cm^{-1} for H₂O (22)). One can calculate from the known force field of H₂O that the Coriolis coupling constant ζ_{13}^{c} is zero (22). A similar calculation for NH₂, using approximate force constants ($f_r = 6.2 \text{ md/Å}$, $f_{\theta} = 0.6971 \text{ mdÅ}$, $f_{r\theta} = 0.224 \text{ md}$, $f_{rr} = -0.100 \text{ md/Å}$) gives a value of $\zeta_{13}^{c} = 0.00071 \text{ or } \xi_{13}^{c} = 0.012 \text{ cm}^{-1}$, well within the experimental range of $0.083 \pm 0.088 \text{ cm}^{-1}$.

TABLE III

*******	(000) state ^a	(100) state ^b	(001) state ^b
¥0		3219.371(1)	3301.110(1)
A	23.69344	23.12938(79)	22,64616(82)
в	12.95194	12.76959(72)	12.87854(80)
С	8.17284	8.01584(35)	8.05815(47)
۵ _K	0.021983	0.020530(120)	0.019887(81)
10 ² Δ _{NK}	-0.41550	-0.4407(74)	-0,4054(90)
10 ² Δ _N	0.10527	0.1007(15)	0.1080(17)
10 ² 6 _K	0.1002	0.0801(37)	0.1090(98)
10 ³ 8 _N	0.4212	0.3921(33)	0.4126(121)
10 ⁴ H _g	0.6460	0.942(61)	0.6460 ⁰
10 ⁴ H _{WM}	-0.113	0.326(57)	-0.113 ^e
10 ⁶ H _{NK}	-0.620	-19.3(25)	-0.620°
10 ⁶ H _N	0.411	0.89(28)	0.411 [°]
6 ₈₈	-0.309111	-0.29605(109)	-0.28319(166)
[£] bb	-0.045173	-0.04442(55)	-0.04540(117)
10 ³ ~	0.4024	-0.18(42)	-0.25(72)
10 ³ AS	0.1094	0.0599(102)	0.0963(141)
5° 513		Coriolis Para 0.083(88)	ameters ^d)
z		-0.3031(1	13)

Molecular Parameters for NH₂ (in cm⁻¹)

^aGround state parameters from Birss et al. (21). Higher order parameters not shown here were fixed at the values of (21) for all three states. Note that the definition of the sign of Δ_{K}^{S} used here is opposite to that of (21).

^bPresent results. Uncertainties in parentheses are one standard deviation from the least squares fit, expressed in units of the last quoted digit.

^CParameter fixed at its ground state value.

^dOnly the relative sign of the Coriolis parameters is significant.

The analysis by Flaud and Camy-Peyret (22) of the v_1 and v_3 bands of H₂O also included the $2v_2$ band. There is a substantial homogeneous (Fermi-type) interaction between the (020) and (100) states in H₂O, as well as small higher-order Coriolistype interactions between (020) and both (100) and (001). Interactions with (020) were not included in the present analysis and we did not notice any adverse effects from this omission. Similarly, no evidence of perturbations was noted in the analysis of the (020) state of NH₂ made by Birss *et al.* (5). One reason that the interactions with the (020) state were not apparent is that the data were limited to fairly low values of N' and K'_a (6 and 4 in the present work, and 8 and 5 in (5)). Furthermore, the effects of a homogeneous interaction are relatively easily absorbed into other molecular parameters (this could account for the rather large change in H_{NK} between (000) and (100) in Table III). The effect of the Fermi-type interaction between (020) and (100) has been noted for higher N by Vervloet and Merienne-Lafore (6) as a shift in the 8_{08} level of (100) perturbed by 8_{26} of (020).

