The Discovery of Two New Infrared Electronic Transitions of C₂: $B^{1}\Delta_{q}-A^{1}\Pi_{u}$ and $B'^{1}\Sigma_{q}^{+}-A^{1}\Pi_{u}$

M. DOUAY, ¹ R. NIETMANN, AND P. F. BERNATH²

Department of Chemistry, University of Arizona, Tucson, Arizona 85721

Two new infrared electronic transitions of C_2 , $B^1\Delta_g - A^1\Pi_u$ and $B'{}^1\Sigma_g^* - A^1\Pi_u$, were observed by Fourier transform emission spectroscopy of hydrocarbon discharges. A set of spectroscopic constants were derived for each vibrational level and then reduced to equilibrium constants, including

	$T_{e} (cm^{-1})$	$\omega_{e} (cm^{-1})$	$r_{e}(Å)$
$B^1\Delta_g$	12 082.3360(40)	1407.4653(13)	1.38548
$B' {}^{1}\Sigma_{g}^{+}$	15 409.1390(39)	1424.1189	1.37735

RKR curves and Franck-Condon factors were calculated from the equilibrium constants. © 1988 Academic Press, Inc.

I. INTRODUCTION

During the course of our spectroscopic observation of the $d^1 \Sigma^+ - b^1 \Pi$ transition of SiC (1), A. D. McLean pointed out that the corresponding C₂ transition $(B'{}^1\Sigma_g^+ - A^1\Pi_u)$ had not been reported. This was quite surprising because the C₂ molecule occurs in such a wide variety of sources and has been studied for many years (see the preceding paper (2) for references). Examination of two previously recorded spectra disclosed the $B'{}^1\Sigma_g^+ - A^1\Pi_u$ and $B^1\Delta_g - A^1\Pi_u$ transitions, in addition to the well-known Phillips system, $A^1\Pi_u - X^1\Sigma_g^+$, and Ballik-Ramsay system, $b^3\Sigma_g^- - a^3\Pi_u$. Our reanalysis of the Phillips System is reported in the preceding paper (2).

The $B^1\Delta_g$ and $B'{}^1\Sigma_g^+$ states of C_2 are predicted to be low-lying bound states by ab initio calculation (3-6). These two states do not connect with the ground $X^1\Sigma_g^+$ state via one-photon electric dipole selection rules. The infrared electronic transitions $B^1\Delta_g - A^1\Pi_u$ and $B'{}^1\Sigma_g^+ - A^1\Pi_u$, however, are quite strong (Figs. 1-4). The main difficulty is that the Ballik-Ramsay and Phillips systems (as well as the usual collection of impurities such as CO, CN, CH, and ArH) make the infrared emission spectra of hydrocarbon discharges quite complex.

¹ Present address: Lab. de Spectroscopie des Molécules Diatomiques, CNRS UA779, Université des Sciences et Techniques de Lille, Bât. P5, 59655 Villeneuve d'Ascq Cedex, France.

² Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.

TABLE I

The Observed Line Positions of the $B^1\Delta_g - A^1\Pi_u$ Transition of C₂ (in cm⁻¹)

