High-Resolution Laser Spectroscopy of Strontium Monomethoxide, SrOCH_{3}

L. C. O'Brien, C. R. Brazier, and P. F. Bernath ${ }^{1}$
Department of Chemistry, University of Arizona, Tucson, Arizona 85721

Abstract

The rotational analysis of the $0-0$ band of the $\tilde{A}^{2} E_{3 / 2}-\tilde{X}^{2} A_{1}$ transition of the SrOCH_{3} free radical has been carried out by laser excitation spectroscopy. The SrOCH_{3} molecule was found to have $C_{3 v}$ symmetry with a Sr-O bondlength of $2.12 \AA$. There was no evidence of a Jahn-Teller effect in the $\tilde{A}^{2} E$ state. This work is the first high-resolution analysis of a metal alkoxide molecule. © 1988 Academic Press, Inc.

INTRODUCTION

We have recently observed the gas-phase low-resolution ($1 \mathrm{~cm}^{-1}$) spectra of many new alkaline earth metal containing free radicals (1-7), including SrOCH_{3}. These molecules are made by the reaction of alkaline earth atoms $(\mathrm{Ca}, \mathrm{Sr}$, or Ba) with alcohols (1, 2), carboxylic acids (1), isocyanic acid (3), cyclopentadiene (4), metal alkyls (5), amines (6), and acetylene (7). The free radical product molecule contains one alkaline earth metal atom and one ligand group.

Low-resolution spectra of alkaline earth monomethoxides were first reported by Wormsbecher and Suenram (8). In these experiments SrOCH_{3} was produced by the gas-phase reaction of strontium atoms with methyl nitrite, $\mathrm{CH}_{3} \mathrm{ONO}$. A vibrational analysis of the $\tilde{A}^{2} E-\tilde{X}^{2} A_{1}$ and $\tilde{B}^{2} A_{1}-\tilde{X}^{2} A_{1}$ transitions was reported.

There are several recent high-resolution analyses of $\operatorname{SrOH}(9,10)$ as well as other alkaline earth monohydroxides, MgOH (11), CaOH (12-14), and BaOH (15). We report here the first high-resolution analysis of a metal monomethoxide. The $0-0$ band of the $\tilde{A}^{2} E-\tilde{X}^{2} A_{1}$ transition of SrOCH_{3} was recorded by laser excitation spectroscopy with narrowband fluorescence detection. A high-resolution analysis is in progress for similar molecules such as $\mathrm{SrNH}_{2}, \mathrm{SrN}_{3}, \mathrm{SrNCO}, \mathrm{CaC}_{2} \mathrm{H}, \mathrm{CaCH}_{3}$, and SrSH by Bernath and co-workers.

There has been some theoretical interest in ${ }^{2} E$ electronic states due to the possibility of Jahn-Teller interactions (16-20). There are only two molecules for which a ${ }^{2} E$ electronic state has previously been studied at high resolution: $\mathrm{CH}_{3} \mathrm{O}$ (21-24) and FSO_{3} (25). The methoxy radical work is relevant to this study in terms of both the analysis of a ${ }^{2} E$ state and the structural information, which can be transferred to SrOCH_{3}.

The $\mathrm{Sr}-\mathrm{O}-\mathrm{C}$ bond angle in SrOCH_{3}, like the $\mathrm{Sr}-\mathrm{O}-\mathrm{H}$ bond angle, is found to be 180°, and thus SrOCH_{3} is a prolate symmetric top of $C_{3 v}$ symmetry. The $\tilde{A}^{2} E$ state

[^0]has a large spin-orbit splitting similar to the value of $263 \mathrm{~cm}^{-1}$ for the corresponding $\tilde{A}^{2} \Pi$ state of SrOH . The off-axis hydrogens in SrOCH_{3} do not perturb the spin-orbit coupling in the $\tilde{A}^{2} E$ state. The $\tilde{A}^{2} E$ state exhibits a strong first-order Coriolis interaction between the orbital angular momentum and the rotational angular momentum. There is no experimental evidence of a Jahn-Teller distortion of SrOCH_{3} in the $\bar{A}^{2} E$ state.

METHOD

The production of SrOCH_{3} in a Broida oven (26) has been described previously (2). Briefly, Sr metal was vaporized from a resistively heated alumina crucible and entrained in a flow of Ar carrier gas (~ 1 Torr). Methanol is an easier oxidant to use than the methyl nitrite used by Wormsbecher and Suenram (8). However, the methyl nitrite-strontium reaction produces more strontium monomethoxide than the meth-anol-strontium reaction since it is more exothermic. When excited strontium atoms (${ }^{3} P_{1} \mathrm{Sr}$) are used for the reaction with methanol, a large amount of SrOCH_{3} is produced, sufficient for the present study.

Two dye laser systems were used. The 5-W all lines output of a Coherent Innova $90-4$ argon ion laser was used to pump a broadband ($\sim 1 \mathrm{~cm}^{-1}$) Coherent 599-01 dye laser operated from 6600 to $7000 \AA$ with DCM dye. Either the 4880 or the $5145 \AA$ output of a Coherent Innova 20 argon ion laser was used to pump a single mode (~ 1 MHz) Coherent 699-29 computer-controlled ring dye laser operated near 6760 and $6890 \AA$ with DCM dye and LD 688 dye, respectively. The two output beams from the dye lasers were spatially overlapped and focused into the Broida oven. The output from one of the dye lasers was always tuned to the ${ }^{3} P_{1-1}{ }^{1} S_{0} \mathrm{Sr}$ atomic line at $6892 \AA$. The SrOCH_{3} laser-induced fluorescence signal was increased by 3 orders of magnitude when excited ${ }^{3} P_{1}$ Sr was used as a reactant. The other dye laser was used to probe for the reaction product, SrOCH_{3}.

For preliminary survey work, the low-resolution laser excitation spectrum was recorded by tuning the ring dye laser to the Sr atomic line and scanning the broadband laser ($1 \mathrm{~cm}^{-1}$) while detecting the laser-induced fluorescence through a red-pass filter (Schott RG 780).

Low-resolution resolved fluorescence spectra were recorded by tuning one laser to the Sr atomic line and the other laser to the SrOCH_{3} transition. The emission was focused onto the slits of a $0.64-\mathrm{m}$ monochromator and detected with a cooled photomultiplier tube (RCA C31034) using photon counting electronics.

High-resolution laser excitation spectra with narrow band-pass detection were recorded to observe the rotational structure (for example, (27)). For all high-resolution spectra the broadband laser was tuned to the Sr atomic transition.

The P_{21} and Q_{2} bandheads (the splitting of the two heads is too small to be resolved) of the ${ }^{2} E_{3 / 2}{ }^{2} A_{1}$ spin component were recorded by setting the monochromator (0.8 cm^{-1} resolution) in the P_{2} branch and scanning the ring laser through the connecting P_{21} and Q_{2} branches. The notation for a ${ }^{2} \Pi-{ }^{2} \Sigma$ transition, as described by Herzberg (28), will be used for this Hund's case (a) ${ }^{2} E-^{2} A_{1}$ transition. The monochromator acts as a narrowband-pass filter to select the rotational levels connected to the P_{21} and Q_{2} bandheads. Since the different K subbands have nearly the same origin (similar to a parallel transition), the P_{2} rotational lines of different K subbands are badly overlapped.

