Diode-Laser Spectroscopy of Alkali Halides: The Lithium Bromide Molecule C. R. Brazier, N. H. Oliphant, and P. F. Bernath¹ Department of Chemistry, University of Arizona, Tucson, Arizona 85721 The vibration-rotation spectrum of the lithium bromide molecule has been recorded using a tunable diode laser. A total of 1004 lines for all four isotopic combinations $^6\text{Li}^{79}\text{Br}$, $^6\text{Li}^{81}\text{Br}$, $^7\text{Li}^{79}\text{Br}$, and $^7\text{Li}^{81}\text{Br}$ in eight $\Delta v = 2$ overtone bands were observed. The lines were fitted to Dunham and mass-reduced Dunham parameters. © 1989 Academic Press, Inc. #### INTRODUCTION The alkali halides were studied extensively during the 1950s and 1960s by microwave spectroscopy (1-4) partly because of their very large dipole moments (5-12 D) and reasonable vapor pressures at moderately elevated temperatures. Since that time, there was no rotationally resolved work on any of the alkali halides until very recently. The advent of high resolution Fourier transform spectrometers and diode lasers has made possible the observation of infrared vibration-rotation spectra of the alkali halides. Much of the work has been performed by Maki and co-workers (5-8) who studied all of the lithium halides except LiBr as well as potassium fluoride. Very recently, Jones and Lindenmayer (9) have made further observations on LiCl while Horiai et al. (10) have studied NaCl. As part of the present study, the spectrum of NaF was recorded by Douay et al. (11). The early microwave work on lithium bromide (1-3) gave very precise values for the rotational constants, which were extremely useful in assigning the present measurements. This work also provided information on the hyperfine interactions and more extensive hyperfine measurements were made by Ramsey and co-workers (12). While the vibrational frequency was obtained only indirectly from the microwave data, the value obtained of $\omega_e = 563.5 \pm 2.2$ cm⁻¹ for $^7\text{Li}^{79}\text{Br}(2)$ compares favorably with the value of 562.283 cm⁻¹ determined in our work. Predictions of the vibrational frequency were also available from the low resolution infrared studies of Klemperer and co-workers (13, 14). Their value of $\omega_e = 563.2 \pm 0.2$ cm⁻¹ was also very close, although outside of their rather small error limits. These estimates of the vibrational frequency were very useful in determining where to search at high resolution. The visible and UV spectra of the alkali halides consist of continua and fluctuation bands (15). Only for sodium iodide have discrete rotationally resolved spectra been observed (16, 17). The continuum absorption for LiBr was described by Davidovits and Brodhead (18), and the fluctuation bands by Berry and Klemperer (19). ¹ Alfred P. Sloan Fellow; Camille and Henry Drevfus Teacher Scholar. The first ionization potential of LiBr has been determined by Potts and Lee (20) and Berkowitz et al. (21) to be 9.3 eV by photoelectron spectroscopy. A value of 4.4 eV for the bond dissociation energy has been found from thermodynamic (22) and flame photometric (23) measurements. Theoretical calculations on LiBr have so far been made only at the SCF level (24, 25). The results of Matcha (24), as part of a systematic study of the alkali halides, are fairly good for the main spectroscopic parameters, but