Fourier Transform Spectroscopy of the $A^{3} \Pi-X^{3} \Sigma^{-}$Transition of NH

C. R. Brazier, R. S. Ram, and P. F. Bernath
Department of Chemistry, University of Arizona, Tucson, Arizona 85721

Abstract

The $A^{3} \Pi-X^{3} \Sigma^{-}$transition of NH has been observed using a high-resolution Fourier transform spectrometer. The first three vibrational levels in each state were observed and the vibrational, fine structure, and rotational constants obtained. © 1986 Academic Press, Inc.

I. INTRODUCTION

The $A^{3} \Pi-X^{3} \Sigma^{-}$system of NH has been known for a very long time. The bands were first described by Eder (1) in 1893 and have been the subject of many subsequent investigations. The main branches of the $0-0$ and $1-1$ bands were assigned from emission spectra by Funke (2) in the 1930s. The analysis was greatly improved by the observation of the $1-0$ and $0-0$ bands in absorption by Dixon (3). His use of a room temperature source made it possible to observe most of the satellite branches, which drop rapidly in intensity with increasing rotation. Dixon was thus able to correctly assign his measurements together with those of Funke, and obtained reasonably accurate rotational and fine structure constants for the ground and excited states.

Additional measurements on the $0-0$ and $1-1$ bands were made by Murai and Shimauchi (4) while the weak $0-1,1-2,1-0$, and $2-1$ bands were recorded by Malicet et al. (5). The $A^{3} \Pi-X^{3} \Sigma^{-}$system of the isotopic species ND has been studied by Shimauchi (6) and by Bollmark et al. (7).

The accuracy of all these measurements was limited to, at best, $\pm 0.03 \mathrm{~cm}^{-1}$ by the use of grating spectrographs. The development of CW dye lasers around 1970 did not help as the transition occurs near $3360 \AA$-well into the ultraviolet. However, the recent development of intracavity frequency doubling has made it possible to record laser-induced fluorescence spectra in the UV. Ubachs et al. (8) recorded the laserinduced fluorescence spectrum of the $A^{3} \Pi-X^{3} \Sigma^{-}$system of NH in a molecular beam. Their linewidth was sufficiently reduced that they were able to resolve the hyperfine structure of both nuclei. While they were able to measure hyperfine splittings accurate to $\pm 0.00007 \mathrm{~cm}^{-1}$, they did not attempt an absolute frequency calibration of the rotational lines and hence did not determine any rotational or fine structure constants.

We have remeasured the $A^{3} I I-X^{3} \Sigma^{-}$system of NH using a Fourier transform spectrometer with a precision of $\pm 0.0002 \mathrm{~cm}^{-1}$ for the strong, unblended lines in the $0-0$ band, an improvement of more than two orders of magnitude over the previous best measurements.

Several high-resolution studies of the ground state have been made, measuring both pure rotation and vibration-rotation transitions. The far-infrared laser magnetic resonance spectrum was recorded by Radford and Litvak (9) and by Wayne and Radford
(10). With the development of tunable infrared lasers additional experiments became possible. Van der Heuval et al. (11) recorded the zero field pure rotational spectrum in the far infrared, while Bernath and Amano (12) observed the vibrational fundamental in the infrared. The infrared fundamental was observed by matrix isolation spectroscopy by Milligan and Jacox (13). Several vibration-rotation bands have been observed by Fourier transform emission spectroscopy at moderate resolution $(14,15)$ and, recently, at high resolution (16,17).

There are four known singlet states of $\mathrm{NH}, a^{1} \Delta, b^{1} \Sigma^{+}, c^{1} \Pi$, and $d^{1} \Sigma^{+}$. All four allowed transitions between these states have been studied. The $c-a$ system at 3240 \AA, just to the blue of the triplet system, has been extensively analyzed. The papers by Pearse (18), Dieke and Blue (19), and Nakamura and Shidei (20) in the 1930s all identified this system at about the same time and gave comparable results. More recently this system was recorded at higher precision by Cheung et al. (21) and by Ramsay and Sarre (22). The $c^{1} \Pi-a^{1} \Delta$ transition was also observed in our Fourier transform spectrum. The higher precision of these measurements made possible the determination of the Λ-doubling interaction in the $a^{1} \Delta$ state. Dymanus has also determined the Λ doubling in $a^{1} \Delta$ by the high-resolution laser-induced fluorescence experiment in a molecular beam (23). Our data on this system will be published elsewhere (24).

The $c^{1} \Pi-b^{1} \Sigma^{+}$system at $4502 \AA$ has been studied by Lunt et al. (25) and by Whittaker (26). The $d^{1} \Sigma^{+}-c^{1} \Pi$ transition at $2530 \AA$ is also well known and has been studied by Lunt et al. (27), Whittaker (28), and Krishnamurty and Narasimham (29). The other allowed transition $d^{1} \Sigma^{+}-b^{1} \Sigma^{+}$is in the vacuum UV at $1620 \AA$ and has been observed by Graham and Lew (30). The $a^{1} \Delta$ vibrational fundamental of NH has been studied by Hall et al. (31) by color center laser kinetic spectroscopy. Very recently Leopold et al. (32) observed the far-infrared laser magnetic resonance spectrum of the $a^{1} \Delta$ state of NH and ND.

An important advance in the spectroscopy of NH came with the observation of the $b^{1} \Sigma^{+}-X^{3} \Sigma^{-}$intercombination band by Masanet et al. (33). From this emission the location of the lowest singlet $a^{1} \Delta$ could be determined relative to the ground state. The singlet-triplet splitting was also determined by photoelectron spectroscopy of NH^{-}by Engelking and Lineberger (34). The electron affinity of NH was established to be 0.381 eV in this photoelectron experiment. More recently high-resolution observations of the $b^{1} \Sigma^{+}-X^{3} \Sigma^{-}$system have been made (35) as well as detection of $a^{1} \Delta-X^{3} \Sigma^{-}$emission (36). The $b-X$ measurements of Cossart (35) result in a singlettriplet splitting of $12688.39(10) \mathrm{cm}^{-1}$ for $a^{1} \Delta(v=0, J=2)-X^{3} \Sigma^{-}(v=0, J=1$, $N=0$) using the line positions of Refs. (24, 26, 35).

There have been many photochemical studies involving NH (37-45) produced by laser photolysis. Using precursors such as ammonia, hydrazine, and hydrazoic acid, the internal energy distributions, radiative lifetimes, and quenching rates for the different states of NH initially populated have been determined. Similar results have also been obtained using electron impact dissociation (46). Cooling of spin-orbit components and population inversion in the $A^{3} \Pi$ state has been observed by Carrick and Engelking in a corona excited nozzle expansion (47).

The transition probabilities for several bands of NH have been determined. Lents (48) published a review of the molecular constants for all the known states of NH .

The absolute absorption intensities were determined by Harrington et al. (49) in a shock tube. The lifetime of the $A^{3} \Pi-X^{3} \Sigma^{-}$system has recently been remeasured by Fairchild et al. (50) for several vibrational bands. They comment that the FranckCondon factors computed from RKR potential curves are not very accurate because of the poor quality of the spectroscopic constants for the higher vibrational levels. We hope the new constants determined in this work will make these calculations more accurate. This group has also recently measured quenching rate constants for the $A^{3} \Pi$ state (51).

Smith et al. (52) studied the variation of lifetimes with rotation and vibration for both the $A^{3} \Pi$ and $c^{1} \Pi$ states. They discovered predissociations in both states, caused by crossing of a repulsive ${ }^{5} \Sigma^{-}$state. The observed intensities in the bands which we have studied are consistent with their results. The observation of rotational predissociation by Graham and Lew (30) and Zetzsch (53) has resulted in an accurate determination of the dissociation energy $D_{0}^{0}=3.46 \pm 0.01 \mathrm{eV}$. Foner and Hudson (54) have measured the ionization potential by mass spectroscopy to be $13.47 \pm 0.05 \mathrm{eV}$. The dipole moment has been measured by Scarl and Dalby (55) to be 1.38 D in the ground state using the high field Stark effect, where the electric discharge which produces the molecules also provides the Stark field. The standard heat of formation of NH is $85.2 \pm 0.4 \mathrm{kcal} /$ mole (56).

All of these experimental results can be compared with those obtained from theoretical calculations by, for example, Kouba and Öhrn (57), Hay and Dunning (58), and Meyer and Rosmus (59).

The frequent observation of NH in flames and other energetic environments has resulted in much interest in the spectrum. The species NH_{i} have significant effects on the production of NO_{x} in fuel-air combustion (60,61). The $A^{3} \Pi-X^{3} \Sigma^{-}$transition can be used to monitor the concentration of NH in flames $(62,63)$.

NH was first observed in a nonlaboratory source by Fowler and Gregory (64), in the spectrum of the sun, although at that time (1918) the $3360-\AA$ band was incorrectly assigned to ammonia. Since then NH has been found in stellar atmospheres $(65,66)$ and in comets $(67,68)$ by the spectroscopic observation of the $A^{3} \Pi-X^{3} \Sigma^{-}$transition. With the current interest in infrared astronomy, the vibration-rotation spectrum of NH has also been observed in stellar atmospheres by Fourier transform spectroscopy (69, 70).

II. EXPERIMENTAL DETAILS

NH molecules were produced in a standard copper hollow cathode discharge, operated at a current of 430 mA with a continuous flow of 4.5 Torr of He . Small amounts of nitrogen and hydrogen, 40 and 120 mTorr , respectively, were added. These parameters were adjusted to optimize the production of NH. The emission spectrum was recorded through a copper sulfate filter with the Fourier transform spectrometer associated with the McMath Solar Telescope of the National Solar Observatory ${ }^{1}$ at Kitt Peak. A total of 15 scans were coadded in one hour of observation. The unapodized instrumental resolution was $0.042 \mathrm{~cm}^{-1}$.

[^0]The signal-to-noise ratio for the strong lines of the $0-0$ band was more than 1000 to 1 . The $1-1$ band was almost as strong at about 500 to 1 while the other observed bands $2-2,0-1,1-2,1-0$, and $2-1$ were all much weaker. A sample of the P-branch region of the $\Delta v=0$ sequence is shown in Fig. 1. The linewidth varied to some extent with rotational and vibrational quantum number but was typically $0.18-0.2 \mathrm{~cm}^{-1}$ for the strong $0-0$ lines. As a result the relative line positions could be determined to a precision of $0.0002 \mathrm{~cm}^{-1}$ (the linewidth divided by the signal-to-noise ratio) for strong unblended lines. The accuracy of the measurements is less than this and is limited by the absolute wavelength calibration. This was rather difficult to achieve as only a few He (I) and He (II) lines were observed with high signal-to-noise, and these had not previously been measured with very high accuracy.