This proved useful in recording the P_{21} and Q_{2} bandheads. When the monochromator was set in the P_{2} branch, P_{21} and Q_{2} bandheads of 10 to 20 K subbands were recorded in a single scan (Fig. 1).

Individual rotational lines of the ${ }^{2} E_{3 / 2}-^{2} A_{1}$ component were recorded by setting the monochromator on the P_{21} and Q_{2} bandheads of a single subband ($0.3 \mathrm{~cm}^{-1}$ resolution). In these experiments the monochromator acts as a narrowband-pass filter to select rotational levels belonging to a single subband.

An iodine cell was used to calibrate the wavemeter of the computer-controlled dye laser. The absolute accuracy of our line positions is approximately $\pm 0.005 \mathrm{~cm}^{-1}$.

RESULTS AND DISCUSSION

A. Electronic Structure

Low-resolution laser excitation scans were recorded for SrOCH_{3} in the region 6000 $8200 \AA$. These spectra show vibronic structure belonging to two electronic transitions, $\tilde{B}^{2} A_{1}-\tilde{X}^{2} A_{1}$ and $\tilde{A}^{2} E-\tilde{X}^{2} A_{1}$. Figure 2 is a low-resolution laser excitation spectrum of the $\tilde{A}^{2} E-\tilde{X}^{2} A_{1}$ transition. The $\tilde{A}^{2} E-\tilde{X}^{2} A_{1}$ transition is analogous to the $\tilde{A}^{2} \Pi-\tilde{X}^{2} \Sigma^{+}$ transition of the linear SrOH , which is in turn analogous to the $A^{2} \Pi-X^{2} \Sigma^{+}$transition of the strontium monohalides. The bonding in SrOCH_{3}, like SrOH and $\mathrm{Sr} X$, is very ionic, $\mathrm{Sr}^{+}-{ }^{-} \mathrm{OCH}_{3}$, and there is one nonbonding valence electron. For the ground electronic state this electron is in the metal-centered $5 s\left(a_{1}\right)$ orbital, and the electronic transition involves the promotion of this valence electron to the $4 d-5 p(e)$ metal-centered hybrid orbitals.

The $\tilde{A}^{2} E$ state has a spin-orbit splitting of $267.5 \mathrm{~cm}^{-1}$, thus the ${ }^{2} E_{1 / 2}$ and ${ }^{2} E_{3 / 2}$ components are well separated and the $\tilde{A}^{2} E$ state exhibits Hund's case (a) coupling. Hund's case (a) coupling for a ${ }^{2} E$ state has been described in detail by Brown (18). $\dot{\mathbf{L}}$, $\hat{\mathbf{S}}, \hat{\mathbf{R}}$, and $\hat{\mathbf{J}}$ are the orbital angular momentum, spin angular momentum, rotational angular momentum, and the total angular momentum (exclusive of nuclear spin), respectively. The ${ }^{2} E$ state is strongly Hund's case (a), and the projections of $\hat{\mathbf{N}}, \hat{\mathbf{S}}$, and $\hat{\mathbf{J}}$ are quantized along the prolate top axis as K, Σ, and P, respectively, with $P=K$ $+\Sigma$. The projection of $\hat{\mathbf{L}}$ on the top is $\zeta_{e} d$. For a ${ }^{2} E-{ }^{2} A_{1}$ transition the selection rules are $\Delta K= \pm 1, \Delta J=0, \pm 1$.

Fig. 1. Laser excitation spectrum of the strontium monomethoxide $\mathrm{O}_{0}^{0} \tilde{A}^{2} E_{3 / 2}-\tilde{X}^{2} A_{1}$ transition. The blue degraded Q_{2} and P_{21} bandheads form a "head of heads" near $14787 \mathrm{~cm}^{-1}$.

FIG. 2. Low-resolution laser excitation spectrum of the $\tilde{A}^{2} E-\tilde{X}^{2} A_{1}$ transition in strontium monomethoxide. The broad feature to the blue is the $\tilde{A}^{2} E_{3 / 2}-\tilde{X}^{2} A_{1}$ transition while the $\tilde{A}^{2} E_{1 / 2}-\tilde{X}^{2} A_{1}$ feature lies between 680 and 690 nm . The sharp feature marked $0-0$ is the Q_{2} and P_{21} bandheads of the $\mathrm{O}_{0}^{0} \tilde{A}^{2} E-\bar{X}^{2} A_{1}$ electronic transition.
$\zeta_{e} d$ corresponds to Λ in the linear SrOH case with $\Lambda= \pm 1$ for the corresponding $\tilde{A}^{2} I I$ electronic state. The presence of the off-axis hydrogens can quench the projection of the orbital angular momentum, so usually $\zeta_{e}\left(\mathrm{SrOCH}_{3}\right)<\Lambda(\mathrm{SrOH})$. However, the hydrogens are far from the unpaired electron, which is located on the strontium atom, and very little quenching was expected. The Jahn-Teller effect also quenches the orbital angular momentum through the d portion of the $\zeta_{e} d$ parameter. The small difference in the spin-orbit splitting in SrOH and SrOCH_{3} is consistent with $\zeta_{e} \sim 1$. For linear SrOH ,

$$
E_{\mathrm{SO}}=A \Lambda \Sigma, \quad \text { where } \quad A=263.5 \mathrm{~cm}^{-1}
$$

while for the symmetric top SrOCH_{3}, only the product $a \zeta_{e} d$ can be determined,

$$
E_{\mathrm{SO}}=a \zeta_{e} d \Sigma, \quad \text { where } \quad a \zeta_{e} d=267.5 \mathrm{~cm}^{-1} .
$$

B. Vibrational Structure

Since the electronic transitions involve nonbonding orbitals, there is little change in the geometry in the different electronic states of SrOCH_{3}. As a result, the sequence structure is very compact and the Franck-Condon factors are quite diagonal. The bands involving the $\mathrm{Sr}-\mathrm{O}$ stretch have the largest Franck-Condon factors because this mode is associated with the metal atom.
SrOCH_{3} has 12 normal modes, 4 of a_{1} symmetry and 4 degenerate pairs of e symmetry, for a total of 8 vibrations. These vibrations have the following approximate description: $v_{1}\left(a_{1}\right.$ symmetry) is the CH_{3} symmetric stretch; $v_{2}\left(a_{1}\right)$ is the CH_{3} symmetric bend; $\nu_{3}\left(a_{1}\right)$ is the $\mathrm{C}-\mathrm{O}$ stretch; $\nu_{4}\left(a_{1}\right)$ is the $\mathrm{Sr}-\mathrm{O}$ stretch; $\nu_{5}(e)$ is the CH_{3} asymmetric stretch; $\nu_{6}(e)$ is the CH_{3} asymmetric bend; $\nu_{7}(e)$ is the $\mathrm{O}-\mathrm{CH}_{3}$ wag; and $\nu_{8}(e)$ is the $\mathrm{Sr}-\mathrm{O}-\mathrm{C}$ bend.