An interesting difference between NH₂ and H₂O is that we observed the ν_1 band to be considerably stronger than ν_3 , whereas just the opposite is true for H₂O. In order to examine the relative band intensities quantitatively, we have measured the $2_{21} \leftarrow 2_{12}$ transition of ν_1 and the $1_{11} \leftarrow 2_{12}$ transition of ν_3 . These lines are especially suitable because they appear close together in the spectrum, they share the same lower level and they are Zeeman modulated with about the same efficiency. From their measured intensities, we estimate the ratio of the vibrational transition moments to be about $|\mu_1/\mu_3| = 4$ for NH₂, in contrast to the known value of $|\mu_1/\mu_3|$ = 0.223 for H₂O (24). We have no explanation for this somewhat surprising result.

Table IV lists term values for NH_2 rotational levels in the (000), (100), and (001) vibrational states calculated using the constants of Table III. Each excited state energy in Table IV is followed by a number which gives the percent mixing of its eigenfunction from the *other* vibrational state. That is, a value of 0.0 indicates negligible Coriolis mixing and 50.0 indicates complete mixing. Note, for example,

ΤA	BL	Æ	IV
----	----	---	----

Calculated Energy L	evels (in	cm_,)	tor	NH ₂
---------------------	-----------	-------	-----	-----------------

N	KA	кс	F1	(100	STATE		F1	(001) STATE		(000) F1	STATE F2
0	0	0	3219.371	0.0			3301.110	0.0	·····		0.000	
1	0	1	3240.140	0.0	3240.174	0.0	3322.032 3331.733	0.0	3322.066 3331.944	0.0	21.109 31.775	21.143
222	0 1 1	2 2 1	3280.371 3287.255 3301.457	0.0	3280.427 3287.398 3301.655	0.0	3362.472 3368.826 3383.209	0.0	3362.530 3368.964 3383.403	0.0	62.043 69.264 83.536	62.100 65.411 63.741
22	2	i O	3332.204 3333.489	0.0	3332.714 3333.997	0.0	3412.188 3413.576	0.0	3412.675 3414.061	0.0	115.400 116.671	115.928
	0112233	3322110	3337.989 3341.720 3369.844 3394.549 3400.403 3457.715 3457.864	0.0 0.0 0.1 0.4 0.6 1.2	3338.068 3341.840 3370.042 3394.947 3400.798 3458.500 3458.644	0.0 0.0 0.1 0.4 0.6 1.3	3420.254 3423.658 3452.073 3475.231 3481.432 3535.518 3535.784	0.0 0.4 0.0 1.2 0.6 0.0 0.0	3420.334 3423.776 3452.269 3475.618 3481.816 3536.262 3536.527	0.0 0.4 1.3 0.6 0.0 0.0	120.744 124.728 153.002 178.795 184.615 243.852 244.066	120.824 124.851 153.205 179.206 185.025 244.652 244.652
4444444	011223344	443322110	3411.497 3413.214 3458.828 3476.521 3491.112 3542.864 3543.981 3629.298 3629.065	0.0 0.0 0.1 13.6 0.7 4.1 20.3 14.5	3411.592 3413.327 3459.045 3476.869 3491.430 3543.511 3544.613 3630.270 3630.062	0.0 0.0 0.1 14.8 0.7 4.3 18.5 13.3	3493.921 3496.096 3541.482 3558.117 3573.737 3620.205 3621.678 3702.023	0.1 13.6 0.0 4.1 0.6 14.5 20.3 0.0 0.0	3494.016 3496.241 3541.699 3558.467 3574.083 3620.885 3622.377 3703.057	0.1 14.8 0.0 4.3 0.6 13.3 18.5 0.0 0.0	195.687 197.561 243.462 262.168 277.234 330.407 331.878 417.350 417.383	195.782 197.676 243.673 262.526 277.597 331.074 332.541 418.428 418.460
555555555555	01122354455	55443722110	3500.529 3501.243 3566.245 3577.265 3606.828 3649.119 3652.745 3738.931 3737.232 3842.060 3842.060	0.0 0.0 0.1 0.8 24.9 21.5 2.0 2.0	3500.634 3501.355 3566.488 3577.591 3607.170 3649.690 3653.244 3739.654 3738.062 3843.373 3843.374	0.0 0.0 0.1 0.8 26.0 48.8 20.5 1.9 1.9	3583.197 3583.662 3649.123 3660.840 3689.550 3726.274 3730.437 3809.656 3910.913 3910.920	0.1 0.0 2 0.6 2 0.5 2 0.5 2 0.5 2 0.1 0.1 0.1	$3583 \cdot 301$ $3583 \cdot 773$ $3649 \cdot 367$ $3661 \cdot 219$ $3689 \cdot 890$ $3726 \cdot 897$ $3731 \cdot 157$ $3810 \cdot 516$ $3912 \cdot 136$ $3912 \cdot 142$	0.1 0.7 26.0 20.5 48*8 2.0 2.0 0.1 0.1	286.466 287.266 352.793 364.672 393.807 438.375 443.666 525.918 526.198 634.951 634.956	286.570 267.378 353.039 365.005 438.522 444.243 526.243 526.241 527.119 636.277 636.282
00000000000	01122334455	66554433VN1	3605.205 3605.485 3689.931 3695.888 3743.482 3775.810 3790.982 3860.793 3867.161 3970.994 3971.000	0.0 0.0 0.1 0.3 0.4 8.9 17.5 20.7 4.5 4.2	3605.314 3605.597 3690.202 3696.205 3743.838 3776.339 3791.478 3861.544 3867.905 3972.138 3972.145	0.0 0.0 0.1 0.3 0.4 8.7 18.3 20.0 4.4 4.1	3688.223 3688.410 3772.848 3776.734 3827.025 3853.391 3873.609 3938.276 3939.884 4039.838	0.1 0.2 0.1 8.8 0.3 20.6 17.4 4.2 4.6 1.2 1.2	3688.331 3688.520 3773.119 3777.062 3827.379 3853.961 3874.161 3939.057 3940.660 4040.921 4040.985	0.1 0.2 0.1 8.5 0.3 19.9 18.1 4.5 1.2 1.2	393.190 393.514 478.830 485.425 532.673 567.132 656.399 657.689 765.264 765.310	393.298 393.625 479.103 485.748 533.036 567.674 581.047 658.221 658.430 766.430 766.475