Only one He line, $4^{1} P-2^{1} S$, proved suitable for calibration because of a symmetric lineshape and a signal-to-noise ratio greater than 500 . The previous measurement $25215.270 \pm 0.005 \mathrm{~cm}^{-1}$ for this transition (71) was improved by comparing a $\mathrm{He} / \mathrm{Ti}$ hollow cathode emission spectrum with an $\mathrm{Ar} / \mathrm{Ti}$ hollow cathode emission spectrum. Norlen (72) has made excellent line-position measurements for argon. Titanium atomic lines were used as a transfer standard to give 25215.2824 ± 0.003 cm^{-1} for He $4^{1} P-2^{1} S$. The estimated error of $\pm 0.003 \mathrm{~cm}^{-1}$ means that our absolute accuracy is still a factor of 10 larger than the precision of the strong lines. Any improvement in the accuracy of the $\mathrm{He} 4^{1} P-2^{1} S$ line measurement or a direct measurement of a strong NH transition by laser methods would bring the estimated accuracy of our work closer to the precision.
III. ANALYSIS

The interferogram was transformed by standard methods to yield the spectrum, which covered the range from 23800 to $35600 \mathrm{~cm}^{-1}$. This range covers the $\Delta v=0$

Fig. 1. A segment of the NH $A^{3} \Pi-X^{3} \Sigma^{-}$spectrum in the P-branch region. Tripled rotational lines of the $0-0,1-1$ and $2-2$ vibrational bands are labeled with $N^{\prime \prime}$.
and $\Delta v= \pm 1$ vibrational bands of the $A^{3} \Pi-X^{3} \Sigma^{-}$system of NH. In addition, it covers the $c^{1} \Pi-a^{1} \Delta$ system, and our analysis of this system will be reported elsewhere (24). Some problems were experienced with bands of N_{2} and N_{2}^{+}which occur throughout the region. There were many areas with strong bands due to N_{2} and N_{2}^{+}but generally these did not overlap the NH lines. There was also a weak background throughout much of the region of interest which limited the signal-to-noise of the NH transitions.

The frequencies of the NH lines were obtained from the spectrum using DECOMP, a data reduction program developed at the National Solar Observatory. This program contains both a line list feature which provides the frequencies of all lines above a given intensity, and a least-squares fitting procedure which uses Voigt lineshape functions to determine the true positions for all the components of blended lines.

The width (FWHM) of the lines varied from $0.17 \mathrm{~cm}^{-1}$ for the low $J 0-0$ band to $0.23 \mathrm{~cm}^{-1}$ for the high- $J 0-0$ band to $0.25 \mathrm{~cm}^{-1}$ for the high $-J 2-2$ band. This is partly due to a range of temperatures found within the hollow cathode. However, the last three or four lines in each band show a rapid increase in linewidth from ~ 0.200 to $\sim 0.250 \mathrm{~cm}^{-1}$. These lines are affected by predissociation by the repulsive ${ }^{5} \Sigma^{-}$state. Application of the uncertainty principle to the $N^{\prime}=31, v^{\prime}=0$ level of $A^{3} \mathrm{II}$ with the known lifetime of 96 nsec (52) results in a broadening of only $1.6 \mathrm{MHz}(0.00005$ cm^{-1}). This is much less than the observed excess broadening of this level ($0.227-$ $0.200=0.027 \mathrm{~cm}^{-1}$). A plausible explanation is that the levels affected by predissociation are very pressure sensitive, but further work is required to confirm this speculation.

The observed line positions of the $A^{3} \Pi-X^{3} \Sigma^{-} 0-0,1-1,2-2,1-0,2-1,0-1$, and $1-2$ bands are given in Tables I-VII, respectively. The unblended lines have a precision of linewidth/signal-to-noise while blended lines are somewhat less precise. Virtually all of the Q-branch lines are blended to some extent while the P and R branches experience overlap from satellite lines at low J and a crossing of the three spin components at higher J.

The $A^{3} \Pi-X^{3} \Sigma^{-}$system of NH is a good example of a Hund's case (b) to Hund's case (b) electronic transition at high J. (See Herzberg (73) for an explanation of coupling cases, and branch structure and notation for a $\left.{ }^{3} \Pi\right)^{3} \Sigma^{-}$transition.) Each vibrational band has 9 strong transitions, $P_{1}, P_{2}, P_{3} ; Q_{1}, Q_{2}, Q_{3}$; and R_{1}, R_{2}, R_{3}, with the tripling of the P, Q, and R branches due to electron spin. These are the only branches allowed in a pure case (b) to case (b) band, however, at lower J a transition to case (a) coupling in the $A^{3} \Pi$ state occurs and weak satellite branches become allowed. There are a total of 18 possible satellite branches of which 14,11 , and 9 were seen for the $0-0,1-1$, and 2-2 bands, respectively. In the 0-0 band Dixon (3) observed the same number of branches, but we were able to follow them to higher J, while only a few 1-1 satellite lines were seen by Murai and Shimauchi (4). The 2-2 band of NH has not previously been observed at high resolution. No satellite branches were measured in the $\Delta v= \pm 1$ bands, although several weak lines were observed. The signal-to-noise of these satellite lines was at best 5 to 1 , and the other data from diagonal bands was sufficiently good to predict their positions much more accurately than they could be measured.

Each vibrational band was initially fitted separately using a nonlinear least-squares procedure. The Hamiltonian matrix for each state was set up using case (a) basis
TABLE I

3	
5	ヤロ゙ ヘัかん
3	
${ }_{0}$	 末్ \％iow ino
3	
3	
3	
$\frac{3}{6}$	
$\stackrel{3}{ }$	
$\frac{5}{o^{2}}$	
3	
$\frac{5}{0}$	
$\stackrel{3}{4}^{3}$	
$\overline{a^{m}}$	 べ

TABLE II
Observed Transitions in the $A^{3} \Pi-X^{3} \Sigma^{-} 1-1$ Band of NH

TABLE III

*	$\mathrm{P}_{1}(0)$		$\mathrm{P}_{2}(0)$		$\mathrm{P}_{3}(\mathrm{~s})$		$\mathrm{o}_{1}(\mathrm{~J})$		Q2(${ }^{(3)}$		$0_{3}(\mathrm{~J})$		$\mathrm{R}_{1}(\mathrm{~J})$		$\mathrm{R}_{2}(J)$		$\mathrm{R}_{3}(3)$
		av	\checkmark	Av													
									${ }^{295550.1631}$	${ }^{-0.0010}$	29560.5930		20544.7832			-0.0036	
	29954.8128	${ }^{0.0039}$		(e.0012		-	${ }_{2952920.3061}^{29677}$	-0.0004		-0.0023 0.0002 -0.0001	29546.8660	-0.005		- $\begin{aligned} & 0.0003 \\ & 0.0014\end{aligned}$	29630.5488	0.0063	29690.3806 0 0.0009
5	29402,9366	-0.00022		-0.00005	${ }_{\text {29361. }}$	${ }^{0.0003}$	${ }_{29523} \mathbf{2 9 5 2 5} 1.152$	${ }^{0.00027}$	295531:7553	${ }^{0}$			29643.4705				
${ }^{5}$	2934, 1230	-0004		-0.0005	${ }_{29294.1562}^{293727}$	${ }^{-0.00066}$		-0.0008		${ }^{0} 0.00010$	- 295531.5004	-0.0007	29700.4020	27	29734.2975	0:0006	
9	29281.3791	-0.0011	29255.2144	- 0.0021		-0.0137	${ }_{\text {29513.5993 }}$	-0.0003 0.0004	29511.6009	-0.0003	29519.0771	-0.0016		0.0024	29782.4459		
10	29299.3579	0.0009	${ }^{29221.9197}$	-0.0014	${ }^{291922.2571}$	-0.0036			29506.9575	-0.0005	${ }_{29505}^{295905}$	0.0024			${ }_{\text {2 }}^{298950.1162}$	0.0061	29830.2765
12	${ }^{291714.6033}$	${ }_{-0.0008}^{0.0080}$	29154.4099	-0.0035	${ }_{290123.1254}^{2985}$	${ }^{0} 0.0013$			29500.0526	-0.0038	29,977.0192	-0.0013	29982. ${ }^{298950}$. 0049			
113	29150.7129	-0.0046	${ }_{\text {20, }}^{29120.1905}$	-0.0042	- 290988.4138	-0.0054	29490.0013	0.0039	29443.7609	-0.0057	29479.0873						
16	290022.19939	$\begin{aligned} & \text { O.0054 } \\ & 0.0004 \\ & 0 \end{aligned}$	${ }_{29050.6299}$	-0.0022	29017.4190	-0.0006			29763.6671	-0.0085							
J	${ }^{\mathrm{P}_{12}(\mathrm{~J})}$		${ }^{P_{21}(\mathrm{~J})}$		$0^{\mathbf{P}_{32}(J)}$		${ }^{\mathrm{P}_{122}(J)}$		${ }^{\mathrm{P}_{23}(\mathrm{~J})}$		$\mathrm{R}_{\mathrm{Q2L}^{\prime}}(\mathrm{J})$		$\mathrm{R}_{\mathrm{CB2}^{(J)}}$		$\mathrm{O}_{\mathrm{R}_{12}(\mathrm{~J})}$		$\mathrm{g}_{\mathrm{R}_{23}(\mathrm{~J})}$
		av	\checkmark	Av	-	av	\cdots	${ }^{40}$	-	Av	-	A0		av	\cdots		${ }^{23}$
	29309.2579	-0.0082			29540.9426 	$\begin{gathered} \text { o.0050 } \\ -0.0000 \\ -0.0000 \\ -0.0029 \end{gathered}$							29617.9029	0.0070			
${ }_{3}^{2}$			29550.9974	(${ }^{-0.0036}$													
5																	
6																	
7			299529.0236 29524.7220	$\begin{gathered} -0.0030 \\ -0.0050 \end{gathered}$					29735.4973	0.0061							

TABLE IV
Observed Transitions in the $A^{3} \Pi-X^{3} \Sigma^{-} 1-0$ Band of NH

[^1]TABLE VI
Observed Transitions in the $A^{3} \Pi-X^{3} \Sigma^{-} 0-1$ Band of NH

[^2]\mp@subsup{}{}{3}\mp@subsup{|}{2}{}\rangle=1/\sqrt{}{2}(|\sigma\mp@subsup{\pi}{+}{\prime}\mp@subsup{\overline{\pi}}{+}{\prime}\mp@subsup{\pi}{-}{}|||\overline{\sigma}\mp@subsup{\overline{\pi}}{+}{\prime

```