The observed vibrational frequencies are listed in Table I with estimated experimental uncertainties of $\pm 5 \mathrm{~cm}^{-1}$. Several weak ground state vibrational frequencies were detected by exciting the ${ }^{2} E-{ }^{2} A_{1} 0-0$ transition and resolving the fluorescence with a monochromator. The two modes which appear most strongly, ν_{4} and ν_{3}, have been assigned and reported previously $(2,7)$. The weak feature corresponding to a vibration of $1450 \mathrm{~cm}^{-1}$ is assigned to ν_{2}, the CH_{3} symmetric bend of a_{1} symmetry. There is one alternative assignment to this feature, that of the $\nu_{6} \mathrm{CH}_{3}$ asymmetric bend of e symmetry. This latter assignment was considered because the two modes in $\mathrm{CH}_{3} \mathrm{OH}$ which correspond to ν_{6} occur at 1475 and $1455 \mathrm{~cm}^{-1}$. We prefer the ν_{2} assignment because of symmetry considerations. Within the Born-Oppenheimer approximation for an electric dipole allowed electronic transition, $\Delta v=1$ for vibrations of a_{1} symmetry are allowed while $\Delta v=1$ for an e mode is forbidden (29). The vibronic feature corresponding to a $271 \mathrm{~cm}^{-1}$ vibration was assigned to $2 \nu_{8}$, the $\mathrm{Sr}-\mathrm{O}-\mathrm{C}$ bend. Although ν_{8} is of e symmetry, transitions involving two quanta in this vibration are allowed (29).

C. Rotational Structure

SrOCH_{3} is a prolate symmetric top and we use the $\hat{\mathbf{N}}^{2}$ form of the rotational Hamiltonian developed by Brown (18), extended by Hougen (19), and as explicitly described by Endo et al. (23);

$$
\hat{\mathbf{H}}_{\mathrm{ROT}}=(A-B) \hat{\mathbf{N}}_{z}^{2}+B \hat{\mathbf{N}}^{2},
$$

where $\hat{\mathbf{N}}=\hat{\mathbf{J}}-\hat{\mathbf{S}}$. Centrifugal distortion constants were needed,

$$
\hat{\mathbf{H}}_{\mathrm{CD}}=-D_{N} \hat{\mathbf{N}}^{4}-D_{N K} \hat{\mathbf{N}}^{2} \hat{\mathbf{N}}_{z}^{2}-D_{K} \hat{\mathbf{N}}_{z}^{4}
$$

The first-order electronic Coriolis interaction was also included for the ${ }^{2} E$ state

$$
\hat{\mathbf{H}}_{\mathrm{COR}}=-2 A \hat{\mathbf{N}}_{z} \hat{\mathbf{L}}_{z}+\eta_{e} \hat{\mathbf{N}}^{2} \hat{\mathbf{N}}_{z} \hat{\mathbf{L}}_{z}+\eta_{K} \hat{\mathbf{N}}_{z}^{3} \hat{\mathbf{L}}_{z}
$$

TABLE I
Vibrational Frequencies of SrOCH_{3}

State	mode	frequency (cm^{-1})
$\mathrm{X}^{2} \mathrm{~A}_{1}$	$\nu_{2}\left(\mathrm{CH}_{3}\right.$ sym. bend, $\left.a_{1}\right)$	1450
	$\nu_{3}\left(\mathrm{C}-0\right.$ stretch, a_{1})	1138
	$\nu_{4}\left(\mathrm{Sr}-0\right.$ stretch, a_{1})	405
	$2 \nu_{4}$	809
	$\nu_{3}+\nu_{4}$	1545
	$2 \nu_{8}$ (Sr-O-C bend)	271
$\check{A}^{2} \mathrm{E}$	v_{3} (c-o stretch, a_{1})	1140, 1150 ${ }^{\text {a }}$
	$\nu_{4}\left(\mathrm{Sr}-0\right.$ stretch, a_{1})	418, 415 ${ }^{\text {a }}$

a Reference 8.

The energy levels in the E state are split into $(+l)$ and $(-l)$ stacks by this coupling as explained by Herzberg (29). The leading Coriolis term in the Hamiltonian provides a diagonal matrix element of $-2 A \zeta_{t} K$. The effect of this interaction changes the origin of the different K subbands, and when $\zeta_{1}=1$ all subbands have nearly the same origin. Although the ${ }^{2} E-{ }^{2} A_{1}$ transition is formally a perpendicular transition ($\Delta K= \pm 1$), it has the appearance of a parallel transition and thus is very compact (29).

The spin-rotation interaction was included in the ground state Hamiltonian:

$$
\hat{\mathbf{H}}_{\mathrm{SR}}=\epsilon_{a a} \hat{\mathbf{N}}_{z} \hat{\mathbf{S}}_{z}+1 / 4\left(\epsilon_{b b}+\epsilon_{c c}\right)\left(\hat{\mathbf{N}}_{+} \hat{\mathbf{S}}_{-}+\hat{\mathbf{N}}_{-} \hat{\mathbf{S}}_{+}\right)
$$

$\epsilon_{a a}$ was not well determined since this term is significant only for low J lines which could not be detected.

For the excited state, the spin-orbit interaction was included with the term

$$
\hat{\mathbf{H}}_{\mathrm{SO}}=a \hat{\mathbf{L}}_{z} \hat{\mathbf{S}}_{z},
$$

which produces a diagonal matrix element $a \zeta_{l} d \Sigma$. All of the matrix elements of the various terms in the Hamiltonian are explicitly listed by Endo et al. (23). For the ${ }^{2} A_{1}$ state, the matrix elements for $\hat{\mathbf{H}}_{\mathrm{COR}}$ and $\hat{\mathbf{H}}_{\text {SO }}$ are set to zero.

The $0-0$ band of the $\tilde{A}^{2} E_{3 / 2}-\tilde{X}^{2} A_{1}$ transition was recorded at high resolution and analyzed. The $\tilde{A}^{2} E_{1 / 2}-\tilde{X}^{2} A_{1}$ spin component was too compact and the individual rotational lines were unassignable. All the transitions were measured using the monochromator as a narrowband filter to simplify the spectra.

The $\tilde{A}^{2} E_{3 / 2}-\tilde{X}^{2} A_{1}$ transition has six branches per K subband. These are spaced by approximately " $-3 B^{\prime \prime}\left(P_{2}\right), "-B$ " (P_{21} and Q_{2}), " $+B$ " (Q_{21} and R_{2}), and " $+3 B$ " $\left(R_{21}\right)$ at low J, and the $-B$ and $+B$ branches are doubled due to the spin-rotation interaction in the ground state. Spin-rotation doubling was resolved in the $+B$ branch. No sign of j-type doubling was observed (analogous to Λ-type doubling in a Π state) because no transitions connecting to $K^{\prime \prime}=1$ in the ${ }^{2} E_{1 / 2}$ component were recorded. Individual rotational lines were recorded in all of the branches except for the $-B$ branch.

Figure 1 is a high-resolution laser excitation spectrum of the $0_{0}^{0}-B$ bandheads recorded through the monochromator. This is a high-resolution scan of the peak marked $0-0$ in the low-resolution ${ }^{2} E_{3 / 2}{ }^{2} A_{1}$ spectrum in Fig. 2. K^{\prime} and $K^{\prime \prime}$ are given above each bandhead. The $-3 B$ and $-B$ branches form blue degraded bandheads. The $-B$ bandheads of different K subbands are very close together due to the first-order Coriolis interaction and actually form a red degraded "head of heads" as shown. The bandhead intensities are not reliable so the ($K^{\prime}=2, K^{\prime \prime}=3$) $-B$ bandhead appears to be the most intense because of the placement of the monochromator filter.