Α.			0-0 BAI	ND			B.			1-0 BA1	₹D		
J	R _{ff}	0-C	Qer	0-C	Pii	0-C	J	R _e	0 - C	۹	0 - C	P	0-C
2.0	3598.5235 3602.1997	18 8	3589.7901 3587.6499	-5 -6	3576.0043	-44	7.0	4988.7544 4988.7301	20 21	4965.7512 4959.9906	6 58	4945.6232 4934.1149	19 33
6.0	3604.6484	-12	3584.2845	0	-	-	11.0	4987.3420	7	4952.8626	- 2	4921.2519	6
10.0	3605 8703	-25	3573 8854	ó	3544 8056	-4	15.0	4984.3922	15	4944.3648	-4	4907.0388	-19
12.0	3604.6329	-3	3566.8510	- 7	3531.9682	-6	17.0	4975.0004	2	4923.3647	õ	4874.5811	-17
14.0	3602.1683	-4	3558.5931	-28	3517.9179	1	19.0	4968.1578	8	4910.8222	- 6	4856.3371	4
16.0	3598.4748	13	3549.1185	0	3502.6504	- 30	21.0	4959.9473	- 8	4896.9271	- 3	4836.7461	-23
18.0	3593.5506	37	3538.4201	0	3486.1/80	1	23.0	4950.3772	42	4881.6801	9	4815.8216	14
20.0	3579 9982	- /	3513 3631	5	3400.4923	- 2	25.0	4939.4304	- /	4865.0785	- 3	4/93.3323	-15
24.0	3571.3738	-2	3499.0064	6	-		29.0	4913.4469	7	4827.8253	-1	4745.0164	10
26.0	3561.5179	3	3483.4302	-6	3408.2018	4	31.0	4898.4024	0	4807.1746	2		
28.0	3550.4273	-4	•	-	3385.7000	8	33.0			4785.1741	0		
30.0	3538.1057	11	3448.6306	- 8	3361.9979	- 3	35.0			4761.8283	-1		
32.0	3600 7691	- ,	3429,4084	-8	3337.1040	31	37.0			4737.1351	- 9		
36.0	5509.7581	2	3387 3217	- 41									
38.0			3364,4671	-3									
							_ C.			3-1 B.	AND		
	Kee		۷۲۰		·••				0-C	0	0-C	Per	0-C
1.0	3596.2240	2					-						
3.0	3600.5193	34	3588.8743	- 9	3631 6767				• •				
7.0	3605 4280	23	3582 1547	4	3561.7937	45	2.0	6102 0552	-15	6088 0121	- 28		
9.0	3606.0425	10	3576.9617	4	3550.7806	-42	6.0	6103.5729	69	6083.9098	0	6067.0568	-27
11.0	3605.4280	-19	3570.5471	0	3538.5636	-11	8.0	6103.5726	- 62	6078.3134	-4	6055.8547	20
13.0	3603.5870	- 32	3562.9123	3	3525.1302	-3	10.0	6102.0947	2	6071.2262	0	6043.1577	11
15.0	3600.5193	-23	3554.0566	0	3510.4836	-1	12.0	6099.1113	-5	6062.6462	-9	6028,9790	- 7
19.0	3590.6971	18	3532.6867	-1	3477.5607	7	14.0	6094.6309	8	6041 0187	27	5996.1709	- 32
21.0	3583.9358	-6	3520.1733	-5	3459.2860	- 7	18.0	6081.1684	17	6027.9647	- 2	5977.5249	-214
23.0	3575.9458	- 6	3506.4426	- 5	3439.8081	- 3	20.0	6072.1796	- 37	6013.4235	- 7	5957.4418	- 5
25.0		:	3491.4944	-11	3419.1241	-31	22.0	6061.7003	19	5997.3952	5	5935.8640	23
27.0	3556.2726	21	34/3.3344	23	3397.2464	10	24.0	-	-	5979.8772	4	5912.8084	23
31.0	-	-	3439.3623	10	3349.8868	-13	28.0			-			
33.0	3517.5203	0	3419.5551	-11			30.0			5918.4027	12		
35.0	3502.1390	1	3398.5422	24									
37.0			3376.3128	-2				_		_		_	
								K	0.0	4r.	0+6		
В.			1-0 BA	ND			1.0	6096.9933	32				
							- 3.0	6100.7462	25	6089.5081	-	6081.0760	- 50
Л	Red	0-C	0	0-0	Pre	0-C	5.0	6103.0021	- 20	6086.1526	-13	6072.1124	17
			-41		-11		7.0	6103.7701	-1	6081.3091	- 2	6061.6512	- 16
							11 0	6100 8151	- 8	6067 1482	-3	6036.2802	-1
2.0	4982.8587	-4	4974.2295	2	4060 3433	20	13.0	6097.0933	- 2	6057.8337	2	6021.3679	- 8
5.0	4988 2456	-2	4968 1160	-6	4950,8623	13	15.0	6091.8738	6	6047.0309	19	6004.9763	6
8.0	4988.8964	ō	4963.0236	4	4940,0202	- 10	17.0	6085.1548	5	6034,7426	69	5987.1028	-1
10.0	4988.1832	-2	4956.5723	4	4927.8291	4	21 0	60/6.9336	- 38	6005 6818	. 27	5946 9747	-7
12.0	4986.1057	-7	4948.7628	-2	4914.2840	-6	23.0	6056.0037	49	5988.9280	-	5924.6233	-11
14.0	4982.6603	2	4939.3966	- /	4899,3923	.2	25.0	•		5970.6847	- 4	5900.8517	6
18.0	4971.6830	ō	4917.1957	-9	4865,5630	17	27.0	•	-	5950.9560	- 7		
20.0	4964.1426	6	4903.9630	0	4846,6270	-18	29.0	•	-	5929,7439	2		
22.0	4955.2342	5	4889.3721	- 25	4826.3531	-8			· · · · ·				
24.0	4944.9563	-10	48/3.4318	- 2	4804,7440	135							
28.0	-		4837.4906	11	4757.4861	-83	D.			5-2 B	AND		
30.0	4905.9165	-11	4817.4888	-20	4731.8729	27							
32.0	4890.1697	30	4796.1428	7				в	0.0	0	0.0	P	0-0
34.0			4773.4450				J	Kf f	0-0	Ve f	0.0	***	0-0
					<u>.</u>		2.0	7148,4881	0				
J	R	0-C	Q.	0-C	P	0-C	4.0	7151.1220	0	7137 4207	29		-
				_			<u> </u>	7152.1258	-6	7132.9446	-2	/116.5012	-2
	1000 1100	0					8.0	7149 2427	14	7119.1200	-5	7091.7288	- 24
1.0	4980.6624	7	4973.2110	-18			12.0	7145.3493	- 34	7109.7659	- 38	7076.9097	-64
5.0	4987.4155	-í	4970.1599	õ	4955.7797	8	14.0	7139.8329	32	7098.7956	18	-	-

Note. Observed minus calculated line positions are in units of 10^{-4} cm⁻¹. * Perturbed.