NOTE: The numbers following the energies are percent mixings with the other vibratonal state (see text).

that the 5_{42} level of (100) is virtually completely mixed with 5_{32} of (001).¹ The (100) state levels in Table IV agree well with those of Vervloet and Merienne-Lafore (6) derived from the electronic spectrum. Moreover, the perturbed levels of (100) and (001) identified by those authors are all confirmed by our results, including the (100) $5_{42} \leftrightarrow (001) 5_{32}$ pair mentioned above.

While recording the spectrum of NH_2 , transitions belonging to the fundamental band of the NH radical were also observed; these results will be reported separately (25). An improved version of the laser system and Zeeman-modulation cell have since been used to study CH_3 (26), SH (27), and SO (28). These results, and those reported here, illustrate the utility of the difference frequency laser system combined with a Zeeman-modulated discharge cell for the study of free radicals in the infrared.

ACKNOWLEDGMENTS

We would like to thank T. Oka and A. Karabonik for the construction of the difference frequency laser system, and P. Brechignac for his help in the design and construction of the Zeeman-modulation cell. We are also grateful to M. Vervloet for communication of the results of Ref. (6) prior to publication and to J. W. C. Johns and M. Vervloet for their comments on the manuscript.

RECEIVED: February 2, 1982

¹ Strictly speaking, the F_1 components of these two levels should be interchanged in Table IV, since their mixing coefficients exceed 50%. However, we have adopted a more "natural" labeling that conserves a reasonable spin splitting.