the higher order constants (which were previously unmeasured) do not compare well with the current experimental results. Lithium bromide, along with the other alkali halides, has been the subject of numerous (26-32) empirical calculations using various formulations of the Rittner potential (33). Other types of potentials such as the ionic Kratzer-type potential have also been used (34). ### **EXPERIMENTAL DETAILS** Lithium bromide vapor was produced in a stainless steel heat pipe oven. This consisted of a 1-m-long, 50-mm-diameter tube with a gas inlet at one end and pump outlet at the other. BaF₂ windows on each end of the tube allowed transmission of the infrared radiation. The LiBr vapor was prevented from reaching the windows by pressurizing the tube with 5 Torr of argon. About 100 g of LiBr was placed on stainless steel gauze in the center part of the tube and heated by a cylindrical furnace to about 1100 K resulting in about 5 Torr of LiBr vapor. The ends of the tube were water cooled and this, together with the argon, helped contain the LiBr vapor to the center 0.5-m region of the cell. The oven acted as a heat pipe and could be repeatedly heated and cooled over a period of weeks without adding fresh LiBr. The output from a lead salt diode laser (Laser Analytics) was multipassed eight times through the oven, using external White cell-type optics. The beam was then passed through a 1/3-m monochromator to select a single longitudinal mode of the laser and was focused onto a liquid nitrogen cooled Hg-Cd-Te detector. Absolute calibration of the spectrum was obtained by placing a 20-cm cell containing ammonia in the beam path. The ¹⁴NH₃ lines were observed with a cell containing 200 mTorr of NH₃; ¹⁵NH₃ lines were observed in natural abundance at a pressure of 5 Torr. The lines were compared with the published spectrum of NH₃ (35). A part of the beam was picked off with a beam splitter and passed through an air-spaced germanium etalon, with a 0.03 cm⁻¹ free spectral range, to provide relative frequency calibration. Several $\Delta v = 2$ bands of LiBr were measured between 1030 and 1120 cm⁻¹ by frequency modulating the diode at 4 kHz and recording the signal with a lock-in amplifier at twice the modulation frequency. The molecular signal and the etalon markers, recorded using 1-f modulation, were output simultaneously on a two-pen chart recorder. ### RESULTS AND DISCUSSION The lines of the 2-0 band of LiBr were predicted using the microwave (1, 2) and low resolution infrared measurements (14) and a search for the strong *P*-branch lines was made near $1070 \,\mathrm{cm}^{-1}$. A very dense spectrum with an *R*-branch bandhead similar to that in Fig. 1 was observed. The bandhead was assigned to the 6-4 band of the FIG. 1. A section of the lithium bromide spectrum near the 5-3 bandhead. Lines for the ⁷Li⁸¹Br isotopomer at the bandhead and also for the ⁷Li⁷⁹Br isotopomer are indicated. Unmarked lines are from the 2-0, 3-1, and 4-2 bands. A single ammonia calibration line is also shown. ⁷Li⁷⁹Br isotope, but clearly the lines were as strong as for the 2–0, 3–1, etc. bands. As the population of the higher vibrational levels falls by about a factor of 2 for each level, the transition strength must be increasing with vibration to compensate for this. A discussion of the relative intensities of the overtone bands