TABLE I-Continued

D.			5-2 B	AND			F.			2-1 BA	ND		
J	Rrr	0- C	Q. t	0-C	Ptt	0-C	J	Rtt	0-C	Q. 1	0-C	Ptt	0-C
16 0	7132.6710	+15	7086.1907	- 22	-		13.0	4761.7784	17	4722.0429	0	4677.5229	- 34
18 0	7123.8802	-6	7071.9676	-4	7022.7601	-103	15.0	4757.6051	0	4712.2188	-7	4661.3618	- 5
22.0	7101.3897	-14	7038.6460	-20	,001.4,01	5,	19.0	4745.1706	- 8	4688.5138	9	4625.0035	23
24.0	7087.6907	-15					21.0	4736.9074	-7	4674.6291	-15	4604.8063	-14
							25.0	4716.2831	- 30	-	-	4560.4050	ő
1	R	0-C	Qfo	0-C	P	0-C	27.0	4703.9253	-13	4624.8738	-41		
1.0	7146.5615	7					31.0	4675.1096	8	4584.9651	23		
3.0 5.0	7151.8337	i	7135.3886	-16	7121.6841	-19	G.			BAND	4-2		
7.0	7152.0291	13	7130.1094	- 85	7110.9283	-11							
11.0	-	-	7114.6743	11	7084.5409	- 99	J	R	0-C	0	0-C	P.,	0-C
13.0	7142.8313 7136.5009	16 3	7092.7415	-	7051.7078	- 21							
17.0	7128.5359	- 27	-		•	•	2.0	5855.2433	- 29	5846.9292	85		
19.0	/118.9691	258*	7064.3403	221-		-	4.0 6.0	5858.1817 5859.6359	-41 40	5844.3126 5840.2140	7 14		
			/029.413/				8.0 10.0	5859.5813 5858.0346	-17 -39	5834.6240 5827.5433	12	5799.8115	- 24
Ε.			0-1 B	and			12.0 14.0	5854.9949 5850.4670	-25 81	5818.9665 5808.9148	-64	5785.7210 5770.1300	90 22
							18.0	5836.8849	-12	5784.3255	- 29	5734.5176	- 15
J	Rft	0.0	Q. 1	0-C	Pft	0-0	20.0	5827.8506 5817.3188	0 39	5769.8014 5753.7901	-21 -12	5714.49.3	- 3
20	2014.5833	53	2005.8403	-67			24.0 26.0	5805.2822	38	5736.2905 5717.3095	-20 16		
4.0	2021 3208	12	2000 9545	1	1992,3003	- 34	28.0			5696.8405	23		
8.0	-	-	1996.8811	34	1973.6067	4	30.0			5674.8891	40		
10.0	2023.6876	-90 -21	1991.7142	-26	1962.6367	- 59	T	P		•	0.0		0.0
16.0	2015.3280	- 25	1969.7089	0	1930.5293	11	5	K	0-0	Qr.	0-0	r	0-0
18.0	2010.5036	- 89	1960.2021	-16			1.0	5853.2165	- 5				
22.0	2001.3114	9	1937.9472	44			3.0	5856.9146 5859 1054	96 41	5845.8096	47		
24.0	1997.5551	-16 -30	1925.1880	- 5			7.0	5859.8097	48	5837.6125	-19		
							9.0	5859.0138 5856 7317	-9 17	5831.2855 5823.4719	-4 29	5806.3254 5792 9763	- 2 31
J	R.,	0-C	Qr.	0-C	P	0-C	13.0	5852.9471	25	5814.1678	40	5778.1382	- 10
				•			$-\frac{15.0}{17.0}$	5847.6733	63	5803.3697 5791.0831	- 10	5761.8273	- 81
3.0	-	-	2005.0342	3	1996.2942	- 87	19.0	5832.6503	229	5777.3397	162	5724.7886	228