```

| '}\mp@subsup{|}{0}{\prime

```



Note. The upper (lower) sign refers to \(e(f)\) parity.
\(\mathrm{cm}^{-1}\), respectively. The agreement for \(A\) and \(q\) is very good but \(p\) is predicted much more poorly. Considering that only two well-separated electronic states were considered, Franck-Condon factors were taken as \(\delta_{v v^{\prime}}\) and the extreme nature of the basic pure precession assumption of \(l=1\), the overall agreement is satisfactory.

For a \({ }^{3} \Pi\) state interacting with a single \({ }^{3} \Sigma^{-}\)state, the spin-rotation and \(\Lambda\)-doubling parameters are related by \(\gamma^{\Pi} \approx p^{\Pi} / 2(76)\). The \(\mathrm{NH} A^{3} \Pi\) state has \(p_{0} / 2=0.0276 \mathrm{~cm}^{-1}\) compared with the observed \(0.0297 \mathrm{~cm}^{-1}\). This relationship neglects interactions with other electronic states ( \({ }^{3} \Delta\) affects \(\gamma\) but not \(p\) ) and first-order contributions to \(\gamma\) (the "true" spin-rotation interaction). Also since \(A_{D}\) and \(\gamma\) are badly correlated, our assumed value of \(A_{D}\) also affects \(\gamma\).

There is an additional \(\Lambda\)-doubling parameter for a \({ }^{3} \Pi\) state, \(o\). This contains a firstorder contribution from the spin-spin interaction as well as second-order effects through spin-orbit coupling. Horani et al. (85) have investigated this for a series of molecules isovalent with NH . For those species where the spin-orbit interaction is large the second-order effects dominate, while for cases like NH where \(A\) is small the spin-spin interaction is most important. They calculated the spin-spin contribution to be 1.4 \(\mathrm{cm}^{-1}\) with small negative terms from the spin-orbit interaction, bringing the value close to the measured one.

The first centrifugal distortion correction to the \(\Lambda\)-doubling \(p_{D}\) and \(q_{D}\) can be estimated using the formulae due to Veseth (79):
\[
\begin{aligned}
& p_{D}=2 p\left(\frac{A_{D}}{A}-\frac{D}{B}\right) \\
& q_{D}=-4 q\left(\frac{D}{B}\right) .
\end{aligned}
\]
\(A_{D}\) was not determined but the calculated value gives a negligible contribution. From the equations the calculated values for \(v=0\) are
\[
\begin{array}{ll}
p_{D}=-1.2 \times 10^{-5} & \text { cf. }-1.8 \times 10^{-5} \\
q_{D}=1.39 \times 10^{-5} & \text { cf. } 1.38 \times 10^{-5} .
\end{array}
\]

The agreement for \(p_{D}\) is reasonable while the value for \(q_{D}\) is so close that the agreement must be considered fortuitous.

The correction to the spin-rotation interaction can also be estimated using the equivalent formula from Veseth (79):
\[
\gamma_{D}=2 \gamma\left(\frac{A_{D}}{A}-\frac{D}{B}\right)
\]

Again neglecting the first term, the following result is obtained:
\[
\gamma_{D}=-6.5 \times 10^{-5} \quad \text { cf. }-5.4 \times 10^{-5}
\]

\section*{CONCLUSION}

The \(A^{3} \Pi-X^{3} \Sigma^{-}\)transition of NH has been analyzed with much higher precision than in previous work. A total of seven vibrational bands were simultaneously fitted yielding 78 molecular constants. The improved data should prove useful to the many workers studying the NH molecule.

\section*{ACKNOWLEDGMENTS}

We are grateful for the expert technical assistance of Rob Hubbard in acquiring the NH spectrum. We thank Jim Brault for the helium spectra employed to calibrate our data, and his interest in this work. This work was supported by funding from the Office of Naval Research (N00014-84-K-0122).

Received: April 3, 1986

\section*{REFERENCES}
1. J. M. EDER, Denksch. Wien. Akad. 60, 1 (1893).
2. G. Funke, Z. Phys. 96, 787-798 (1935); 101, 104-112 (1936).
3. R. N. Dixon, Canad. J. Phys. 37, 1171-1186 (1959).
4. T. Murai and M. Shimauchi, Sci. Light (Tokyo) 15, 48-67 (1966).
5. J. Malicet, J. Brion, and H. Guenebaut, J. Chim. Phys. 67, 25-30 (1970).
6. M. Shimauchi, Sci. Light (Tokyo) 15, 161-165 (1966); 16, 185-190 (1967).
7. P. BOLLmark, I. KOPP, and B. RYDH, J. Mol. Spectrosc. 34, 487-499 (1970).
8. W. Ubachs, J. J. ter Meulen, and A. Dymanus, Canad. J. Phys. 62, 1374-1385 (1984).
9. H. E. Radford and M. M. Litvak, Chem. Phys. Lett. 34, 561-564 (1975).
10. F. D. Wayne and H. E. Radford, Mol. Phys. 32, 1407-1422 (1976).
11. F. C. Van der Heuvel, W. L. Meerts, and A. Dymanus, Chem. Phys. Lett. 92, 215-218 (1982).
12. P. F. Bernath and T. Amano, J. Mol. Spectrosc. 95, 359-364 (1982).
13. D. E. Milligan and M. E. Jacox, J. Chem. Phys. 41, 2838-2841 (1964).
14. H. Sakai, P. Hansen, M. Esplin, R. Johansson, M. Peltola, and J. Strong, Appl. Opt. 21, 228234 (1982).
15. B. D. Green and G. E. Caledonia, J. Chem. Phys. 77, 3821-3823 (1982).
16. M. Vervloet and J. Brion, personal communication.
17. D. Boudjaadar, P. Chollet, and G. Guelachvil, Fortieth Symposium on Molecular Spectroscopy, June, 1985, Columbus, Ohio.
18. R. W. B. Pearse, Proc. R. Soc. London, Ser. A 143, 112-123 (1933).
19. G. H. Dieke and R. W. Blue, Phys. Rev. 45, 395-400 (1934).
20. G. Nakamura and T. Shidel, Japan. J. Phys. 10, 5-10 (1935).
21. W. Y. Cheung, B. Gelernt, and T. Carrington, Chem. Phys. Lett. 66, 287-290 (1979).
22. D. Ramsay and P. Sarre, J. Mol. Spectrosc. 93, 445-446 (1982).
23. W. Ubachs, G. Meyer, J. J. ter Meulen, and A. Dymanus, J. Mol. Spectrosc. 115, 88-104 (1986).
24. R. S. Ram and P. F. Bernath, J. Opt. Soc. Amer. Opt. Phys. B. 3, 1170-1174 (1986).
25. R. W. Lunt, R. W. B. Pearse, and E. C. W. Smith, Proc. R. Soc. London, Ser. A 151, 602-609 (1935).
26. F. L. Whittaker, J. Phys. B. 1, 977-982 (1968).
27. R. W. Lunt, R. W. B. Pearse, and E. C. W. Smith, Proc. R. Soc. London, Ser. A 155, 173-182 (1936).
28. F. L. Whittaker, Proc. Phys. Soc. London 90, 535-541 (1967).
29. G. Krishnamurty and W. A. Narasimham, J. Mol. Spectrosc. 29, 410-414 (1969); Proc. Indian Acad. Sci., Sect. A 64, 97-1 10 (1966).
30. W. R. M. Graham and H. Lew, Canad. J. Phys. 56, 85-99 (1978).
31. J. L. Hall, H. Adams, J. V. V. Kasper, R. F. Curl, and F. K. Tittel, J. Opt. Soc. Amer. Opt. Phys. B: 2, 781-785 (1985).
32. K. R. Leopold, K. M. Evenson, and J. M. Brown, J. Chem. Phys. 85, 324-330 (1986).
33. J. Masanet, A. Gilles, and C. Vermeil, J. Photochem. 3, 417-429 (1974).
34. P. C. Engelking and W. C. Lineberger, J. Chem. Phys. 65, 4323-4324 (1976).
35. D. Cossart, J. Chim. Phys. 76, 1045-1050 (1979).
36. F. Rohrer and F. Stuhl, Chem. Phys. Lett. 111, 234-237 (1984).
37. A. Hofzumahaus and F. Stuhl, J. Chem. Phys. 82, 3152-3159 (1985); 82, 5519-5526 (1985); H. Haak and F. Stuhl, J. Phys. Chem. 88, 3627-3633; 88, 2201-2204 (1984); U. Blumenstein, F. Rohrer, and F. STuHl, Chem. Phys. Lett. 107, 347-350 (1984).
38. B. Gelernt, S. V. Filseth, and T. Carrington, Chem. Phys. Lett. 36, 238-241 (1975).
39. J. Masanet, C. Lalo, G. Durand, and C. Vermeil, Chem. Phys. 33, 123-130 (1978).
40. Y. Maruyama, T. Hikida, and Y. Mori, Chem. Phys. Lett. 116, 371-373 (1985).
41. F. Alberti and A. Douglas, Chem. Phys. 34, 399-402 (1978).
42. E. N. Tereshchenko and N. Ya. Dodonova, Opt. Spectrosc. 47, 339-340 (1979).
43. A. M. Quinton and J. P. Simons, Chem. Phys. Lett. 81, 214-217 (1981).
44. N. Washida, G. Inoue, M. Suzuki, and O. Kajimoto, Chem. Phys. Lett. 114, 274-278 (1985).
45. C. Hellner, K. T. V. Grattan, and M. H. R. Hutchinson, J. Chem. Phys. 81, 4389-4395 (1984).
46. I. Tokue and Y. Ito, Chem. Phys. 79, 383-389 (1983); 89, 51-57 (1984); I. Tokue and M. Iwal, Chem. Phys. 52, 47-53 (1980).
47. P. G. Carrick and P. C. Engelking, Chem. Phys. Lett. 108, 505-508 (1984).
48. J. M. Lents, J. Quant. Spectrosc. Radiat. Transfer 13, 297-310 (1973).
49. J. A. Harrington, A. P. Modica, and D. R. Libby, J. Quant. Spectrosc. Radiat. Transfer 6, 799805 (1966).