The effect of nuclear spin statistics of the three equivalent hydrogens are clearly shown (Fig. 1) by the $2: 1: 1: 2$ intensity alternation of different K subbands. The intensity of a subband is doubled for $K^{\prime \prime}=0,3,6, \ldots$ The ground state $K^{\prime \prime}$ assignment was straightforward. The $-1 B$ bandheads were recorded by detecting fluorescence in the $-3 B$ branches (Fig. 1). The $K^{\prime}=1-K^{\prime \prime}=0$ subbandhead appears weak (Fig. 2) because for this subband there is no connection between the $-3 B$ and $-B$ branches (like a ${ }^{2} \Pi-^{2} \Sigma^{+}$transition). The $-3 B$ and $-B$ branches terminate on rotational states of different symmetry (parity) in the excited state, separated by j doubling (like Λ doubling). For all other subbands, both these symmetry components (A_{1} and A_{2}, or E) are equally populated by the laser because for $K^{\prime \prime} \neq 0$ the ground state rotational
levels are degenerate (A_{1} and A_{2} or E, see Ref. (29, p. 91)). Thus, the $-3 B$ and $-B$ branches appear in the excitation spectrum. This assignment was also consistent with the nuclear spin statistics for the other K subbands.

There remain two possible assignments for the remaining bands, either p or r type in K. The data were fit using both possible excited state K^{\prime} assignments. One choice was eliminated because the ground state K-stack origins determined from the fit were physically unreasonable.

The observed SrOCH_{3} transition wavenumbers which were used in the fit are listed in Table II. A sample spectrum of individual P-branch lines is shown in Fig. 3. Lines from six different subbands were recorded $\left[\left(K^{\prime}, K^{\prime \prime}\right)=(10,9),(7,6),(4,3),(0,1),(1\right.$, 0), $(2,3)]$. Low J lines could not be observed due to the badly overlapped subbands. Six hundred and twenty lines were fit with 14 parameters with a standard deviation of $0.003 \mathrm{~cm}^{-1}$, close to the estimated measurement error. The molecular constants determined are given in Table III.

The values of the parameters a (spin-orbit), $\zeta_{e}\left(\langle\Lambda| L_{z}|\Lambda\rangle\right)$, and d (Jahn-Teller quenching) are completely correlated so the product $\zeta_{e} d$ was set to the value of 1 in the fit. Since the ${ }^{2} E_{1 / 2}$ spin component was not rotationally analyzed, the value of the spin-orbit constant, a, was adjusted to reproduce the location of the $0-{ }^{2} E_{1 / 2}{ }^{2} A_{1}$ subbandheads observed at high resolution. The values of ζ_{e} and d are expected to be less than or equal to 1 so the value of the spin-orbit constant in $\mathrm{SrOCH}_{3}(267.53$ cm^{-1}) is slightly larger than the corresponding SrOH value of $263.52 \mathrm{~cm}^{-1}$.

The constants A^{\prime}, a, and ζ_{t} are also correlated and cannot be simultaneously determined. For the final fit $A^{\prime \prime}$ was set to $5.1851 \mathrm{~cm}^{-1}$, the value Endo et al. (23) observed for $\mathrm{CH}_{3} \mathrm{O}$. The parameter ζ_{t} was badly correlated with other parameters so it was fixed to the value of 1 .

There is no experimental evidence for a Jahn-Teller effect in the $\tilde{A}^{2} E$ state of SrOCH_{3}. The vibrational structure for the Jahn-Teller active mode ν_{8}, the $\mathrm{Sr}-\mathrm{O}-\mathrm{C}$ bend, displayed the selection rule $\Delta v_{8}= \pm 2$ not $\Delta v_{8}= \pm 1$. The molecular parameters derived from the rotational structure have reasonable values consistent with the assumptions $\zeta_{e} d$ and $\zeta_{t}=1$.

The $\tilde{A}^{2} E$ state in SrOCH_{3} is quite different from the $\tilde{X}^{2} E$ state of OCH_{3}. The electronic structure of the $\tilde{A}^{2} E$ state of SrOCH_{3} can be viewed as a nonbonding, unpaired electron in a $p \pi-d \pi$ orbital polarized away from a Sr^{2+} core. The large Sr^{2+} core separates the closed-shell ${ }^{-} \mathrm{OCH}_{3}$ ligand from the unpaired electron. The three off-axis hydrogens are thus far away from the unpaired electron. The unpaired electron sees a locally linear environment resulting in a spin-orbit coupling constant similar to SrOH and an unobservably small Jahn-Teller effect. The unpaired electron does not communicate with the three hydrogen atoms.

The rotational structure of SrOCH_{3} is consistent with a $C_{3 v}$ geometry for both $\tilde{A}^{2} E$ and $\tilde{X}^{2} A_{1}$ electronic states. The covalent $\mathrm{CH}_{3} \mathrm{OH}$ molecule has C_{s} symmetry, but if the H atom bonding to the oxygen is replaced by a more electronegative atom such as Li or Na , ab initio calculations predict a $C_{3 v}$ structure (30,31).

The electronic charge distribution is $M^{+}-{ }^{-} \mathrm{OCH}_{3}$ with some delocalization of the negative charge over the CH_{3} group. Calculations on $\mathrm{CH}_{3} \mathrm{O}^{-}$predict (32) that the O^{-} donates electrons into an unoccupied π^{*} orbital on the carbon atom. This interaction shortens the $\mathrm{O}-\mathrm{C}$ bond, lengthens the $\mathrm{C}-\mathrm{H}$ bonds, and decreases the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle.

TABLE II

Observed Transitions in the $\breve{A}^{2} E-\check{X}^{2} A_{1}$ Band of $\mathrm{SrOCH}_{3}\left(\mathrm{~cm}^{-1}\right)$

a $K^{\prime}=0, K^{n \prime}=1$												
J	$\mathrm{P}_{2}(\mathrm{~J})$			$Q_{21}(J)$			$\mathrm{R}_{2}(\mathrm{~J})$			$\mathrm{R}_{21}(J)$		
23.5				14	790.173	-0.004	14	790.326	-0.008			
24.5				14	790.326	0.020	14	790.468	-0.006			
25.5				14	790.453	-0.001	14	790.609	-0.007			
26.5				14	790.594	-0.002	14	790.749	-0.012			
27.5	14	781.380	-0.002	14	790.743	0.002	14	790.905	-0.004			
28.5	14	781.190	-0.001	14	790.893	0.006	14	791.050	-0.008			
29.5	14	781.004	0.000	14	791.036	0.001	14	791.211	0.002			
30.5	14	780.821	0.004	14	791.184	-0.001	14	791.365	0.002			
31.5	14	780.635	0.002	14	791.338	0.000	14	791.523	0.005	14	796.867	0.000
32.5	14	780.449	-0.000	14	791.495	0.002	14	791.682	0.005	14	797.189	-0.002
33.5	14	780.269	-0.000	14	791.650	0.000	14	791.837	0.001	14	797.517	-0.000
34.5	14	780.094	0.002	14	791.817	0.007	14	792.000	0.002	14	797.847	0.000
35.5	14	779.916	-0.000	14	791.959	-0.001	14	792.168	0.005	14	798.177	-0.001
36.5	14	779.742	-0.001	14	792.139	0.005	14	792.336	0.006	14	798.513	0.001
37.5	14	779.575	0.002	14	792.306	0.005	14	792.501	0.003	14	798.844	-0.002
38.5	14	779.403	0.000	14	792.471	0.003	14	792.667	-0.001	14	799.182	-0.003
39.5	14	779.236	-0.000	14	792.636	-0.002	14	792.841	-0.000	14	799.526	0.000
40.5	14	779.071	-0.001	14	792.811	0.000	14	793.011	-0.005	14	799.863	-0.004
41.5	14	778.905	-0.004	14	792.991	0.006	14	793.191	-0.003	14	800.208	-0.003
42.5	14	778.747	-0.003	14	793.164	0.003	14	793.370	-0.004	14	800.558	-0.000
43.5	14	778.592	-0.000	14	793.343	0.002	14	793.558	0.002	14	800.907	-0.000
44.5	14	1/8.436	0.000	14	793.523	0.002	14	793.740	-0.000	14	801.255	-0.003
45.5	14	778.285	0.001	14	793.711	0.006	14	793.925	-0.001	14	801.608	-0.003
46.5	14	778.136	0.004	14	793.892	0.001	14	794.123	0.008	14	801.962	-0.004
47.5	14	777.983	0.000	14	794.073	-0.004	14	794.304	-0.001	14	802.321	-0.002
48.5	14	777.834	-0.001	14	794.264	-0.003	14	794.509	0.010	14	802.679	-0.004
49.5	14	777.689	-0.002	14	794.455	-0.004	14	794.692	-0.000	14	803.045	-0.000
50.5	14	777.549	0.000	14	794.655	0.001				14	803.408	-0.000
51.5	14	777.406	-0.003	14	803.772	-0.003						
52.5				14	804.140	-0.004						