5.0	2020.0488	0	-	-	1978 6907	- 68	21.0	5822.8808 5811.5938	235*	5762.0893	- 26		
9.0	2023.5334	41	1994.4499	8	1968.2725	-1	25.0	5798.8227	32	5727.1216	134		
11.0 13.0	2023.6327 2021.7071	-/ 49	1988.7479 1981.9687	-2/	1956.7687	-	29.0			5686.2076	- 32		
15.0	2017.3947	16	1974.1023	13	1937.4568	56	31.0			5663.5341	- 35		
19.0	2013	- 20	1965.1452	- 20	1913./9/6	17							
21.0							н.			3-2 B.	AND		
25.0	1993.7575	- 30					J	Ree	0-c	Q. r	0-C	P.,	0-C
F.			2-1 B	AND	·								
							- 4.0	4539.3164 4542.5663	-97 40		-	4517.2900	-16
J	Rft	0-C	Qat	0-C	Pre	0-C	6.0	4544.4484	-79	4524.8001	0	4507.9476	- 22
			· · · · · · · · · · · · · · · · · · ·				- 10.0	4344.9878 4544.1514	47 18	4519./129 4513.2777	- 51 - 36	4497.2550 4485.2060	-18 -80
2.0	4760.3 87 8	10	4751.8604	22	4742.3051	- 89	12.0	4541.9514	- 37	4505.4829	- 74	4471.8157	- 72
4.0	4765.6434	-11	4749.4834	-4	4733,5856	51 38	16.0	4533.4778	- 22	4485.8476	2	4440.9966	-65
8.0	4766.2312	-12	4740.6625	- 5	4712.0565	- 15	18.0	-	. 27	4473.9944	-21	4423.5794	14
10.0	4765.4635	9	4734.2167 4726.4168	-13	4699.2715 4685.1372	-6	22.0	4510.5461	28	4446.2360	- 36	4384.7124	58
14.0	4759.8210	2	4717.2598	- 2	4669.6691	102	24.0 26.0	4500.1714	21	4430.3319 4413 0867	- 32		
18.0	4748.7250	-4	4694.8807	- 2	4634.6722	39	28.0			4394.4702	- 86		
20.0	4741.1288	-7	4681.6604	5	4615.1598	-12							
24.0	4721.8479	97	4651.1588	8	4572.1342	20	J	K	0-0	Qr.	0-0	P	0-0
26.0 28.0	4710.1430	10 -9	4633.8796 4615.2508	9 25	4548.6146	0	3.0	4541 1130	- 72	4529 RR20	-19		
30.0	4682.6445	-19	4595.2685	6			5.0	4543.6865	- 23	4526.8532	145		-
32.0			4573.9338	- 44			7.0	4544.8988 4544 7542	-13	4522.4434 4516 6878	44 18	4502.7745	- 82
				_			11.0	4543.2482	8	4509.5794	- 5	4478.7137	19
J	R.,	0-0	Q _f .	0-C	P	0-C	13.0	4540.3834	19	4501.1239	25	4464.6594	27
							17.0	4530.5649	-22	4480.1479	-7	4432.5060	- 99
1.0 3.0	4758.2202 4762.2134	-29 0	4750.8375	- 51	4738.1154	28	19.0 21.0	4523.6463	288"	4467.6561 4453 7938	205* 213*	4414.4626 4395 0410	287*
5.0	4764.8500	40	4747.7934	6	4728.7014	29	23.0	4505.6376	68	4438.5556	- 43		275
9.0	4766.0326	-4	4737.6261	-13	4705.8127	- 21	25.0	4494.5965	36	4404.0889	-18		
11.0	4764.5903	46	4730.5128	4	4692.3440	3	29.0			4384.8315	-44		