will be presented later. Once the first LiBr lines had been obtained and the intensity pattern understood, recording and assignment of further lines was relatively easy. The J assignment for the bandheads could be made using the microwave constants (I, Z) and the remaining lines could then be assigned by fitting the lines near the bandheads and predicting the rest of the spectrum. The upper frequency limit of the diode was 1120 cm^{-1} which covered the region near the 2-0 bandhead. Measurements were made down to 1030 cm^{-1} . This covered the $\Delta v = 2$ bands up to 9-7. Further bands could have been recorded, but by this point it was found that the line positions could be predicted almost as precisely as they could be measured. A section of the LiBr spectrum near the 5-3 bandhead for the ⁷Li⁸¹Br isotope is shown in Fig. 1. The two isotopes are present in almost equal proportions which adds to the complexity of the spectrum. The strong transitions absorb about 2% of the infrared radiation which results in a signal-to-noise ratio of around 50. This should yield very precise line positions given the 0.005 cm⁻¹ linewidth, but the use of a chart recorder to record the lines and the lack of sufficient calibration lines limit the precision of the measurements to about 0.0025 cm⁻¹. Nine hundred and fifty lines belonging to the two main isotopic species $^7\text{Li}^{79}\text{Br}$ (47%) and $^7\text{Li}^{81}\text{Br}$ (45.6%) were recorded and fitted to the Dunham energy level expression (36). The line positions and errors are given in Table I. Each isotope was initially fitted separately and the Dunham Y coefficients obtained are given in Table II. The microwave transitions of Honig et al. (1) and Rusk and Gordy (2) were included in the fit. The hyperfine free line positions were calculated from the observed transitions using the published hyperfine constants (1-3, 12). It was found that the $\label{eq:TABLE I} TABLE\ I$ Observed Lines in the Vibration–Rotation Spectrum of LiBr (in cm $^{-1}$) | P(J) | 2-0 | | 3~1 | | ⁷ Li ⁸ | Br 5-3 | | 6-4 | | 7-5 | | | | | |--|--|--------------------------|--|---|--|--|---------------------------------------|--|--|--|------------------------------------|--|--------------------------|--| | | ν | Δν ^a | | Δυ | ν Δν | Δ ٌ ν | ν | ν |
Δν | , v | Δυ | | | | | 1
2
3
4
5
6 | 1099,260
1096,903 | -2
1 | 1086.760
1085.621
1084.466
1083.285 | 0
-3
-0
-2 | 1073.275 0
1072.150 -1
1071.004 -1
1069.839 2
1068.652 4 | 1055.375 | 2 | 1045.693
1044.567
1043.425 | 2
-2
1 | 1033.790 | -2 | | | | | 7
8
9
10
11
12 | 1094,454
1093,195
1091,916
1090,626
1089,292 | -1
-2
-9
-3 | 1079.621
1078.355
1075.757
1074.425 | 2
2
-0 | 1067.435 -3
1066.209 3
1064.952 -0
1063.675 -2
1062.383 2
1061.068 4 | 1052.954 -
1051.712 -
1050.449 -
1049.169 | 0
1
2
3
0
5 | 1041.072
1039.868
1038.637
1034.825
1033.513 | 3
0
-0 | | | | | | | .3
.4
.5
.6
.7 | 1086.583
1085.200
1083.793 | -3
1
2 | 1073 077
1071 700
1070 304
1068 894
1067 451
1065 995 | 3
-0
-2
4
-3
-1 | 1058.365 -1
1056.984 -1
1054.161 0
1052.717 -0 | 1045.193 -
1043.831
1041.028 - | 0
0
5
2
2 | 1033.513
1032.181 | -0
0 | | | | | | | 19
20
21 | 1076.425
1073.335
1071.757
1070.159 | -5
-2
-3 | 1064.517
1063.015
1061.501 | 0
-2
4 | 1051.251 -2
1048.268 6
1046.733 -3
1045.187 -2 | 1038.147 -
1035.186 -
1033.673 -
1032.145 - | 3 5 | | | | | | | | | 22