$K^{\prime}=2, K^{\mathbf{H}}=3$												
J	$\mathrm{P}_{2}(J)$			$\mathrm{Q}_{21}{ }^{(J)}$			$\mathrm{R}_{2}(J)$			$\mathrm{R}_{21}(\mathrm{~J})$		
21.5							14	790.433	0.001			
22.5				14	790.418	0.004	14	790.570	0.002			
23.5				14	790.552	0.002	14	790.705	-0.000			
24.5				14	790.691	0.005	14	790.845	-0.000			
25.5				14	790.829	0.002	14	790.988	0.000			
26.5				14	790.970	0.002	14	791.133	0.000			
27.5	14	781.760	0.005	14	791.118	0.006	14	791.280	0.000			
28.5	14	781.567	0.003	14	791.262	0.004	14	791.429	-0.000			
29.5	14	781.378	0.002	14	791.409	0.002	14	791.579	-0.001			
30.5	14	781.190	0.000	14	791.560	0.004	14	791.735	0.001			
31.5	14	781.003	-0.001	14	791.710	0.001	14	791.887	-0.002			
32.5	14	780.821	-0.001	14	791.867	0.003	14	792.046	-0.001			
33.5	14	780.641	-0.001	14	792.024	0.003	14	792.206	-0.001			
34.5	14	780.461	-0.003	14	792. 182	0.002	14	792.366	-0.003			
35.5	14	780.287	-0.002	14	792.336	-0.005	14	792.531	-0.002			
36.5	14	780.114	-0.002	14	792.505	-0.000	14	792.696	-0.004			
37.5	14	779.944	-0.001	14	792.669	-0.001	14	792.866	-0.002			
38.5	14	779.773	-0.002	14	792.840	0.000	14	793.036	-0.004			
39.5	14	779.607	-0.002	14	793.005	-0.004	14	793.213	-0.000			
40.5	14	779.443	-0.001	14	793.179	-0.002	14	793.389	-0.000	14	800.238	-0.000
41.5	14	779.280	-0.003	14	793.353	-0.003	14	793.562	-0.004	14	800.578	-0.005
42.5	14	779.121	-0.001	14	793.531	-0.002	14	793.746	0.000	14	800.928	-0.001
43.5	14	778.967	0.001	14	793.713	0.001	14	793.932	0.004	14	801.277	-0.001
44.5	14	778.810	0.000	14	793.895	0.002	14	794.114	0.001	14	801.628	-0.000
45.5	14	778.658	0.001	14	794.078	0.001	14	794.305	0.007	14	801.985	0.002
46.5	14	778.508	0.002	14	794.264	0.001	14	794.494	0.006	14	802.336	-0.001
47.5	14	778.359	0.002	14	794.452	0.002	14	794.681	0.003	14	802.691	-0.004
48.5	14	778.210	0.000	14	794.647	0.007	14	794.872	0.001	14	803.052	-0.003
49.5	14	778.065	-0.000	14	794.839	0.007	14	795.062	-0.003	14	803.414	-0.002
50.5	14	777.923	-0.000	14	795.027	0.002				14	803.775	0.005
51.5	14	777.782	-0.000							14	804.142	-0.004
52.5										14	804.513	-0.001
53.5										14	804.884	-0.001
54.5										14	805.257	-0.000
55.5										14	805.632	-0.000
56.5										14	806.013	0.002
57.5										14	806.393	0.004
58.5										14	806.774	0.004
59.5										14	807.162	0.008

TABLE II-Continued

c												
J	$\mathrm{P}_{2}(J)$			$Q_{21}(J)$			$\mathrm{R}_{2}(J)$			$\mathrm{R}_{21}{ }^{(J)}$		
18.5	14	782.250	-0.002									
19.5	14	782.040	-0.001	14	788.831	-0.015						
20.5	14	781.833	-0.000	14	788.831	0.000	14	788.966	-0.011			
21.5	14	781.626	-0.000	14	788.966	0.004	14	789.100	-0.012			
22.5	14	781.425	0.001	14	789.100	0.005	14	789.238	-0.009			
23.5	14	781.221	0.000	14	789.238	0.008	14	789.375	-0.011			
24.5	14	781.018	-0.003	14	789.375	0.007	14	789.522	-0.004	14	793.706	0.001
25.5	14	780.824	0.000	14	789.518	0.011	14	789.663	-0.005	14	794.015	0.000
26.5	14	780.627	-0.001	14	789.653	0.004	14	789.815	0.001	14	794.325	-0.001
27.5	14	780.434	-0.001	14	789.798	0.005	14	789.960	-0.000	14	794.640	-0.000
28.5	14	780.246	0.000	14	789.945	0.006	14	790.112	0.001	14	794.957	0.000
29.5	14	780.057	0.000	14	790.092	0.004	14	790.265	0.003	14	795.277	0.002
30.5	14	779.870	0.000	14	790.240	0.002	14	790.421	0.005	14	795.594	-0.001
31.5	14	779.687	0.000	14	790.392	0.001	14	790.576	0.004	14	795.918	-0.000
32.5	14	779.502	-0.002	14	790.551	0.004	14	790.732	0.003	14	796.246	0.002
33.5	14	779.320	-0.004	14	790.702	-0.000	14	790.893	0.003	14	796.573	0.002
34.5	14	779.145	-0.002	14	790.863	0.000	14	791.051	-0.000	14	796.902	0.001
35.5	14	778.970	-0.001	14	791.026	0.001	14	791.219	0.003	14	797.232	0.000
36.5	14	778.798	-0.000	14	791.191	0.003	14	791.383	-0.000	14	797.566	0.000
37.5	14	778.628	0.000	14	791.351	-0.002	14	791.555	0.002	1.4	797.899	-0.002
38.5	14	778.459	0.000	14	791.521	-0.000	14	791.723	-0.000	14	798.234	-0.004
39.5	14	778.289	-0.003	14	791.691	-0.001	14	791.900	0.003	14	798.580	0.000
40.5	14	778.126	-0.002	14	791.867	0.001	14	792.070	-0.002	14	798.920	-0.002
41.5	14	777.966	-0.000	14	792.037	-0.003	14	792.250	0.000	14	799.267	0.000
42.5	14	777.807	0.000	14	792.217	-0.004	14	792.430	0.000	14	799.615	0.001
43.5	14	777.649	-0.000	14	792.392	-0.003	14	792.612	0.000	14	799.962	-0.000
44.5	14	777.495	0.001	14	792.574	-0.003	14	792.796	-0.000	14	800.312	-0.001
45.5	14	777.340	-0.000	14	792.759	-0.001	14	792.986	0.002	14	800.669	0.002
45.5	14	777.188	-0.001	14	792.946	-0.000				14	801.023	0.001
47.5	14	777.040	-0.001							14	801.379	-0.001
48.5	14	776.895	0.000							14	801.739	-0.001
49.5	14	776.751	0.001							14	802.104	0.002
50.5	14	776.610	0.001							14	802.464	-0.001
51.5	14	776.471	0.002							14	802.831	-0.001
52.5	14	776.331	0.000							14	803.200	-0.001
53.5	14	776.196	0.000							14	803.5/4	0.001
54.5	14	776.059	-0.003									
55.5	14	775.928	-0.004									
56.5	14	775.797	-0.005									