50. P. W. Fairchild, G. P. Smith, D. R. Crosley, and J. B. Jeffries, Chem. Phys. Lett. 107, 181-186 (1984).
51. N. L. Garland, J. B. Jeffries, D. R. Crosley, G. P. Smith, and R. A. Copeland, J. Chem. Phys. 85, 4970-4975 (1986).
52. W. H. Smith, J. Brzozowski, and P. Erman, J. Chem. Phys. 64, 4628 (1976).
53. L. Zetzsch, Ber. Bunsenges. Phys. Chem. 82, 639-643 (1978).
54. S. N. Foner and R. L. Hudson, J. Chem. Phys. 74, 5017-5021 (1981).
55. E. A. SCarl and F. W. Dalby, Canad. J. Phys. 52, 1429-1437 (1974).
56. S. T. Gibson, J. P. Greene, and J. Berkowitz, J. Chem. Phys. 83, 4319-4328 (1985).
57. J. Kouba and Y. Öhrn, J. Chem. Phys. 52, 5387-5394 (1970).
58. P. J. Hay and T. H. Dunning, Jr., J. Chem. Phys. 64, 5077-5087 (1976).
59. W. Meyer and P. Rosmus, J. Chem. Phys. 63, 2356-2375 (1975).
60. B. S. Haynes, Combust. Flame 28, 81-91 (1977).
61. J. A. Miller, Combust. Flame 43, 81-98 (1981).
62. W. R. Anderson, L. J. Decker, and A. J. Kotlar, Combust. Flame 48, 179-190 (1982).
63. M. S. Chou, A. M. Dean, and D. Stern, J. Chem. Phys. 76, 5334-5340 (1982).
64. A. Fowler and C. C. L. Gregory, Philos. Trans. R. Soc. London, Ser. A 218, 351-372 (1919).
65. R. W. Shaw, Astrophys. J. 83, 225-237 (1936).
66. J. L. Schmitt, Publ. Astron. Soc. Pac. 81, 657-664 (1969).
67. P. Swings, C. T. Elvey, and H. W. Babcock, Astrophys. J. 94, 320-343 (1941).
68. M. M. Litvak and E. N. R. Kuiper, Astrophys. J. 253, 622-633 (1982).
69. D. L. Lambert, J. A. Brown, K. H. Hinkle, and H. R. Johnson, Astrophys. J. 284, 223-237 (1984).
70. S. T. Ridgway, D. F. Carbon, D. N. B. Hall, and J. Jewell, Astrophys. J. Suppl. 54, 177-210 (1984).
71. W. C. Martin, J. Res. Nat. Bur. Stand., Sect. A 64, 19-28 (1960).
72. G. Norlen, Physica Scripta 8, 249-268 (1973).
73. G. Herzberg, "Spectra of Diatomic Molecules," 2nd ed., Van Nostrand-Reinhold, New York, 1950.
74. R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, J. Mol. Spectrosc. 46, \(37-\) 66 (1973).
75. F. Roux, D. Cerny, and J. Verges, J. Mol. Spectrosc. 94, 302-308 (1982).
76. J. M. Brown and A. J. Merer, J. Mol. Spectrosc. 74, 488-494 (1979).
77. J. M. Brown and J. K. G. Watson, J. Mol. Spectrosc. 65, 65-74 (1977).
78. T. C. Steimle, C. R. Brazier, and J. M. Brown, J. Mol. Spectrosc. 110, 39-52 (1985).
79. L. Veseth, J. Phys. B 3, 1677-1691 (1970).
80. R. S. Mulliken and A. Christy, Phys. Rev. 38, 87-119 (1931).
81. A. J. Merer, D. N. Malm, R. W. Martin, M. Horani, and J. Rostas, Canad. J. Phys. 53, 251283 (1975).
82. B. G. Wicke, R. W. Field, and W. Klemperer, J. Chem. Phys. 56, 5758-5770 (1972).
83. M. TinkHam, "Group Theory and Quantum Mechanics," McGraw-Hill, New York, 1964.
84. C. E. Moore, "Atomic Energy Levels," Vol. 1, NSRDS-NBS 35, National Bureau of Standards, Washington, D.C., 1971.
85. M. Horant, J. Rostas, and H. Lefebvre-Brion, Canad. J. Phys. 45, 3319-3331 (1967).```


[^0]:    ${ }^{1}$ The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

[^1]:    TABLE V
    Observed Transitions in the $A^{3} \Pi-X^{3} \Sigma^{-} 2-1$ Band of NH

[^2]:    TABLE VII
    Observed Transitions in the $A^{3} \Pi-X^{3} \Sigma 1-2$ Band of NH
    
    functions and diagonalized, to produce a set of energy levels. The effective Hamiltonian for a ${ }^{3} \Sigma^{-}$state is given by Zare et al. (74), while Roux et al. (75) give explicit matrix elements to second order. The explicit matrix elements for a ${ }^{3} \Pi$ state were taken from Brown and Merer (76).

    Initial attempts to reproduce our data for the $0-0$ band using these matrix elements proved unsuccessful. The lines were of very high precision (up to $\pm 0.0002 \mathrm{~cm}^{-1}$ ) and also involved high rotational levels (up to $N=32$ which has more than $16000 \mathrm{~cm}^{-1}$ of rotational energy). As a result, many higher order distortion constants were required, for example, $B, D, H, L$, and $M$ for the rotational energy, and $q, q_{D}, q_{H}$, and $q_{L}$ for the $\Lambda$-doubling interaction. The higher order matrix elements were derived from the existing ones by multiplying the matrices, making them Hermitian where necessary. For example,

    $$
    \mathbf{M}=M(\mathbf{B} / B)^{5} \quad \text { or } \quad \mathbf{q}_{L}=q_{L}\left[(\mathbf{q} / q)(\mathbf{B} / B)^{3}+(\mathbf{B} / B)^{3}(\mathbf{q} / q)\right] / 2 .
    $$

    The results were checked using a symbolic algebra computer program available to us. The explicit matrix elements used are given in Table VIII, with $x=J(J+1)$.

    Once the seven bands had been fitted separately, a modified version of the computer program was written to simultaneously fit all seven bands. This procedure is preferable to merging the results from the separate fits, particularly in a case like this, where there is a large variation in the precision of the measurements. In the separate fits the weights of the strong lines were adjusted so that the standard deviation of fit was close to one. In each case these weights were close to the expected values. The strong $0-0$ and 1-1 band fits had standard deviations slightly higher than expected, probably due to the presence of small systematic lineshape distortions from ${ }^{15} \mathrm{NH}$ lines in natural abundance and unresolved hyperfine structure (8). Only a relatively small proportion of the lines are completely unblended and thus most of the measurements were assigned a lower weight. Deconvolution of blended lines using DECOMP was accomplished with the aid of predicted spectra, based on constants determined from the more precisely measured lines. It was possible to extract reasonably accurate positions even for multiply blended lines provided the total number of components was known, and their positions could be estimated.

    The standard deviation for the global fit of all seven bands was 0.9 , and there was no evidence of systematic trends in the residuals, indicating that all 1370 lines were adequately fitted. In addition to the 1240 lines measured in our Fourier transform spectrum of the $A^{3} \Pi-X^{3} \Sigma^{-}$transition, the ground state vibrational fundamental lines of Bernath and Amano (12) were included. Recently the $1-0,2-1,3-2$, and 4-3 vibrational bands of the ground state were measured by Vervloet and Brion (16) using a Bomem Fourier transform spectrometer. Their 1-0 and 2-1 lines were also included in the final fit, but they had little effect except for $v=2$ due to their generally lower precision and the very large number of lines from the electronic spectrum.

    Our weighted nonlinear least-squares fit of the lines in Tables I-VII with the Hamiltonian of Table VIII produced the constants of Tables IX and X. For unblended lines the weight was determined from the spectrum, while the blended lines were deweighted so that the precision was of the same order as the error (obs. - calc.) from the fit. The wavenumbers of vibration-rotation transitions of Bernath and Amano (12), and Vervloet and Brion (16) are not repeated here. These data were weighted

    TABLE VIII
    Matrix Elements for ${ }^{3} I I$ and ${ }^{3} \Sigma^{-}$Electronic States

    | $T^{\text {a }}$ | $(0,0)=1$ | B | (0,0) $=x+2$ |
    | :---: | :---: | :---: | :---: |
    |  | $(1,1)=1$ |  | $(0,1)=-(2 x)^{1 / 2}$ |
    |  | $(2,2)=1$ |  | $(1,1)=x+2$ |
    |  | $(3,3)=1$ |  | $(1,2)=-(2(x-2))^{1 / 2}$ |
    |  | $(4,4)=1$ |  | $(2,2)=x-2$ |
    |  | $(5,5)=1$ |  | $(3,3)=x$ |
    |  |  |  | $(3,4)=-2(x)^{1 / 2}$ |
    | A | $(0,0)=-1$ |  | $(4,4)=x+2$ |
    |  | $(2,2)=1$ |  | $(5,5)=x$ |
    | $A_{D}$ | $(0,0)=-(x+2)$ | D | $(0,0)=-\left(x^{2}+6 x+4\right)$ |
    |  | $(0,1)=(x / 2)^{1 / 2}$ |  | $(0,1)=2(2 x)^{1 / 2}(x+2)$ |