TA.	BL	E	П
-----	----	---	---

Observed Line Positions of the B' ${}^{1}\Sigma_{g}^{+}$ -A ${}^{1}\Pi_{u}$ Transition of C₂ (in cm⁻¹)

				AND				D.			1-2	BAND			
J	R	0-C	P	0-C	J	Qef	0-0	1	R	0-C	P.,	0-C	J	Q.f	0-C
1.0	6933.7527	-48	6924.9053	-6				1.0			5201.5842	1			
3.0	6938.3299	-1	6917.6761	-20	2.0	6927.3239	- 5	3.0	5215.1378	-22	5194.6344	- 5	2.0	5204.0762	-1
5.0	6941.8384	4	6909.3888	-15	4.0	6925.4629	-6	5.0	5219.0327	4	5186.8152	0	4.0	5202.5464	- 5
7,0	6944.2805	6	6900.0463	2/	6.U P.O	6922,5386	-3	7.0	5222.0487	4	5178.1258	-3	6.0	5200.1432	- 3
11 0	6945.950	- 5	6878 1776	1	10 0	6913 4979	1	9.0	5225 4466	10	5158 1461	-1	10.0	5190.0072	- 5
13.0	6945.1939	-1	6865.6618	18	12.0	6907.3814	2	13.0	5225.8244	- 21	5146,8560	í	12.0	5187.6843	- 52
15.0	6943.3574	7	6852.0873	- 2	14.0	6900.1991	- 6	15.0			5134.7035	9	14.0	5181.7917	10
17.0	6940.4449	-12	6837.4613	0	16.0	6891.9533	-2	17.0	5223.9428	-15	5121.6848	- 21	16.0	5175.0188	3
19.0	6936.4610	- 5	6821,7816	- 10	18.0	6882.6419	-7	19.0	5221.6973	162	5107.8338	227	18.0	5167.3736	-1
21.0	6931.4011	-9	6707 7711	-1	20.0	5860 9291	-50	21.0	5218.55/5	210-	5077 / 872	199-	20.0	51/0 / 703	- 2
25.0	6918.0597	10	6768.4476	-8	24.0	6848.3269	õ	25.0	5209.6062	1	5061.0457	4	24.0	5139.2175	20
27.0		••	6748.5861	71	26.0	6834.7649	4	27.0	5203.8204	- 31	5043.7539	-7	26.0	5128.0960	15
29.0			6727.6719	28	28.0 30.0	6820.1421 6804.4626	-11 -38	29.0			5025.6179	-19	28.0	5116.1087	- 20
в.			0-1 B	AND				E.			2-1	BAND			
	R	0-C	P	0-C		Q. r	0-C	J	R	0 - C	P	0-C		Qer	0-C
1.0			5340.8905	- 36				3.0	8194 1073	.5	8173 7266	21	4.0	8181 3747	- 30
3.0	5354.4885	-1	5333.8347	- 20	2.0	5343.3805	- 4	5.0	8197.5020	13	8165,4765	16	6.0	8178.4043	- 19
7.0	5361.1876	-6	5316.9542	22	6.0	5339.2097	- 4	7.0	8199.7992	-112	8156.1504	10	8.0	8174.3543	2
9.0	5363.1437	17	5307.1275	7	8.0	5335,7322	4	9.0	8201.0334	- 24	8145.7491	0	10.0	8169.2215	6
11.0	5364.1631	1	5296.3818	7	10.0	5331.3291	21	11.0	8201 1755	0	8134.2740	-9	12.0	8163.0078	11
13.0	5364.2515	17	5284.7175	17	12.0	5325.9949	7	15.0	8200.2275		8121.7293 8108 1096	10	16.0	8147 3365	, a
15.0	5363.4009	-2	5272.1321	1	14.0	5319,7336	4	17.0	8195.0692	3	8093.4215	-10	18.0	8137.8797	í
19.0	5358 8915	-11	5264 2132	- 5	18.0	5304.4262	-2	19.0	8190.8570	8	8077.6668	-1	20.0	8127.3420	- 25
21.0	5355.2292	-21	5228.8811	-11	20.0	5295.3797	-13	21.0	8185.5564	13	8060.8461	3	22.0	8115.7322	1
23.0	5350.6314	- 3	5212.6378	- 3	22.0	5285.4087	2	23.0	8179.1682	15	-	-	24.0	8103.0482	35
25.0	5345.0974	32	5195.4838	-1	24.0	5274.5115	17	25.0	8171.6923	-6	8024.0238	49	26.0	8089.2835	- 19
27.0			5177.4238	11	26.0	5262.6878	12	27.0	9193.1403	50	4004.0172	- 2 6	20.0	00/4.4750	- 55
29.0			5158.4593	16	28.0	5249.9430	16			_					
51.0			5158.3942	0	32.0	5221.6982	-1	F.			3-2	BAND			
С.			1-0	BAND					R	0-C	P	0-C		Q. t	0.0
	<u> </u>								9050 9544	16	9042 1679				
J	R.	0-0	P	0-0	J	Q.f	0-0	3.0	8055.3840	-10 -7 56	8035.1165 8027.0613	-6 15	2.0	8044.5578 8042.7872	-7 -44
			8345 3000					7.0	8061,4099	2	8017.9971	- 2	6.0	8040.0107	-40
3.0	8358 6052	3	8345.3900	20	2.0	8367 7622	. 19	9.0	8062.9014	- 2	8007.9307	3	8.0	8036.2285	10
5.0	8361.8687	-135	8329.6626	-25	4.0	8345.7388	4	11.0	8063.3752	-23	7996.8597	- 3	10.0	8031.4295	- 2
7.0	8364.0124	24	8320.0890	11	6.0	8342.5837	4	15.0	8062.8351	- 3	7984.7900	- 5	14.0	8025.6169	20
9.0	8364.9889	21	8309.3715	23	8.0	8338.2798	- 9	17.0	8058.6891	3	7957.6334	-7	16.0	8010,9678	22
11.0	8364.8124	9	8297.5067	34	10.0	8332.8305	-2	19.0	8055.1105	307*	7942.5819	264			
13.0	8363.4843	12	8284.5100	-20	12.0	8326.2341	8								
17.0	8357.3584	- 34	8255.0939	-106	16.0	8309.5968	ŏ								
19.0	8352.5630	- 53	8238,7011	27	18.0	8299.5585	ĩ								
21.0	8346.6156	- 36	8221.1576	-21	20,0	8288.3758	14								
23.0	8339.5139	-11	8202.4987	74	22.0	8276.0487	29								
25.0	8331.2579	12	8182.6925	- 33	24.0	8262.5752	8								
27.0	8311 2870	- 5	6161./886 8139 7393	112	28.0	8232.2146	14								
	\$511.20/9	24													

Note. Observed minus calculated line positions are in units of 10^{-4} cm⁻¹. ^a Perturbed.