J	$\mathbf{P}_{2}(J)$			$Q_{21}(\mathrm{~J})$			$\mathrm{R}_{2}(\mathrm{~J})$			$\mathrm{R}_{21}(\mathrm{~J})$		
13.5	14	782.464	-0.006									
14.5	14	782.252	0.002									
15.5	14	782.044	0.013									
16.5	14	781.814	0.000									
17.5	14	781.592	-0.006									
18.5	14	781.384	-0.002				14	787.838	-0.010			
19.5	14	781.170	-0.005	14	787.838	0.004	14	787.970	-0.008	14	791.309	-0.010
20.5	14	780.965	-0.002	14	787.970	0.007	14	788.101	-0.008	14	792.620	0.002
22.5	24	780.760	-0.001	14	788.101	0.008	14	788.235	-0.009	14	791.909	-0.010
22.5	14	780.558	0.000	14	788.235	0.008	14	788.372	-0.008	14	792.221	-0.001
23.5	14	780.358	0.001	14	788.372	0.009	14	788.502	-0.017	14	792.524	-0.003
24.5	14	780.158	0.000	14	788.502	0.001	14	788.650	-0.009	14	792.841	0.005
25.5	14	779.961	0.000	14	788.650	0.010	14	788.797	-0.005	14	793.145	-0.001
26.5	14	779.766	0.000	14	788.797	0.014	14	788.940	-0.007	14	793.453	-0.004
27.5	14	779.572	-0.000	14	788.940	0.014	14	789.080	-0.014	14	793.767	-0.005
28.5	14	779.382	-0.000	14	789.080	0.007	14	789.236	-0.009	14	794.084	-0.005
29.5	14	779.190	-0.003	14	789.236	0.013	14	789.389	-0.007	14	794.407	-0.000
30.5	14	779.005	-0.003	14	789.389	0.016	14	789.542	-0.007	14	794.729	0.000
31.5	14	778.823	-0.001	14	789.542	0.016	14	789.704	-0.002	14	795.051	-0.000
32.5	14	778.645	0.001	14	789.686	0.004	14	789.864	-0.000	14	795.373	-0.003
33.5	14	778.467	0.002	14	789.838	-0.001	14	790.024	-0.001	14	795.703	-0.001
34.5	14	778.286	-0.000	14	790.003	0.004	14	790.188	-0.000	14	796.034	-0.000
35.5	14	778.113	0.000	14	790.164	0.003	14	790.353	-0.000	14	796.369	0.002
36.5	14	777.939	-0.000	14	790.328	0.003	14	790.521	0.000	14	796.702	0.002
37.5	14	777.769	0.000	14	790.496	0.005	14	790.692	0.001	14	797.038	0.001
38.5	14	777.601	-0.000	14	790.663	0.003	14	790.862	0.000	14	797.376	0.001
39.5	14	777.434	-0.001	14	790.828	-0.002	14	791.032	-0.003	14	797.715	-0.000
40.5	14	777.272	0.000	14	791.003	-0.000	14	791.214	0.002	14	798.053	-0.005
41.5	14	777.111	0.000	14	791.177	-0.002	14	791.390	0.000	14	798.400	-0.003
42.5	14	776.955	0.004	14	791.355	-0.001	14	791.574	0.003	14	798.749	-0.001
43.5	24	776.799	0.004	14	791.537	0.001	14	791.757	0.004	14	799.101	0.000
44.5	14	776.642	0.002	14	791.714	-0.004	14	791.937	-0.000	14	799.453	0.001
45.5	14	776.488	0.001	14	791.902	0.000	14	792.126	0.001	14	799.806	0.000
46.5	14	776.337	-0.000	14	792.086	-0.002	14	792.314	0.000	14	800.161	-0.000
47.5	14	776.188	-0.000	14	792.276	-0.000	14	792.504	-0.000	14	800.520	0.000
48.5	14	776.040	-0.003	14	792.466	-0.001	14	792.698	-0.000	14	800.879	-0.001

TABLE II-Continued

d $K^{\prime}=7, K^{\prime \prime}=6$												
J	$\mathrm{P}_{2}(\mathrm{~J})$			$Q_{21}(J)$			$\mathrm{R}_{2}(\mathrm{~J})$			$\mathrm{R}_{21}(\mathrm{~J})$		
49.5	14	775.900	0.000		792.661	0.001	14	792.898	0.003	14	801.240	-0.002
50.5	14	775.758	-0.000	14	792.857	0.001	14	793.098	0.005	14	801.607	-0.000
51.5	14	775.620	0.000	14	793.050	-0.002	14	793.300	0.007	14		
52.5	14	775.481	-0.001	14	793.254	0.001				14	802.341	-0.002
53.5	14	775.344	-0.003							14	802.711	-0.003
54.5 55.5	14	775.216 775.084	0.000 -0.000							14	803.083	-0.004
55.5 56.5	14	775.084 774.961	$\begin{array}{r} -0.000 \\ 0.003 \end{array}$									