    |  | $(1,2)=-(2(x-2))^{1 / 2 / 2}$ |  | $(0,2)=-2(x(x-2))^{1 / 2}$ |
    |  | $(2,2)=x-2$ |  | $(1,1)=-\left(x^{2}+8 \mathrm{x}\right)$ |
    |  |  |  | $(1,2)=2 \mathrm{x}(2(\mathrm{x}-2))^{1 / 2}$ |
    | $\lambda$ | $(0,0)=2 / 3$ |  | $(2,2)=-\left(x^{2}-2 x\right)$ |
    |  | $(1,1)=-4 / 3$ |  | $(3,3)=\left(x^{2}+4 x\right)$ |
    |  | $(2,2)=2 / 3$ |  | $(3,4)=4(x+1)(x)^{1 / 2}$ |
    |  | $(3,3)=2 / 3$ |  | $(4,4)=-\left(x^{2}+8 x+4\right)$ |
    |  | $(4,4)=-4 / 3$ |  | $(5,5)=-x^{2}$ |
    |  | $(5,5)=2 / 3$ |  |  |
    | $\lambda_{D}$ | $(0,0)=2(x+2) / 3$ | $\gamma$ | $(0,0)=-2$ |
    |  | $(0,1)=(2 x)^{1 / 2 / 3}$ |  | $(0,1)=(x / 2)^{1 / 2}$ |
    |  | $(1,1)=-4(x+2) / 3$ |  | $(1,1)=-2$ |
    |  | $(1,2)=(2(x-2))^{1 / 2 / 3}$ |  | $(1,2)=((x-2) / 2)^{1 / 2}$ |
    |  | $(2,2)=2(x-2) / 3$ |  | $(3,3)=-1$ |
    |  | $(3,3)=2 x / 3$ |  | $(3,4)=(x)^{1 / 2}$ |
    |  | $(3,4)=2(x)^{1 / 2 / 3}$ |  | $(4,4)=-2$ |
    |  | $(4,4)=-4(x+2) / 3$ |  | $(5,5)=-1$ |
    |  | $(5,5)=2 x / 3$ |  |  |
    | ${ }^{\circ}$ | $(0,0)=\mp 1$ | $\gamma_{\text {D }}$ | $\begin{gathered}(0,0) \\ (0,1)\end{gathered}=-3 x-4.2{ }^{\text {a }}$ |
    |  |  |  | $(0,1)=(2 x)^{1 / 2}(x+6) / 2$ |
    | ${ }^{\circ} \mathrm{D}$ | $(0,0)=\mp(x+2)$ $(0,1)= \pm(x / 2)^{1 / 2}$ |  | $(0,2)=-(x(x-2))^{1 / 2}$ $(1,1)=-4 x-2$ |
    |  |  |  | $(1,2)=(2(x-2))^{1 / 2}(x+2) / 2$ |
    | ${ }^{\circ} \mathrm{H}$ | $(0,0)=\mp\left(x^{2}+6 x+4\right)$ |  | $(2,2)=-\mathrm{x}+2$ |
    |  | $(0,1)= \pm(2 x)^{1 / 2}(x+2)$ |  | $(3,3)=-3 \mathrm{x}$ |
    |  | $(0,2)=F(x(x-2))^{1 / 2}$ |  | $(3,4)=(x)^{1 / 2}(x+4)$ |
    |  |  |  | $(4,4)=-4(x+1)$ |
    | P | $(0,0)=\mp 1$ |  | $(5,5)=-x$ |
    |  | $(0,1)=+(x / 2)^{1 / 2}$ | ${ }^{\text {r }}$ | $(3,3)=-5 x^{2}-8 x$ |
    |  | $(0,0)=\mp 2(x+1)$ |  | $(3,4)=(x)^{1 / 2}\left(x^{2}+12 x+8\right)$ |
    | PD | $(0,1)= \pm(x / 2)^{1 / 2}(x+3)$ |  | $(4,4)=-6 x^{2}-20 x-8$ |
    |  | $(0,2)=\mp(x(x-2))^{1 / 2 / 2}$ |  | $(5,5)=-x^{2}$ |
    |  | $(1,1)=\mp x$ |  |  |

    Note. The upper (lower) sign refers to a state with $e(f)$ parity. Hund's case (a) basis functions were used.

    $$
    \begin{array}{rlrl} 
    & \\
    & (0,0)= & \left.{ }^{3} \Pi_{0}|H|^{3} \Pi_{0}\right\rangle & \\
    & \left.=\left.\right|^{3} \Pi_{0}\right\rangle & \left.3=\left.\right|^{3} \Sigma_{i} e\right\rangle & x=J(J+1) \\
    1 & \left.={ }^{3} \Pi_{1}\right\rangle & \left.4=\left.\right|^{3} \Sigma_{0} e\right\rangle & \\
    2=\left|{ }^{3} \Pi_{2}\right\rangle & \left.5=\left.\right|^{3} \Sigma_{1}^{-} f\right\rangle &
    \end{array}
    $$

    according to the estimated precision quoted and the quality of fit was found to be essentially the same as in the original work. A total of 78 parameters were required for the three vibrational levels of the two electronic states observed. The parameter values given in Tables IX and $X$ have one standard deviation error estimates included. For the excited vibrational levels not all higher order parameters could be determined and thus these parameters were constrained to zero. If both $A_{D}$ and $\gamma$ were allowed to vary in the $A^{3} \Pi$ state, then a very high correlation, 0.99999 , was observed between them and the values obtained did not appear realistic. For a ${ }^{2} \Pi$ state it has been shown by Brown and Watson (77) that these two parameters cannot be simultaneously determined. However, they have both been measured in, for example, CuF (78) in its $b^{3} \Pi$ state. Clearly the problem is not a lack of data as a wide selection of rotational

    TABLE VIII-Continued

    ```
 Ph \(\quad(0,0)=F\left(3 x^{2}+10 x+4\right)\)
 \((0,0)=+\left(3 x^{2}+10 x+4\right)\)
 \((0,1)= \pm(x / 2)^{1 / 2}\left(x^{2}+9 x+6\right)\)
 \((0,2)=F(x(x-2))^{172}(x+1)\)
 \((1,1)=\mp 2 x(x+2)\)
 \((1,1)=72 x(x+2)\)
 \((1,2)= \pm(2(x-2))^{1 / 2} x / 2\)
 \(9 \quad \begin{aligned} & (0,0)=\mp 1 \\ & (0,1)= \pm(2 x)\end{aligned}\)
 \((0,1)= \pm(2 x)^{1 / 2}\)
 \((0,2)=\mp(x(x 2))^{1 / 2 / 2}\)
 \((1,1)=\mp x / 2\)
 \(q_{D} \quad(0,0)=\mp(3 x+2)\)
 \((0,1)= \pm(x / 2)^{1 / 2}(3 x+4)\)
 \((0,2)=T(x(x-2))^{1 / 2}(x+2) / 2\)
 \((1,1)=\mp(x+6) x / 2\)
 \((1,2)= \pm(2(x-2))^{1 / 2} \mathbf{x} / 2\)
 qH \(\quad(0,0)=\mp\left(6 x^{2}+12 x+4\right)\)
 \((0,1)= \pm(2 x)^{1 / 2}\left(2 x^{2}+8 x+4\right)\)
 \((0,2)=\mp(x(x-2))^{1 / 2}\left(x^{2}+6 x+4\right) / 2\)
 \((1,1)=\mp\left(x^{3} / 2+8 x^{2}+8 x\right)\)
 \((1,2)= \pm(2(x-2))^{1 / 2 x(x+2)}\)
 \((2,2)=\mp x(x-2)\)
 qL \(\quad(0,0)=\mp\left(10 x^{3}+40 x^{2}+36 x+8\right)\)
 \((0,1)= \pm(2 x)^{1 / 2}\left(5 x^{3} / 2+20 x^{2}+28 x+8\right)\)
 \(\begin{aligned}(0,1) & = \pm(2 x)=7(x-2))^{1 / 2}\left(x^{3} / 2+6 x^{2}+12 x+4\right)\end{aligned}\)
 \((1,1)=F\left(x^{4} / 2+15 x^{3}+40 x^{2}+16 x\right)\)
 \((1,2)= \pm(2(x-2))^{1 / 2}\left(3 x^{3} / 2+8 x^{2}+4 x\right)\)
 \((2,2)=\mp\left(3 x^{3}-4 x^{2}-4 x\right)\)
    ```

        M \((0,0)=x^{5}+30 x^{4}+200 x^{3}+344 x^{2}+192 x+32\)
        \((0,1)=-(2 x)^{1 / 2}\left(5 x^{4}+80 x^{3}+216 x^{2}+160 x+32\right)\)
    \((0,1)=-(2 x)^{1 / 2}\left(5 x^{4}+80 x^{3}+216 x^{2}+160 x+\right.\)
    $(0,2)=4(x(x-2))^{1 / 2}\left(5 x^{3}+20 x^{2}+18 x+4\right)$
    $(0,2)=4(x(x-2))^{1 / 2}\left(5 x^{3}+20 x^{2}+18 x\right.$
    $(1,1)=x^{5}+50 x^{4}+240 x^{3}+256 x^{2}+64 x$
    $(1,1)=x^{5}+50 x^{4}+240 x^{3}+256 x^{2}+64 x$
    $(1,2)=-\left(2\left(x^{-2}\right)\right)^{1 / 2}\left(5 x^{4}+40 x^{3}+56 x^{2}+16 x\right)$
    $(2,2)=x^{5}+10 x^{4}-40 x^{2}-16 x$
    $(3,3)=x^{5}+40 x^{4}+160 x^{3}+144 x^{2}+32 x$
    $(3,4)=-2(x)^{1 / 2}\left(5 x^{4}+60 x^{3}+136 x^{2}+88 x+16\right)$
    $(4,4)=x^{5}+50 x^{4}+280 x^{3}+416 x^{2}+208 x+32$
    $(5.5)=x^{5}$

    TABLE IX
    Spectroscopic Constants (in $\mathrm{cm}^{-1}$ ) for the $X^{3} \Sigma^{-}$State of NH

    |  | $v=0$ | $v=1$ | $v=2$ |
    | :---: | :---: | :---: | :---: |
    | TV | 0.0 | 3125.57292(25) | 6094.87617(57) |
    | $\mathrm{B}_{\mathrm{v}}$ | 16.3432784(45) | 15.6964414(81) | 15.050334(26) |
    | $10^{3} \times \mathrm{D}_{Y}$ | 1.702786(35) | 1.679548(64) | 1.65803(30) |
    | $10^{7} \times H_{\text {L }}$ | 1.23442(115) | 1.17513(185) | $0.9575(88)$ |
    | $10^{11} \times L_{V}$ | -1.3974(162) | -1.4396(173) | 0.0 |
    | $10^{16} \times M_{v}$ | 4.18(80) | 0.0 | 0.0 |
    | $\lambda y$ | $0.920063(148)$ | $0.921239(172)$ | 0.91916(31) |
    | $10^{6} \times \lambda \mathrm{Dv}$ | -9.09(142) | -14.67(82) | 0.0 |
    | $10^{2} x y y$ | -5.4844(22) | -5.1945(31) | -4.9104(69) |
    | $10^{5} \times \mathrm{YDV}$ | $1.5098(75)$ | 1.4731(117) | 1.795(58) |
    | $10^{9} \times$ YHV | -1.366(89) | 0.0 | 0.0 |

    Note. One standard deviation error on the last digits is quoted in parentheses.

    TABLE X
    Spectroscopic Constants for the $A^{3} \Pi$ State of $\mathrm{NH}\left(\mathrm{in} \mathrm{cm}^{-1}\right)$

    | Constants | $v=0$ | $v=1$ | $v=2$ |
    | :---: | :---: | :---: | :---: |
    | Tv | 29761.1829(1) | 32795.9283(3) | 35633.7219(6) |
    | $\mathrm{B}_{v}$ | 16.3214823(55) | 15.5762834(86) | 14.798763(31) |
    | $10^{3} \times \quad D_{V}$ | 1.789698(43) | 1.803235(69) | 1.83399(41) |
    | $10^{7} \times H_{v}$ | 1.0739(139) | 0.9390 (20) | 0.3278(137) |
    | $10^{11} \times L_{v}$ | -1.6481(197) | -3.0454(187) | 0.0 |
    | $10^{15} \times M_{v}$ | -2.757(99) | 0.0 | 0.0 |
    | $A_{v}$ | -34.61976(15) | -34.64854(33) | -34.68667(63) |
    | $10^{5} x \mathrm{ADV}$ | -8.14a | $-8.14{ }^{\text {a }}$ | $-8.14^{\text {a }}$ |
    | $\lambda_{V}$ | -0.19968(22) | -0.20068(27) | -0.19476(49) |
    | $10^{5} x \mathrm{ADv}$ | -1.630(156) | 0.0 | 0.0 |