FIG. 1. Energy level diagram of the low-lying states of C2.

Very recently, a new $1^{1}\Delta_{u}$ state was discovered by Goodwin and Cool (7). Twophoton fragmentation of acetylene followed by resonance-enhanced multiphoton ionization of C₂ located the $1^{1}\Delta_{u}$ state 57 719 cm⁻¹ above the $X^{1}\Sigma_{g}^{+}$ state.

FIG. 2. A portion of the 0-0 band of the $B^1\Delta_g - A^1\Pi_u$ transition of C₂ near the R bandhead.

FIG. 3. A portion of the 0–0 band of the $B^1\Delta_g - A^1\Pi_u$ transition of C₂ near the band origin.

II. EXPERIMENT

The experimental procedures are described in the previous paper (2).

III. RESULTS AND DISCUSSION

Our method of analysis is described in the paper on the Phillips system (2). The spectra were very congested, so the analysis proceeded by bootstrap calculation. First, a crude estimate of the location of a band was made and some Q-branch lines were picked out and assigned. A preliminary fit predicted the remaining lines in the band which were then measured and included in the fit. The search for new bands was guided by a preliminary calculation of Franck-Condon factors.

Ultimately, eight bands of the $B^1\Delta_g - A^1\Pi_u$ transition were analyzed, 0-0, 1-0, 3-1, 5-2, 0-1, 2-1, 4-2, and 3-2, while six bands were found for the $B'^1\Sigma_g^+ - A^1\Pi_u$ transition, 0-0, 0-1, 1-0, 1-2, 2-1, and 3-2. The line positions of the $B^1\Delta_g - A^1\Pi_u$ and $B'^1\Sigma_g^+ - X^1\Pi_u$ bands are reported in Tables I and II, respectively. An energy level diagram and sample spectra are provided in Figs. 1-4.

FIG. 4. A portion of the 0-0 band of the $B'^{1}\Sigma_{g}^{+}-A^{1}\Pi_{u}$ transition of C₂ near the R bandhead.

TABLE III

Molecular Constants for the $B^1\Delta_g$ state of C₂ (in cm⁻¹)

Constant	v = 0	v = 1	v = 2	v = 3	v = 4	v = 5
Tv	11859.0980(2) ^a 132	43.6377(3) 146	505.3115(4) 159	44.1799(4)	17260.3030(12)	18553.7486(9)
^B v	1.4552733(21)	1.4384277(24)	1.4215521(28)	1.4046420(30) 1.3877210(8	0) 1.3707393(81)
10 ⁶ x D _v	6.32590(125)	6.34196(162)	6.3575(24)	6.3671(29)	6.4035(85)	6.3883(137)

a The numbers in parentheses are one standard deviation in the last digit.

The line positions of Tables I and II, as well as all of our observed line positions of the Phillips system (Table I of the preceding paper), were fitted simultaneously using the customary rotational energy level expression (2). The spectroscopic constants of the $B^1\Delta_g$ and $B'^1\Sigma_g^+$ states from this global fit are reported in Tables III and IV, respectively.

The constants of the $B^1 \Delta_g$ state are very well behaved, but those of the $B' {}^1\Sigma_g^+$ state showed some evidence of interaction with other states. For example, v = 0, 1, and 2of the $B' {}^1\Sigma_g^+$ state required H's, although none of the vibrational levels of the $B^1\Delta_g$ state required any. The only local perturbations present in the $B' {}^1\Sigma_g^+ -A^1\Pi_u$ or the $B^1\Delta_g -A^1\Pi_u$ transitions are for v = 2, J = 19e, 21e of the lower $A^1\Pi_u$ state (2).

The constants of Tables III and IV were converted to equilibrium molecular constants (Table V) with the expressions listed in the previous paper (2). The global interaction of the $B'^{1}\Sigma_{g}^{+}$ state with other states (particularly the $X^{1}\Sigma_{g}^{+}$ state) is also reflected in the equilibrium molecular constants (Table V). The $\omega_{e}x_{e}$ value is very small (2.57 cm⁻¹) compared to the expected value of 7.65 cm⁻¹ computed from α_{e} with the Pekeris relationship (8). The G(v) and B_{v} expansions require as many parameters as data points to reproduce the data points within the experimental error in the $B'^{1}\Sigma_{g}^{+}$ state.