REFERENCES

- 1. K. DRESSLER AND D. A. RAMSAY, Philos. Trans. Roy. Soc. London Ser. A. 251, 553-602 (1959).
- 2. J. W. C. JOHNS, D. A. RAMSAY, AND S. C. ROSS, Can. J. Phys. 54, 1804-1814 (1976).
- G. W. HILLS, R. S. LOWE, J. M. COOK, AND R. F. CURL, JR., J. Chem. Phys. 68, 4073-4076 (1978); G. W. HILLS, J. M. COOK, R. F. CURL, JR., AND F. K. TITTEL, J. Chem. Phys. 65, 823-828 (1976).
- 4. M. KROLL, J. Chem. Phys. 63, 319-325 (1975).
- 5. F. W. BIRSS, M.-F. MERIENNE-LAFORE, D. A. RAMSAY, AND M. VERVLOET, J. Mol. Spectrosc. 85, 493-495 (1981).
- 6. M. VERVLOET AND M. F. MERIENNE-LAFORE, Can. J. Phys. 49, 49-55 (1982).
- 7. D. E. MILLIGAN AND M. E. JACOX, J. Chem. Phys. 43, 4487-4493 (1965).
- K. KAWAGUCHI, C. YAMADA, E. HIROTA, J. M. BROWN, J. BUTTENSHAW, C. R. PARENT, AND T. J. SEARS, J. Mol. Spectrosc. 81, 60-72; G. W. HILLS AND A. R. W. MCKELLAR, J. Mol. Spectrosc. 74, 224-227 (1979).
- 9. A. S. PINE, J. Opt. Soc. Amer. 64, 1683-1690 (1974); 66, 97-108 (1976).
- P. BERNARD AND T. OKA, J. Mol. Spectrosc. 75, 181-196 (1979); A. R. W. MCKELLAR AND T. OKA, Can. J. Phys. 56, 1315-1320 (1978).
- 11. T. OKA, Phys. Rev. Lett. 45, 531-534 (1980).
- 12. P. BERNATH AND T. AMANO, Phys. Rev. Lett. 48, 20-22 (1982).
- 13. M. WONG, P. BERNATH, AND T. AMANO, J. Chem. Phys., in press.
- E. HIROTA, in "Chemical and Biochemical Applications of Lasers" (C. B. Moore, Ed.), Vol. 5, pp. 39-93, Academic Press, New York, 1980.

112

- 15. G. LITFIN, C. R. POLLOCK, R. F. CURL, JR., AND F. K. TITTEL, J. Chem. Phys. 72, 6602-6605 (1980); J. PFEIFFER, D. KIRSTEN, P. KALKERT, AND W. URBAN, Appl. Phys. B 26, 173-177 (1981).
- 16. A. S. PINE, M.I.T. Lincoln Laboratory Report No. NSF/ASRA/DAR-78-24562 (1980).
- 17. C. AMIOT AND G. GUELACHVILI, J. Mol. Spectrosc. 59, 171-190 (1976); C. AMIOT, J. Mol. Spectrosc. 59, 191-208 (1976).
- 18. A. R. W. MCKELLAR, J. Chem. Phys. 71, 81-88 (1979); R. S. LOWE AND A. R. W. MCKELLAR, J. Chem. Phys. 74, 2686-2697 (1981).
- 19. J. K. G. WATSON, in "Vibrational Spectra and Structure" (J. R. Durig, Ed.), Vol. 6, pp. 1-89, Dekker, New York, 1977.
- 20. J. M. BROWN AND T. J. SEARS, J. Mol. Spectrosc. 75, 111-133 (1979).
- 21. F. W. BIRSS, D. A. RAMSAY, S. C. ROSS, AND C. ZAULI, J. Mol. Spectrosc. 78, 344-346 (1979).
- 22. J. M. FLAUD AND C. CAMY-PEYRET, J. Mol. Spectrosc. 51, 142-150 (1974).
- 23. T. TANAKA AND Y. MORINO, J. Mol. Spectrosc. 33, 538-551 (1970).
- 24. J. M. FLAUD AND C. CAMY-PEYRET, J. Mol. Spectrosc. 55, 278-310 (1975).
- 25. P. BERNATH AND T. AMANO, in preparation.
- 26. T. AMANO, P. BERNATH, C. YAMADA, Y. ENDO, AND E. HIROTA, in preparation.
- 27. M. WONG, T. AMANO, AND P. BERNATH, in preparation.
- 28. M. WONG, T. AMANO, AND P. BERNATH, J. Chem. Phys., in press.