    | $10^{2} x \quad \gamma_{V}$ | 2.9830(24) | 2.8474(35) | $2.8332(68)$ |
    | $10^{6} x \mathrm{YDv}$ | -5.406(52) | -3.410(133) | 0.0 |
    | $10^{2} x \quad \mathrm{Pv}$ | 5.5222(25) | 5.1880 (41) | 4.7483(103) |
    | $10^{5} x \mathrm{PDV}$ | -1.7795(151) | -1.979(31) | -2.358(135) |
    | $10^{9} \times \mathrm{PHV}$ | 2.124(193) | 1.61(59) | 0.0 |
    | $10^{2} x \quad q_{v}$ | -3.15870(40) | -2.95597(33) | -2.73942(121) |
    | $10^{5} \times \mathrm{Cmv}$ | 1.3822(29) | 1.3879(20) | 1.5275(114) |
    | $10^{9} \times \mathrm{qHv}$ | -1.861(66) | -1.086(32) | 0.0 |
    | $10^{13} \times \mathrm{qLv}$ | 1.95(46) | 0.0 | 0.0 |
    | ov | 1.28447(20) | 1.22637(26) | 1.15014(56) |
    | $10^{4} \mathrm{x} \mathrm{ODv}$ | -1.3440(136) | -1.703(31) | -2.072(99) |
    | $10^{8} \times \mathrm{OHv}$ | -3.07(24) | -6.30(71) | 0.0 |

    Note. One standard deviation uncertainties in parentheses.
    ${ }^{\text {a }}$ Fixed at computed value (see text for details).
    levels in both $\Lambda$ doublets of all three spin-orbit components have been measured. Veseth (79) provides a formula relating $A_{D}$ to other constants:

    $$
    A_{D}=2 A_{J}=\frac{2\left(A_{v+1}-A_{v}\right) D_{v=0}}{B_{v}-B_{v+1}+6 B_{e}^{2} / \omega_{e}} .
    $$

    For $v=0$ this gives $A_{D}=-8.14 \times 10^{-5} \mathrm{~cm}^{-1}$. For the final fit, $A_{D}$ was constrained to this value for all three vibrational levels.

    The term values for the first three vibrational levels of the $A^{3} \Pi$ and $X^{3} \Sigma^{-}$states of NH have been calculated (for the range of rotational levels studied in each case) and are given in Table XI. Any unmeasured lines can be determined from these term values. The term values have been extrapolated only to slightly higher $J$ than was observed in the spectrum. The large number of high-order distortion constants required in the fit means that significant errors will soon occur in any extrapolation.

    ## IV. DISCUSSION

    ## Relative Intensities

    Emission from $v=0,1$, and 2 in the $A^{3} \Pi$ state of NH was observed. The $0-0$ and $1-1$ bands appear to differ in intensity by about a factor of 2 while the $2-2$ band is an order of magnitude weaker. This is shown clearly in Fig. 1. The relative transition probabilities of the three bands are approximately equal (50) and thus a purely Boltzmann distribution of vibrational energy would imply a decrease of about a factor of 4 for the 2-2 band relative to the $0-0$. Smith et al. (52) have measured the variation in lifetime with rotational quantum number for $v=0$ and $v=1$ of the $A^{3} \Pi$ state of NH. They observe predissociation in the $v=0$ level beginning at $N=24$ and in $v=1$ from $N=13$ onward. They find that the perturbing state, thought to be of ${ }^{5} \Sigma^{-}$ symmetry, crosses the $A^{3} \Pi$ potential curve at $34000 \mathrm{~cm}^{-1}$. This is below the first rotational level for $v=2$, implying that all $v=2$ levels are predissociated. The shortening of the lifetime leads to fewer molecules fluorescing and hence a weaker band. Relative intensities for the $0-0,1-1$, and $2-2$ bands at low and intermediate $N$ have been measured from the spectrum and are given in Table XII. The ratio of $v=0$ to $v=1$ intensity indicates a vibrational temperature of 5400 K . This predicts an intensity for the $2-2$ band of 0.21 , relative to $0-0$, in the absence of predissociation. Other bands such as 3-3 and 4-4 would also be easily observable if there was no predissociation. The decrease in relative $2-2$ band intensity at low $N$ from the expected 0.21 to the observed 0.068 implies a predissociation lifetime of 200 nsec , assuming a fluorescent lifetime of $410 \mathrm{nsec}(50,52)$. The overall lifetime is thus 130 nsec , for $N=3$ or 4 of $A^{3} \Pi, v=2$. At $N=13$ for $v=2$, the decrease is much greater, implying a predissociation lifetime of 50 nsec and an overall lifetime of 45 nsec . The lines decrease rapidly in intensity with increasing $N$, and are unobservable beyond $N=18$, indicating essentially complete predissociation.

    ## Equilibrium Constants

    From the molecular constants for $v=0,1$, and 2 of $A^{3} \Pi$ and $X^{3} \Sigma^{-}$reported in Tables IX and X, equilibrium constants were determined (Table XIII). For the vibrational constants only $\Delta G_{1 / 2}$ and $\Delta G_{3 / 2}$ are available so two constants, $\omega_{\mathrm{e}}$ and $\omega_{\mathrm{e}} x_{\mathrm{e}}$, could be determined. The neglect of $\omega_{\mathrm{e}} y_{\mathrm{e}}$ introduces a large error into our estimated vibrational constants in Table XIII [ $\omega_{\mathrm{e}} y_{\mathrm{e}}$ is $0.33 \mathrm{~cm}^{-1}$ for $X^{3} \Sigma^{-}$(16)]. Our values for $\Delta G_{1 / 2}^{\prime \prime}$ and $\Delta G_{3 / 2}^{\prime \prime}$ agree with previous determinations (12,16).

    Equilibrium values for the fine structure and rotational constants may also be derived. The spin-orbit constant, $A$, was fitted to a linear expression in $(v+1 / 2)$ because, although the deviation from linearity is much greater than the random error, there is a possibility of small systematic deviations. The spin splitting constant $\lambda$ for both the ground and excited states shows no clear variation with $v$.

    An exact fit to three parameters $B_{\mathrm{e}}, \alpha_{\mathrm{e}}$, and $\gamma_{\mathrm{e}}$ was made for the rotational constants of both states. The errors quoted in Table XIII were computed by the customary rules for error propagation, the true error is probably an order of magnitude larger than this. The equilibrium bond length $r_{e}$ was then calculated and the values obtained are consistent with, but much more accurate than, the previous values.

    TABLE XI
    Term Energies (in $\mathrm{cm}^{-1}$ )

    |  | $\mathrm{x}^{3} \Sigma^{-}$ |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $v=0$ |  |  | $\mathrm{v}=1$ |  |  | $v=2$ |  |
    | $J$ | $F_{1}$ | $E_{2}$ | $F_{3}$ | $F_{1}$ | $\mathrm{F}_{2}$ | $\mathrm{F}_{3}$ | $E_{1}$ | $\mathrm{F}_{2}$ | $E_{3}$ |
    | 0 |  |  | 31.5626 |  |  | 3155.8346 |  |  | 6123.8428 |
    | 1 | -0.0077 | 33.3479 | 97.5570 | 3125.5649 | 3157.6251 | 3219.2407 | 6094.8678 | 6125.6321 | 6184.6611 |
    | 2 | 32.4973 | 98.6665 | 195.6073 | 3156.7791 | 3220.3571 | 3313.4096 | 6124.7932 | 6185.7803 | 6274.9523 |
    | 3 | 97.7100 | 196.5423 | 326.0237 | 3219.4082 | 3314.3544 | 3438.6544 | 6184.8415 | 6275.9033 | 6395.0304 |
    | 4 | 195.5031 | 326.8532 | 488.6896 | 3313.3256 | 3439.4965 | 3594.8605 | 6274.8876 | 6395.8819 | 6544.7825 |
    | 5 | 325.7419 | 489.4368 | 683.4147 | 3438.3986 | 3595.6231 | 3781.8406 | 6394.8001 | 6545.5579 | 6724.0236 |
    | 6 | 488.2594 | 684.0904 | 909.9620 | 3594.4620 | 3782.5345 | 3999.3605 | 6544.4159 | 6724.7337 | 6932.5220 |
    | 7 | 682.8508 | 910.5722 | 1168.0523 | 3781.3141 | 3999.9918 | 4247.1451 | 6723.5354 | 6933.1730 | 7170.0053 |
    | 8 | 909.2732 | 1168.6012 | 1457.3676 | 3998.7150 | 4247.7177 | 4524.8801 | 6931.9214 | 7170.6013 | 7436.1621 |
    | 9 | 1167.2449 | 1457.8579 | 1777.5510 | 4246.3866 | 4525.3969 | 4832.2133 | 7169.2988 | ${ }^{*} 7436.7063$ | 7730.6434 |
    | 10 | 1456.4462 | 1777.9851 | 2128.2088 | 4524.0133 | 4832.6767 | 5168.7557 | 7435.3546 | 7731.1381 | 8053.0630 |
    | 11 | 1776.5196 | 2128.5885 | 2508.9106 | 4831.2422 | 5169.1675 | 5534.0822 | 7729.7393 | 8053.5105 | 8402.9989 |
    | 12 | 2127.0709 | 2509.2378 | 2919.1907 | 5167.6839 | 5534.4442 | 5927.7324 | 8052.0662 | 8403.4011 | 8779.9934 |
    | 13 | 2507.6694 | 2919.4669 | 3358.5487 | 5532.9128 | 5928.0462 | 6349.2116 | 8401.9129 | 8780.3523 | 9183.5547 |