e	$\mathrm{K}^{\prime}=10, \mathrm{~K}^{\prime \prime}=9$										
J	$P_{2}(J)$		$Q_{21}(\mathrm{~J})$			$\mathbf{R}_{2}(J)$			$\mathrm{R}_{21}(\mathrm{~J})$		
21.5	14779.773	-0.001									
22.5	14779.572	-0.000				14	787.382	-0.008			
23.5	14779.372	0.001	14	787.378	0.006	14	787.530	0.000			
24.5	14779.171	-0.001	14	787.517	0.006	14	787.665	-0.005			
25.5	14778.975	-0.000	14	787.657	0.006	14	787.809	-0.005			
26.5	14778.782	0.000	14	787.797	0.003	14	787.962	0.002			
27.5	14778.588	-0.002	14	787.945	0.007	14	788.104	-0.003	14	792.784	0.002
28.5	14778.404	0.003	14	788.092	0.007	14	788.254	-0.003	14	793.096	-0.003
29.5	14778.215	0.001	14	788.239	0.004	14	788.402	-0.007	14	793.416	-0.00
30.5	14778.030	0.002	14	788.387	0.001	14	788.564	0.000	14	793.743	0.003
31.5	14777.845	-0.000	14	788.546	0.006	14	788.723	0.001	14	794.060	-0.003
32.5	14777.664	-0.000	14	788.704	0.008	14	788.878	-0.002	14	794.389	0.000
33.5	14777.487	0.001	14	788.856	0.002	14	789.046	0.005	14	794.716	-0.000
34.5	14777.307	-0.002	14	789.024	0.010	14	789.208	0.003	14	795.050	0.003
35.5	14777.134	-0.001	14	789.185	0.007	14	789.365	-0.005	14	795.376	-0.002
36.5	14776.960	-0.003	14	789.345	0.003	14	789.536	-0.001	14	795.711	-0.002
37.5	14776.794	0.000	14	789.516	0.007	14	789.710	0.002	14	796.050	-0.000
38.5	14776.625	-0.002	14	789.678	0.000	14	789.883	0.003	14	796.390	0.000
39.5	14776.461	-0.000	14	789.853	0.003				14	796.729	-0.001
40.5	14776.298	-0.001	14	790.023	0.000	14	790.234	0.002	14	797.072	-0.002
41.5	14 776.137	-0.001	14	790.202	0.002	14	790.412	0.001	14	797.417	-0.003
42.5	14775.980	-0.000	14	790.375	-0.002	14	790.592	0.000	14	797.762	-0.005
43.5	14775.826	0.001	14	790.567	0.009	14	790.767	-0.007	14	798.112	-0.005
44.5	14775.671	0.000				14	790.961	0.000	14	798.465	-0.005
45.5	14775.519	-0.000	14	790.929	0.003	14	791.148	-0.001	14	798.821	-0.003
46.5	14775.372	0.002	14	791. 116	0.003	14	791.339	0.000	14	799.180	-0.001
47.5	14775.220	-0.002	14	791.304	0.002	14	791.535	0.003	14	799.540	-0.000
48.5	14775.079	0.000	14	791.489	-0.003	14	791.726	0.000	14	799.905	0.003
49.5	14774.933	-0.002	14	791.685	-0.002	14	791.925	0.002	14	800.267	0.002
50.5	14 774.794	-0.001	14	791.881	-0.001	14	792.120	-0.001	14	800.633	0.002
51.5	14774.657	-0.001	14	792.080	-0.001	14	792.323	0.000			
52.5	14 774.521	-0.000	14	792.270	-0.011	1.4	792.529	0.002			
53.5	14 774.391	0.002	14	792.472	-0.012						
54.5	14774.255	-0.001									
55.5	14774.129	0.000									
56.5	14774.001	-0.000									
57.5	14773.874	-0.003									
f											
$\mathrm{X}^{\prime}-1, \mathrm{~K}^{\mathbf{n}}=0$											
J	$\mathrm{R}_{21}(\mathrm{~J})$										
31.5	$14796.660 \quad 0.007$										
32.5	$14796.980 \quad 0.001$										
33.5	14797.312	0.007									
34.3	$14 / 91.641$	0.001									
35.5	14797.969	0.003									
36.5	14798.303	0.004									
37.5	14798.638	0.003									
38.5	14798.969 -0.	-0.004									
39.5	14799.311 -0.	-0.003									
40.5	14799.652 -0.	-0.004									
41.5	14799.996 -0.	-0.004									
42.5	14800.345 -0.	-0.002									
43.5	$14800.694-0$	-0.001									
44.5	14801.047	0.000									
45.5	14801.399 0	0.000									
46.5	$14801.753-0$	-0.001									
47.5	14802.111	-0.001									
48.5	14802.468 -0.	-0.004									
49.5	$14802.830-0$.	-0.003									
50.5	14803.201	0.004									
51.5	14803.563	0.000									
52.5	$14803.931-0$	-0.001									
53.5	14804.3020	0.000									
54.5	14804.6750	0.000									

14777

Fig. 3. High-resolution laser excitation spectrum of the ${ }^{\prime} P_{2}\left(J, K^{\prime \prime}=3\right)$ branch of the O_{0}^{0} band. The monochromator, set on the connecting Q_{2} and P_{21} bandheads, acts as a narrowband-pass filter to select the lines from a single branch of a single subband.

As a result of the changes in bond order, the O-C vibrational frequency increases while the $\mathrm{C}-\mathrm{H}$ frequencies decrease. These changes are manifestations of an effect called "anionic hyperconjugation" (33, 34).

TABLE III
The Molecular Constants for the 0-0 Band of the $\tilde{A}^{2} E-\tilde{X}^{2} A_{1}$ Transition of $\mathrm{SrOCH}_{3}\left(\mathrm{~cm}^{-1}\right)$

$A^{\prime \prime}$	$5.18511^{\text {a }}$
$B^{\prime \prime}$	$8.39706(45) \times 10^{-2} \mathrm{~b}$
$\mathrm{D}_{\mathrm{K}}{ }^{\prime \prime}$	4.151(29) $\times 10^{-3}$
$\mathrm{D}_{\mathrm{N}}{ }^{\prime \prime}$	$1.07(10) \times 10^{-8}$
$\mathrm{D}_{\mathrm{NK}}{ }^{\prime \prime}$	$1.431(59) \times 10^{-6}$
${ }^{6}$ aa"	-1.78(38) $\times 10^{-3}$
${ }^{\epsilon} \mathrm{bb}^{+\epsilon} \mathrm{cc}{ }^{\prime \prime}$	$1.586(28) \times 10^{-3}$
To'	14658.8721(9)
$\mathrm{a}_{\text {SO }}{ }^{\prime}$	267.53(30) ${ }^{\text {c }}$
$\zeta e^{d^{\prime}}$	$1.0{ }^{\text {d }}$
$5 t^{\prime}$	$1.0{ }^{\text {d }}$
A^{\prime}	5.15244(16)
B'	8.50396(45) $\times 10^{-2}$
$\mathrm{D}_{\mathrm{K}}{ }^{\prime}$	4.155(28) $\times 10^{-3}$
$\mathrm{D}_{\mathrm{N}}{ }^{\prime}$	$1.08(10) \times 10^{-8}$
$\mathrm{D}_{\mathrm{NK}}{ }^{\prime}$	$1.261(62) \times 10^{-6}$
$\eta{ }^{\prime}$	$2.95(17) \times 10^{-6}$
${ }^{\prime}{ }_{K}{ }^{\prime}$	$1.676(10) \times 10^{-2}$

[^1]There are four structural parameters for SrOCH_{3}, so some assumptions are required in order to extract a geometry from a single B_{0} value. The photoelectron spectrum of $\mathrm{CH}_{3} \mathrm{O}^{-}$recorded by Engelking et al. (35) suggests that the $\mathrm{C}-\mathrm{O}$ bondlength is similar for $\mathrm{CH}_{3} \mathrm{O}^{-}$and $\mathrm{CH}_{3} \mathrm{O}$. On this basis we choose $r_{\mathrm{CO}}=1.376 \AA$ from the microwave work of Endo et al. (23) on $\mathrm{CH}_{3} \mathrm{O}$. If we choose a CH bondlength of $1.0937 \AA$ (assumed in Ref. (23)) and an H-C-H bond angle of 110.66° (derived in Ref. (23)) to match the OCH_{3} values, then $r_{0}=2.123 \AA$ for $\mathrm{Sr}-\mathrm{O}$ in the $\tilde{X}^{2} A_{1}$ state. In the excited $\tilde{A}^{2} E$ state $r_{0}=2.104 \AA$ for $\mathrm{Sr}-\mathrm{O}$ and the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle is 107.99°. This angle is derived from the A^{\prime} value with $\zeta_{t}=1$ and the CH bondlength equal to $1.0937 \AA$. The $\mathrm{Sr}-\mathrm{O}$ bondlength is thus $0.02 \AA$ shorter in the excited state and $\mathrm{H}-\mathrm{C}-\mathrm{H} 2.7^{\circ}$ smaller than in the ground state.