The $X^{i}\Sigma_{g}^{+}$ and $B'^{1}\Sigma_{g}^{+}$ states have the same symmetry, but nominally come from different configurations (π^{4} for $X^{1}\Sigma_{g}^{+}$ and $\pi^{2}\sigma^{2}$ for $B'^{1}\Sigma_{g}^{+}$). In the ground $X^{1}\Sigma_{g}^{+}$

Const	ant	$\mathbf{v} = 0$	v - 1	v = 2	v = 3
	T,	15196.5116(4) ^a	16616.9962(4)	18036.5144(8)	19457.8501(9)
	B _v	1.4753124(42)	1.4648230(52)	1.4561354(112	2) 1.4478630(171)
1 0⁶x	D,	6.7810(95)	6.6208(137)	6.744(35)	6.881(63)
10 ¹⁰ x	H,	2.220(66)	2.167(107)	3.38(30)	-

TABLE IV Molecular Constants for the $B'^{1}\Sigma_{g}^{+}$ State of C₂ (in cm⁻¹)

^a The numbers in parentheses are one standard deviation in the last digit.

TA	BL	E	٧

Equilibrium Molecular Constants for the $B^{1}\Delta_{g}$ and $B^{\prime 1}\Sigma_{g}^{+}$ States of C₂ (in cm⁻¹)

State	ω	ω _e x _e	ω _e y _e
B¹∆ _s	1407.46529(134)*	11.47937(60)	0.010256(73)
$B' {}^{1}\Sigma_{g}^{+}$	1424.11890 ^b	2.57113 ^b	0.46398 ^b
	B	α,	γ. x 10 ⁵
B¹∆ _s	1.4636853(34)	0.0168161(35)	-1.503(72)
Β'¹Σ ⁺	1.481006(296)	0.011752(459)	67.18(1387)
	D _a x 10°	$\beta_{\bullet} \times 10^7$	
B¹∆ ₈	6.3188(19)	0.1492(113)	
Β'¹Σ <mark>#</mark>	6.8596(136)	-1.581(143)	
	r,	T.	
B¹∆ _s	1.385475 Å	12082.3360(40)	
Β' ¹ Σ <mark>\$</mark>	1.377350 Å	15409.1390(39)	

* The numbers in parentheses are one standard deviation.

^b An exact fit.

TABLE VI

RKR Turning Points of the $B^1\Delta_g$ State of C₂

v	E_{v} (Cm^{-1}) ^a	R _{min} (Å)	R _{max} (Å)
0.0	700.9482*	1.32618	1.45299
0.5	1396.0803	1.30375	1.48370
1.0	2085.4881	1.28732	1.50847
1.5	2769.1793	1.27398	1.53023
2.0	3447.1616	1.26260	1.55009
2.5	4119.4426	1.25259	1.56864
3.0	4786.0301	1.24363	1.58621
3.5	5446.9318	1.23549	1.60303
4.0	6102.1553	1.22802	1.61925
4.5	6751.7084	1.22111	1.63498
5.0	7395.5987	1.21467	1.65032

^a Relative to the bottom of the B¹A_g well. To convert the origin of the E_v scale to the bottom of the X¹Σ⁺₇ well, 12082.1338 cm⁻¹, must be added. This number was calculated using the experimental value of 11859.0980 cm⁻¹ for T_{oo}. Note that the E_v values in this table include the Dunham Y₀₀ correction for the B¹A_g state.

TABLE VII

v	$E_v(cm^{-1})^a$	$R_{min}(Å)$	R _{m * x} (Å)	
0.0	712.7427	1.31765	1.44348	
0.5	1423.2797	1.29473	1.47268	
1.0	2133.2272	1.27777	1.49575	
1.5	2842.9331	1.26387	1.51558	
2.0	3552.7454	1.25191	1.53331	
2.5	4263.0120	1.24132	1.54950	
3.0	4974.0809	1.23176	1.56448	

RKR Turning Points for the $B'^{1}\Sigma_{g}^{+}$ State of C₂

^a Relative to the bottom of the $B'^{1}\Sigma_{g}^{+}$ well. To convert the origin of the E_v scale to the bottom of the $X^{1}\Sigma_{g}^{+}$ well, 15407.7529 cm⁻¹ must be added. This number was calculated using the experimental T₀₀ value of 15196.5116 cm⁻¹. Note that the E_v values in this table include the Dunham Y₀₀ correction for the $B'^{1}\Sigma_{g}^{+}$ state.

state, the G(v) and B_v polynomial expansions are also not very satisfactory representations of the vibrational and rotational energy levels. The interaction between $X^{\perp}\Sigma_g^+$ and $B'^{\perp}\Sigma_g^+$ will change as a function of r and may cause the $B'^{\perp}\Sigma_g^+$ and $X^{\perp}\Sigma_g^+$ potential energy curves to have peculiar shapes.

The RKR potential energy curves (Tables VI and VII) were calculated from the equilibrium molecular constants (Table V). The RKR points for the $B'^{1}\Sigma_{g}^{+}$, $B^{1}\Delta_{g}$, $A^{1}\Pi_{u}$, and $X^{1}\Sigma_{g}^{+}$ states are plotted in Fig. 1 of the previous paper.