    | 14 | 2917.8493 | 3358.7756 | 3826.4509 | 5926.4686 | 6349.4788 | 6797.9916 | 8778.8221 | 9183.8721 | 9613.1572 |
    | 15 | 3357.1102 | 3826.6300 | 4322.3307 | 6347.8566 | 6798.2139 | 7273.5118 | 9182.3016 | 9613.4351 | 10068.2429 |
    | 16 | 3824.9183 | 4322.4636 | 4845.5902 | 6796.5485 | 7273.6907 | 7775.1800 | 9611.8261 | 10068.4832 | 10548. 2223 |
    | 17 | 4320.7072 | 4845.6785 | 5395.6011 | 7271.9839 | 7775.3173 | 8302.3735 | 10066.8377 | 10548.4270 | 11052.4753 |
    | 18 | 4843.8790 | 5395.6464 | 5971.7054 | 7773.5707 | 8302.4707 | 8854.4397 | 10546.7469 | 11052.6465 | 11580.3528 |
    | 19 | 5393.8052 | 5971.7093 | 6573.2171 | 8300.6860 | 8854.4987 | 9430.6976 | 11050.9338 | 11580.4926 | 12131.1776 |
    | 20 | 5969.8283 | 6573.1813 | 7199.4227 | 8852.6777 | 9430.7202 | 10030.4383 | 11578.7495 | 12131.2882 | 12704.2457 |
    | 21 | 6571.2621 | 7199.3488 | 7849.5826 | 9428.8648 | 10030.4264 | 10652.9263 | 12129.5168 | 12704.3295 | 13298.8280 |
    | 22 | 7197.3932 | 7849.4725 | 8522.9320 | 10028.5386 | 10652.8818 | 11297.3998 |  |  |  |
    | 23 | 7847.4821 | 8522.7875 | 9218.6823 | 10650.9635 | 11297.3249 | 11963.0724 |  |  |  |
    | 24 | 8520.7643 | 9218.5051 | 9936.0213 | 11295.3783 | 11962.9690 | 12649.1328 |  |  |  |
    | 25 | 9216.4509 | 9935.8133 | 10674.1148 | 11960.9962 | 12649.0033 | 13354.7466 |  |  |  |
    | 26 | 9933.7301 | 10673.8780 | 11432.1075 | 12647.0066 | 13354.5931 | 14079.0559 |  |  |  |
    | 27 | 10671.7676 | 11431.8437 | 12209.1232 | 13352.5748 | 14078.8808 | 14821.1806 |  |  |  |
    | 28 | 11429.7081 | 12208.8343 | 13004.2661 | 14076.8435 | 14820.9863 | 15580.2181 |  |  |  |
    | 29 | 12206.6756 | 13003.9542 | 13816.6214 | 14818.9323 | 15580.0072 | 16355.2442 |  |  |  |
    | 30 | 13001.7743 | 13816.2884 | 14645.2553 | 15577.9392 | 16355.0193 | 17145,3127 |  |  |  |
    | 31 | 13814.0893 | 14644.9033 | 15489.2164 |  |  |  |  |  |  |
    | 32 | 14642.6870 | 15488.8473 | 16347.5349 |  |  |  |  |  |  |
    | 33 | 15486.6159 | 16347.1507 | 17219.2238 |  |  |  |  |  |  |
    | 34 | 16344.9064 | 17218.8266 | 18103.2782 |  |  |  |  |  |  |


    | $A^{3}$ fl e levels |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $v=0$ |  |  | $\mathrm{v}=1$ |  |  | $v=2$ |  |  |
    | $J$ | $F_{1}$ | $F_{2}$ | $\mathrm{F}_{3}$ | $\mathrm{F}_{1}$ | $\mathrm{F}_{2}$ | $F_{3}$ | $\mathrm{F}_{1}$ | $\mathrm{F}_{2}$ | $F_{3}$ |
    | 0 |  |  | 29826.9380 |  |  | 32860.2833 |  |  | 35696.6427 |
    | 1 |  | 29806.6075 | 29879.6166 |  | 32839.7212 | 32910.1239 |  | 35675.7942 | 35743.5279 |
    | 2 | 29770.6137 | 29866.0956 | 29971.6086 | 32803.6533 | 32896.4276 | 32997.6256 | 35639.6505 | 35729.6159 | 35826.3374 |
    | 3 | 29842.3149 | 29960.6994 | 30098.4773 | 32872.3573 | 32986.5989 | 33118.4991 | 35705.2232 | 35815.1692 | 35940.9456 |
    | 4 | 29943.9814 | 30089.0510 | 30258.7572 | 32969.5683 | 33108.9896 | 33271.2906 | 35797.7849 | 35931.3388 | 36085.9101 |
    | 5 | 30076.7147 | 30250.2736 | 30451.7101 | 33096.3532 | 33262.7538 | 33455.2614 | 35918.3614 | 36077.3130 | 36260.4886 |
    | 6 | 30240.9288 | 30443.8228 | 30676.8267 | 33253.1186 | 33447.3520 | 33669.8994 | 36067.3480 | 36252.5560 | 36464.1621 |
    | 7 | 30436.7067 | 30669.2850 | 30933.6725 | 33439.9453 | 33662.3691 | 33914.7662 | 36244.8206 | 36456.6484 | 36696.4836 |
    | 8 | 30663.9548 | 30926.2832 | 31221.8284 | 33656.7382 | 33907.4249 | 34189.4386 | 36450.6789 | 36689.2025 | 36957.0196 |
    | 9 | 30922.4704 | 31214.4369 | 31540.8652 | 33903.2929 | 34182.1352 | 34493.4825 | 36684.7116 | 36949.8245 | 37245.3237 |
    | 10 | 31211.9740 | 31533.3443 | 31890.3314 | 34179.3267 | 34486.0933 | 34826.4404 | 36946.6273 | 37238.0961 | 37560.9243 |
    | 11 | 31532.1249 | 31882.5742 | 32269.7466 | 34484.4949 | 34818.8624 | 35187.8253 | 37236.0704 | 37553.5669 | 37903.3174 |
    | 12 | 31882.5300 | 32261.6620 | 32678.5985 | 34818.3996 | 35179.9716 | 35577.1170 | 37552.6294 | 37895,7497 | 38271.9631 |
    | 13 | 32262.7495 | 32670.1086 | 33116.3418 | 35180.5948 | 35568.9138 | 35993.7601 | 37895.8419 | 38264.1185 | 38666.2837 |
    | 14 | 32672.2999 | 33107.3791 | 33582.3968 | 35570.5891 | 35985.1447 | 36437.1635 | 38265.1977 | 38658.1075 | 39085.6626 |
    | 15 | 33110.6567 | 33572.9036 | 34076.1496 | 35987.8487 | 36428.0830 | 36906.6995 | 38660.1408 | 39077.1107 | 39529.4434 |
    | 16 | 33577.2557 | 34066.0766 | 34596.9524 | 36431.7983 | 36897.1098 | 37401.7039 | 39080.0705 | 39520.4816 | 39996.9301 |
    | 17 | 34071.4952 | 34586.2580 | 35144.1236 | 36901.8221 | 37391.5689 | 37921.4752 | 39524.3428 | 39987.5334 | 40487.3866 |
    | 18 | 34592.7363 | 35132.7734 | 35716.9480 | 37397.2651 | 37910.7667 | 38465.2752 | 39992.2711 | 40477.5389 | 41000.0373 |
    | 19 | 35140.3045 | 35704.9148 | 36314.6777 | 37917.4334 | 38453.9724 | 39032.3283 | 40483.1268 | 40989.7313 | 41534.0669 |
    | 20 | 35713.4904 | 36301.9408 | 36936.5319 | 38461.5943 | 39020.4175 | 39621.8216 | 40996.1401 | 41523.3040 | 42088.6209 |
    | 21 | 36311.5507 | 36923.0772 | 37581.6976 | 39028.9770 | 39609.2962 | 40232.9042 | 41530.5003 | 42077.4113 | 42662.8059 |
    | 22 | 36933.7083 | 37567.5172 | 38249.3297 | 39618.7723 | 40219.7646 | 40864.6869 |  |  |  |
    | 23 | 37579.1532 | 38234.4221 | 38938.5508 | 40230.1324 | 40850.9404 | 41516.2413 |  |  |  |
    | 24 | 38247.0427 | 38922.9206 | 39648.4514 | 40862.1705 | 41501.9021 | 42186.5988 |  |  |  |
    | 25 | 38936.5017 | 39632.1092 | 40378.0892 | 41513.9604 | 42171.6881 | 42874.7496 |  |  |  |
    | 26 | 39646.6222 | 40361.0518 | 41126.4888 | 42184.5353 | 42859.2954 | 43579.6409 |  |  |  |
    | 27 | 40376.4635 | 41108.7788 | 41892.6403 | 42872.8868 | 43563.6781 | 44300.1752 |  |  |  |
    | 28 | 41125.0514 | 41874.2865 | 42675.4984 | 43577.9634 | 44283.7455 | 45035.2080 |  |  |  |
    | 29 | 41891.3770 | 42656.5354 | 43473.9807 | 44298.6684 | 45018.3599 | 45783.5451 |  |  |  |
    | 30 | 42674.3961 | 43454.4488 | 44286.9651 | 45033.8584 | 45766.3341 | 46543.9400 |  |  |  |
    | 31 | 43473.0268 | 44266.9104 | 45113.2874 |  |  |  |  |  |  |
    | 32 | 44286.1478 | 45092.7619 | 45951.7378 |  |  |  |  |  |  |
    | 33 | 45112.5954 | 45930.7992 | 46801.0574 |  |  |  |  |  |  |
    | 34 | 45951.1605 | 46779.7689 | 47659.9328 |  |  |  |  |  |  |

    The centrifugal distortion terms $D$ and $H$ were each fitted to two parameters using a weighted least-squares fit of the three available points. The results obtained for $D_{e}$ and $H_{e}$ can be compared with those calculated from the Kratzer and Dunham-Birge

    TABLE XI-Continued

    | $\mathrm{A}^{3} \mathrm{f}$ f levels |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $v=0$ |  |  | $\mathrm{v}=1$ |  |  | $\mathrm{v}=2$ |  |  |
    | $\pm$ | $F_{1}$ | $F_{2}$ | $F_{3}$ | $F_{1}$ | $F_{2}$ | $\mathrm{F}_{3}$ | $F_{1}$ | $F_{2}$ | $\mathrm{F}_{3}$ |
    | 0 |  |  | 29829.5537 |  |  | 32862.7800 |  |  | 35698.9823 |
    | 1 |  | 29807.2753 | 29881.5009 |  | 32840.3364 | 32911.9456 |  | 35676.3484 | 35745.2578 |
    | 2 | 29770.6018 | 29867.1478 | 29972.9936 | 32803.6415 | 32897.4104 | 32998.9727 | 35639.6386 | 35730.5162 | 35827.6226 |
    | 3 | 29842.2289 | 29962.0323 | 30099.4665 | 32872.2766 | 32987.8499 | 33119.4691 | 35705. 1480 | 35816.3228 | 35941.8759 |
    | 4 | 29943.7378 | 30090.6696 | 30259.3672 | 32969.3417 | 33110.5105 | 33271.9013 | 35797.5762 | 35932.7445 | 36086.5034 |
    | 5 | 30076. 2322 | 30252.2176 | 30451.9227 | 33095.9048 | 33264.5799 | 33455.4972 | 35917.9496 | 36079.0016 | 36260.7322 |
    | 6 | 30240.1323 | 30446.1419 | 30676.6084 | 33252.3782 | 33449.5287 | 33669.7301 | 36066.6687 | 36254.5681 | 36464.0297 |