Consideration of the effects of anionic hyperconjugation will change these conclusions slightly but we are unable to find a suitable state-of-the-art ab initio calculation (large basis set and large scale configuration interaction). The $\mathrm{C}-\mathrm{O}$ bondlength ranges from 1.33 to $1.40 \AA$ in $\mathrm{CH}_{3} \mathrm{O}^{-}$crystal structures (36,37). If the CH bondlength in SrOCH_{3} is increased to $1.12 \AA$ and the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle decreased to 103°, then the $\mathrm{Sr}-$ O bondlength is $2.103 \AA$ in the $\tilde{X}^{2} A_{1}$ state. These $\mathrm{Sr}-\mathrm{O}$ bondlengths compare favorably with the $\mathrm{Sr}-\mathrm{O}$ bondlength of $2.111 \AA$ derived for the SrOH molecule. (9)

CONCLUSION

The rotational analysis of the $0-0$ band of the $\tilde{A}^{2} E-\tilde{X}^{2} A_{1}$ transition of SrOCH_{3} was carried out by laser excitation spectroscopy with narrowband fluorescence detection. This work is the first high-resolution analysis of a metal alkoxide molecule. The $\tilde{A}^{2} E$ state shows no sign of a Jahn-Teller effect. The $\mathrm{Sr}-\mathrm{O}$ bondlength was found to be $2.12 \AA$, similar to the value in the SrOH molecule.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation (Grant CHE-8608630). Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

RECEIVED: July 17, 1987

REFERENCES

1. C. R. Brazier, P. F. Bernath, S. Kinsey-Nielson, and L. C. Ellingboe, J. Chem. Phys. 82, 10431045 (1985).
2. C. R. Brazier, L. C. Ellingboe, S. Kinsey-Nielsen, and P. F. Bernath, J. Amer. Chem. Soc. 108, 2126-2132 (1986).
3. L. C. Ellingboe, A. M. R. P. Bopegedera, C. R. Brazifr, and P. F. Bernath, Chem. Phys. Lett. 126, 285-289 (1986).
4. L. C. Ellingboe and P. F. Bernath, J. Amer. Chem. Soc. 108, 5017-5018 (1986).
5. C. R. Brazier and P. F. Bernath, J. Chem. Phys. 86, 5918-5922 (1987).
6. A. M. R. P. Bopegedera, C. R. Brazier, and P. F. Bernath, J. Phys. Chem. 91, 2779-2781 (1987).
7. A. M. R. P. Bopegedera, C. R. Brazier, and P. F. Bernath, Chem. Phys. Lett. 136, 97-100 (1987).
8. R. F. Wormsbecher and R. D. Suenram, J. Mol. Spectrosc. 95, 391-404 (1982).
9. J. Nakagawa, R. F. Wormsbecher, and D. O. Harris, J. Mol. Spectrosc. 97, 37-64 (1983).
10. C. R. Brazier and P. F. Bernath, J. Mol. Spectrosc. 114, 163-173 (1985).
11. Y. Ni and D. O. Harris, papers TG4 and TG5, 41st Ohio State University Symposium on Molecular Spectroscopy, 1986.
12. R. C. Hilborn, Zhu Qingshi, and D. O. Harris, J. Mol. Spectrosc. 97, 73-91 (1983).
13. P. F. Bernath and S. Kinsey-Nielsen, Chem. Phys. Lett. 105, 663-666 (1984).
14. P. F. Bernath and C. R. Brazier, Astrophys. J. 288, 373-376 (1985).
15. S. Kinsey-Nielsen, C. R. Brazier, and P. F. Bernath, J. Chem. Phys. 84, 698-708 (1986).
16. H. C. Longuet-Higgins, U. Opik, M. H. L. Pryce, and R. A. Sack, Proc. R. Soc. A 254, 1-16 (1958).
17. J. T. Hougen, J. Chem. Phys. 37, 1433-1441 (1962).
18. J. M. Brown, Mol. Phys. 20, 817-834 (1971).
19. J. T. Hougen, J. Mol. Spectrosc. 81, 73-92 (1980).
20. J. K. G. Watson, J. Mol. Spectrosc. 103, 125-146 (1984).
21. H. E. Radford and D. K. Russell, J. Chem. Phys. 66, 2222-2224 (1977).
22. D. K. Russell and H. E. Radford, J. Chem. Phys. 72, 2750-2759 (1980).
23. Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 81, 122-135 (1984).
24. S. D. Brossard, P. G. Carrick, E. L. Chappell, S. C. Hulegaard, and P. C. Engelking, J. Chem. Phys. 84, 2459-2465 (1986).
25. G. W. King and C. H. Warren, J. Mol. Spectrosc. 32, 138-150 (1969).
26. J. B. West, R. S. Bradford, Jr., J. D. Eversole, and C. R. Jones, Rev. Sci. Instrum. 46, 164-168 (1975).
27. M. Dulick, P. F. Bernath, and R. W. Field, Canad. J. Phys. 58, 703-712 (1980).
28. G. Herzberg, "Spectra of Diatomic Molecules," 2nd ed., pp. 257-264, Van Nostrand-Reinhold, New York, 1950.
29. G. Herzberg, "Electronic Spectra and Molecular Structure of Polyatomic Molecules," Van NostrandReinhold, New York, 1966.
30. E. Kaufman, P. v. R. Schleyer, K. N. Houk, and Y. D. Wu, J. Amer. Chem. Soc. 107, 5560-5562 (1985).
31. M. L. Stelgerwald, W. A. Goddard III, and D. A. Evans, J. Amer. Chem. Soc. 101, 1994-1997 (1984).
32. For example, D. A. Weil and D. A. Dixon, J. Amer. Chem. Soc. 107, 6859-6865 (1985), or A. Pross and L. Radom, J. Amer. Chem. Soc. 100, 6572-6575 (1978).
33. F. A. Seubold, Jr., J. Org. Chem. 21, 156-160 (1955).
34. E. Magnusson, J. Amer. Chem. Soc. 108, 11-16 (1986).
35. P. C. Engelking, G. B. Ellison, and W. C. Lineberger, J. Chem. Phys. 69, 1826-1832 (1978).
36. A. Bino, J. Amer. Chem. Soc. 109, 275-276 (1987).
37. H. Staeglich and E. Weiss, Chem. Ber. 111, 901 -905 (1978).

[^0]: ${ }^{1}$ Alfred P. Sloan Fellow.

[^1]: Fixed to the value in Reference 23.
 b
 One standard deviation uncertainty in parentheses.
 C Estimated error, see the text for a discussion of
 the determination of the spin-orbit constant.
 d
 Fixed to the value of 1.0 , see the text.