The RKR potential points were used to calculate the $B^1 \Delta_g - A^1 \Pi_u$ (Table VIII) and $B'^1 \Sigma_g^+ - A^1 \Pi_u$ (Table IX) Franck-Condon factors. We found all of the bands expected on the basis of Franck-Condon factors, confirming our vibrational assignment.

v' V"	0	1	2	3	4	5
0	0.544 EO	0.354 EO	0.898 E-1	0.113 E-1	0.754 E-3	0.253 E-4
1	0.306 EO	0.825 E-1	0.378 EO	0.193 EO	0.371 E-1	0.332 E-2
2	0.108 EQ	0.263 EO	0.796 E-3	0.273 EO	0.270 E0	0.753 E-1
3	0.314 E-1	0.181 EO	0.138 EO	0.543 E-1	0.148 E0	0.307 E0
4	0.825 E-2	0.789 E-1	0.187 EO	0.409 E-1	0.122 EO	0.553 E-1
5	0.206 E-2	0.278 E-1	0.119 EO	0.146 E0	0.168 E-2	0.156 E0

TABLE VIII

Franck-Condon Factors for the $B^1\Delta_g - A^1\Pi_u$ Transition of C₂

TA	BL	Æ	IX
----	----	---	----

Franck-Condon Factors for the $B'^{1}\Sigma_{g}^{+}-A^{1}\Pi_{u}$ Transition of C₂

v′ v ″	0	1	2	3	4	5
0	0.635 E0	0.305 EO	0.556 E-1	0.438 E-2	0.106 E-3	0.147 E-6
1	0.275 EO	0.199 EO	0.389 EO	0.123 E0	0.126 E-1	0.276 E-3
2	0.723 E-1	0.306 EO	0.389 E-1	0.378 EO	0.182 EO	0.220 E-1
3	0.144 E-1	0.140 EO	0.250 EO	0.688 E-3	0.338 E0	0.228 E0

The observed spectroscopic constants for the $B^1\Delta_g$ and $B'{}^1\Sigma_g^+$ states are in agreement with the excellent recent theoretical calculations (Table X). For example, the error in the T_e values is less than 1000 cm⁻¹ and r_e is predicted to within 0.03 Å.

IV. CONCLUSION

We have observed two new infrared electronic transitions of C_2 , $B^1\Delta_g - A^1\Pi_u$ and $B'{}^1\Sigma_g^+ - A^1\Pi_u$, by Fourier transform emission spectroscopy of hydrocarbon discharges. These transitions involve low-lying states so they should be observable in comets, stellar atmospheres, and flames.

TABLE X	
---------	--

Comparison of Experimental Spectroscopic Constants of the $B^1\Delta_g$ and $B'{}^1\Sigma_g^+$ States of C_2 with ab Initio Predictions

St	ate	T, (cm ⁻¹)	υ. (cm ⁻¹)	^w •ו (Cm- ¹)	r. (Å)	α _e (cm ⁻¹)
B¹∆ _g	(expt.)	12082	1407	11	1.385	0.017
	(theory)*	11670	1350	13	1.408	-
	(theory) ^b	12800	1322	14	1.41	0.017
B' 1Σ ⁺ 8	(expt.)	15409	1424	3	1.377	0.012
	(theory)*	14670	1368	8	1.402	-
	(theory) ^b	14600	1322	20	1.41	0.019

Reference 6.

^b Reference 5.

$$C_2 B^{\dagger} \Delta_g - A^{\dagger} \Pi_u \text{ AND } B^{\prime \dagger} \Sigma_g^{\dagger} - A^{\dagger} \Pi_u$$
 271

ACKNOWLEDGMENTS

The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. We thank J. Wagner, R. Ram, and G. Ladd for assistance in acquiring our C₂ spectra. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work. Some support was also provided by the Air Force Astronautics Laboratory, Grant No. F-04611-11187-K-0020. We thank J. Black for a copy of Ref. (6) and for discussions on the spectroscopic observations of C₂ in space.

RECEIVED: May 16, 1988

REFERENCES

- P. F. BERNATH, S. A. ROGERS, L. C. O'BRIEN, C. R. BRAZIER, AND A. D. MCLEAN, *Phys. Rev. Lett.* 60, 197-199 (1988).
- 2. M. DOUAY, R. NIETMANN, AND P. F. BERNATH, J. Mol. Spectrosc. 131, 250-260 (1988).
- 3. P. F. FONGERE AND R. K. NESBET, J. Chem. Phys. 44, 285-298 (1966).
- 4. J. BARSUHN, Z. Naturforsch., A 27, 1031-1041 (1972).
- 5. K. KIRBY AND B. LIU, J. Chem. Phys. 70, 893-900 (1979).
- 6. R. KLOTZ AND S. D. PEYERIMHOFF, private communication via J. Black and E. van Dishoeck.
- 7. P. M. GOODWIN AND T. A. COOL, J. Chem. Phys. 88, 4548-4549 (1988).
- G. HERZBERG, "Spectra of Diatomic Molecules," 2nd ed., p. 108, Van Nostrand-Reinhold, New York, 1950.