    | 7 | 30435.5274 | 30672.0313 | 30932.9833 | 33438.8487 | 33664.9442 | 33914.1554 | 36243.8152 | 36459.0266 | 36695.9434 |
    | 8 | 30662.3289 | 30929.5086 | 31220.6256 | 33655.2261 | 33910.4461 | 34188. 3475 | 36449.2938 | 36691.9890 | 36956.0378 |
    | 9 | 30920.3387 | 31218.1915 | 31539.1061 | 33901.3105 | 34185.6481 | 34491.8723 | 36682.8977 | 36953.0592 | 37243.8673 |
    | 10 | 31209.2814 | 31537.6758 | 31887.9741 | 34176.8232 | 34490.1413 | 34824.2734 | 36944.3400 | 37241.8163 | 37558.9615 |
    | 11 | 31528.8202 | 31887.5275 | 32266.7514 | 34481.4237 | 34823.4859 | 35185.0659 | 37233.2694 | 37557.8065 | 37900.8194 |
    | 12 | 31878.5660 | 32267.2787 | 32674.9283 | 34814.7180 | 35185. 2076 | 35573.7324 | 37549.2789 | 37900.5385 | 38268.9044 |
    | 13 | 32258.0829 | 32676.4268 | 33111.9626 | 35176.2641 | 35574.7954 | 35989.7209 | 37891.9109 | 38269.4823 | 38662.6430 |
    | 14 | 32666.8915 | 33114.4331 | 33577.2780 | 35565.5751 | 35991.7014 | 36432.4441 | 38260.6599 | 38664.0672 | 39081.4229 |
    | 15 | 33104.4716 | 33580.7237 | 34070.2647 | 35982.1214 | 36435.3397 | 36901.2783 | 38654.9752 | 39083.6821 | 39524.5930 |
    | 16 | 33570.2634 | 34074.6887 | 34590.2788 | 36425.3323 | 36905.0871 | 37395.5636 | 39074.2617 | 39527.6752 | 39991.4625 |
    | 17 | 34063.6696 | 34595.6838 | 35136.6431 | 36894.5971 | 37400.2824 | 37914.6034 | 39517.8810 | 39995.3536 | 40481.3015 |
    | 18 | 34584.0560 | 35143.0298 | 35708.6471 | 37389.2656 | 37920.2270 | 38457.6645 | 39985.1527 | 40485.9842 | 40993.3404 |
    | 19 | 35130.7530 | 35716.0139 | 36305.5474 | 37908.6492 | 38464.1849 | 39023.9765 | 40475.3548 | 40998.7934 | 41526.7708 |
    | 20 | 35703.0562 | 36313.8898 | 36926.5683 | 38452.0205 | 39031.3821 | 39612.7317 | 40987.7241 | 41532.9678 | 42080.7452 |
    | 21 | 36300.2272 | 36935.8782 | 37570.9018 | 39018.6144 | 39621.0072 | 40223.0851 | 41521.4573 | 42087.6543 | 42654.3777 |
    | 22 | 36921.4941 | 37581.1672 | 38237.7078 | 39607.6274 | 40232.2105 | 40854.1531 |  |  |  |
    | 23 | 37566.0523 | 38248.9127 | 38926.1142 | 40218. 2175 | 40864.1038 | 41505.0133 |  |  |  |
    | 24 | 38233.0643 | 38938.2381 | 39635.2169 | 40849.5041 | 41515.7593 | 42174.7032 |  |  |  |
    | 25 | 38921.6604 | 39648.2347 | 40364.0788 | 41500.5671 | 42186.2094 | 42862.2190 |  |  |  |
    | 26 | 39630.9381 | 40377.9606 | 41111.7299 | 42170.4460 | 42874.4446 | 43566.5144 |  |  |  |
    | 27 | 40359.9623 | 41126.4409 | 41877.1660 | 42858.1386 | 43579.4127 | 44286.4980 |  |  |  |
    | 28 | 41107.7641 | 41892.6663 | 42659.3471 | 43562.5999 | 44300.0164 | 45021.0317 |  |  |  |
    | 29 | 41873.3403 | 42675.5919 | 43457.1963 | 44282.7399 | 45035.1117 | 45768.9279 |  |  |  |
    | 30 | 42655.6521 | 43474.1352 | 44269.5969 | 45017.4214 | 45783.5048 | 46528.9463 |  |  |  |
    | 31 | 43453.6232 | 44287.1747 | 45095.3903 |  |  |  |  |  |  |
    | 32 | 44266.1378 | 45113.5462 | 45933.3723 |  |  |  |  |  |  |
    | 33 | 45092.0377 | 45952.0404 | 46782.2892 |  |  |  |  |  |  |
    | 34 | 45930.1192 | 46801.3982 | 47640.8334 |  |  |  |  |  |  |

    relations (73), respectively (Table XIII). In all four cases the experimental and calculated values are in good agreement.

    ## A-Doubling and Spin-Rotation Interactions

    The $\Lambda$-doubling and spin-rotation constants can be calculated assuming pure precession (80) between the $A^{3} \Pi$ and $X^{3} \Sigma^{-}$states. Contributions to $p, q$, and $\gamma$ arise only from triplet states, of which $A^{3} \Pi$ and $X^{3} \Sigma^{-}$are the only two known. Theoretical calculations by Kouba and Öhrn (57) predict weakly bound ${ }^{3} \Pi$ and ${ }^{3} \Sigma^{-}$states near the $A^{3} \Pi$ state, but due to the large difference in equilibrium bond lengths, the FranckCondon factors are likely to be small. There may also be high-lying Rydberg states, but these will have comparatively little effect due to the large energy separation. In the case of pure precession between a ${ }^{3} \Sigma^{-}$and a ${ }^{3} \Pi$ state the value of $\gamma$ in the ${ }^{3} \Sigma^{-}$

    TABLE XII
    Relative Intensities for Selected Lines of the $A^{3} \Pi-X^{3} \Sigma^{-}$Transition of NH

    | Lines $P_{F}(N)$ | $v=0$ | $v=1$ | $v=2$ |
    | :--- | :---: | :---: | :---: |
    | $P_{2}(4)$ | 251 | 112 | 17 |
    | $P_{1}(5)$ | 355 | 158 | 24 |
    | $P_{2}(13)$ | 220 | 89 | 4.8 |
    | $P_{1}(14)$ | 240 | 100 | 5.2 |

    TABLE XIII
    Equilibrium Constants for $A^{3} \mathrm{II}$ and $X^{3} \Sigma^{-}$States of NH (in $\mathrm{cm}^{-1}$ )

    | Constant | $\mathrm{A}^{3}$ п | $\mathrm{x}^{3} \mathrm{c}$ - |
    | :---: | :---: | :---: |
    | $\triangle_{1 / 2}$ | 3034.7454(3) | 3125.5729(3) |
    | $\Delta G_{3 / 2}$ | 2837.7937(7) | 2969.3033(6) |
    | $\omega_{\text {e }}$ | 3232(2) | 3281 (2) |
    | we $^{\text {x }}$ e | 98(1) | 78(1) |
    | $\mathrm{Be}^{\text {e }}$ | 16.681963(8) | 16.666970(7) |
    | $a_{e}$ | 0.712880 (35) | 0.647567 (31) |
    | $r_{\text {e }}$ | -0.016160(24) | $0.000365(20)$ |
    | $10^{4} \times D_{e}$ | 17.822(28) | 17.1431(31) |
    | $10^{4} \times \mathrm{Br}_{\mathrm{e}}$ | $0.146(31)$ | -0.2309(36) |
    | $10^{4} \times 0_{e}$ | 17.781 ${ }^{\text {* }}$ | 17.195 ${ }^{\text {d }}$ |
    | $A_{e}$ | -34.6038(23) | --- |
    | $\alpha_{A}$ | -0.0314(26) | --- |
    | $10^{8} \times H_{e}$ | 11.6(8) | 12.7(3) |
    | $10^{8} \times{ }_{\text {a }}$ | -1.6(8) | -0.7(3) |
    | $10^{8} \times H_{e}$ | $11.8{ }^{\text {b }}$ | $12.8{ }^{\text {b }}$ |
    | $\mathrm{re}_{e}$ | 1.03675A | 1.03722 A |

    Note. Estimated one standard deviation error in parentheses.
    ${ }^{2}$ Computed using the Kratzer relationship.
    ${ }^{b}$ Computed using the Dunham-Birge expression.
    state is equal and opposite in sign to $p$ for the ${ }^{3} \mathrm{I}$ state. For NH in the $v=0$ levels the values are $\gamma^{\Sigma}=-0.0548$ and $p^{\Pi}=0.0552$.

    Expressions for $o, p$, and $q$ in terms of matrix elements connecting electronic states are given by Brown and Merer (76) [Refs. $(81,82)$ are also helpful]. The ground state of NH has a $1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{2} 1 \pi^{2}$ configuration and the $A^{3} \Pi$ state is $1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{1} 1 \pi^{3}$. In order to evaluate the interaction matrix elements a total of four electrons in $3 \sigma$ and $1 \pi$ orbitals must be considered. The matrix elements can be evaluated if $3 \sigma$ and $1 \pi$ are considered to be nitrogen atomic $2 p_{z}$ and $2 p_{ \pm 1}$ orbitals, respectively. The Slater determinant representations of the ${ }^{3} \Pi$ and ${ }^{3} \Sigma^{-}$components are given in Table XIV. The required matrix elements were evaluated using the determinants of Table XIV and the pure precession hypothesis ( 80 ) with $l=1$. The results are

    $$
    \begin{aligned}
    & p=2 \zeta B /\left(E_{\Pi}-E_{\Sigma}\right)=-4 A B /\left(E_{\Pi}-E_{\Sigma}\right) \\
    & q=-4 B^{2} /\left(E_{\Pi}-E_{\Sigma}\right)
    \end{aligned}
    $$

    where $\zeta$ is the atomic spin-orbit coupling parameter as defined by Tinkham (83). The molecular and atomic spin-orbit parameters are related by $A=-\zeta / 2$. As a test of the pure precession hypothesis, the atomic $\zeta=73.3 \mathrm{~cm}^{-1}(84)$ results in a predicted $A$ of $-36.6 \mathrm{~cm}^{-1}$ compared to the observed $A_{0}=-34.6 \mathrm{~cm}^{-1}$. The pure precession $p_{0}$ and $q_{0}$ values are 0.0759 and $-0.0358 \mathrm{~cm}^{-1}$ compared to the observed 0.0552 and -0.0316

    TABLE XIV
    Slater Determinant Representation of the Electronic Structure of $A^{3} \Pi$ and $X^{3} \Sigma^{-}$States of NH

    ```
 |```