23
24
25
26
27
28
29 | 1070,159
1068.543
1066.900
1065.243
1063.556
1061.856 | -2
1
-1
2
-3 | 1056.807
1055.207
1053.579
1051.935
1050.270 | -3
-3
-2
-2 | 1040.422 -3
1038.799 2 | | | | | | | | | | | 30
31
32
33 | 1060.135
1058.393
1056.627
1054.846
1053.039 | 1
2
-1
2
-1 | 1046.879
1045.151
1043.407
1039.856 | -2
-4
-1 | 1035.475 -4
1033.792 3
1032.077 -3 | | | | | | | | | | | 35
36
37
38
39 | 1051,214
1049,370
1047,509
1045,622
1043,723 | -2
-2
1
-2
3 | 1034.378 | 1 | | | | | | | | | | | | 1
2
3 | 1039.856 | 2 | | | | | | | | | | | | | | R(J) | 2-0 | Δυ | 3-1 | Δν | 4-2
ν Δν | 5-3
v <u>6</u> | ν | 6-4
V | Δυ | 7-5
ب | υΔ | 8-6
v | Δν | 9-7
ν Δν | | 0
1
2
3
4
5
6
7 | | | 1090.039
1092.110
1093.112
1094.092 | 4
2
1
-1
-2 | 1076.513 -4
1078.574 5
1079.564 2 | 1064,189 -
1065,198
1066,181
1067,137 -
1068,077
1068,996 | 5 0 4 4 1 0 2 1 | 1050.983
1051.979
1052.954
1053.904
1054.835 | -3
-1
1
-0
1 | 1038.926
1039.894
1040.830
1042.644
1043.527 | 0
5
-0
-4
2 | | | | | 8
9
10
11
12 | 1113.290
1114.123
1114.941 | -2
-2
5 | 1096,903
1097,794
1099,510
1100,332
1101,139 | -0
-0
-2
3 | 1083.311 -3
1084.197 1
1085.057 0
1085.897 3
1086.712 2
1087.507 4 | 1070.762
1071.614
1072.447
1073.251
1074.032
1074.788 | 1 4 1 3 9 | 1057.490
1058.334
1060.729
1061.489 | -2
0
-0
6 | 1045.212
1046.025
1046.814
1047.586 | -2
-0
-1
2 | 1033.056
1033.834
1034.599
1035.333 | -1
-2
3
-2 | | | 14
15
16 | | | 1103.400
1104.118 | -5
2 | 1089.025 3
1089.751 3
1090.458 7
1091.142 9 | 1075.538
1076.252 - | 0
-4
-1 | 1062.217
1062.924
1063.610
1064.277
1064.922 | 1
-2
-4
-3
-1 | 1049.053
1050.434
1051.728
1052.350 | -1
-3
-4
3 | 1038.703
1039.309 | 3
1 | | | 18
19
20
21
22
23
24
25 | | | | | 1092.422 -3
1093.037 -0
1093.630 3
1094.193 -1
1095.752 -5 | 1078.904 | 1 | 1065.543
1066.146
1066.715
1067.274
1067.804
1068.318
1068.805 | -1
3
-5
0
-2
3 | 1052.330
1052.937
1053.505
1054.057
1054.585
1055.087 | -2
-4
0
3 | 1039.894
1040.455
1040.996 | -2
-3 | | | 26
27
28
29
30 | 1123.860
1124.324
1124.768 | -2
-2
-3 | | | 1096.232 -0
1096.686 1
1097.116 2
1097.518 -2
1097.906 3 | 1083.114 -
1083.538 -
1083.940
1084.320 | -0
-0
1
2 | 1069.267
1069.711
1070.125
1070.521
1070.894
1071.248 | 1
-1
-1
-2
1 | 1056.460
1056.872
1057.265
1057.634
1057.983 | -1
-3
-2
-2
1 | 1042.943
1043.375
1043.789 | -1
-0
5 | | | 31
32
33
34
35
36
37 | | | 1113.244
1113.490
1113.715 | -0
-2 | 1099.202 -2
1099.468 -4
1099.714 -1 | 1085.003 -
1085.315
1085.600 -
1085.867 | 3
0
1
2 | 1071.575
1071.880
1072.159
1072.426
1072.660
1072.873 | 0
0
-3
4 | 1058.306 | ô | 1045,193
1045,490
1045,769
1046,025 | -3
-4
1
4 | 1033.056 -
1033.286
1033.489
1033.673
1033.834 | | 38
39
40
41
42
43 | | | 1113 . 917
1114 . 092
1114 . 246
1114 . 375
1114 . 483
1114 . 564
1114 . 623
1114 . 657 | -1
0
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1 | 1099 933 -3
1100 131 -2
1100 308 1
1100 584 -1
1100 586 -2
1100 767 -1
1100 824 -1
1100 860 2 | 1086.517
1086.685
1086.835
1087.958
1087.063
1087.141
1087.192 | 1
-0
-2
-2
-2
-2
-2 | 1073.068
1073.230
1073.377
1073.500
1073.673
1073.726
1073.726 | 0
4
-2
0
1
-1
-1
-3 | 1060.202
1060.298
1060.372
1060.422
1060.452 | 2
1
1
-0
2
-0
-1 | 1046 .457
1046 .640
1046 .803
1046 .944
1047 .063
1047 .158
1047 .231
1047 .280
1047 .306
1047 .309 | -3
-2
-1
1
2 | 1033 . 489
1033 . 873
1033 . 834
1033 . 969
1034 . 062
1034 . 172
1034 . 293
1034 . 320
1034 . 320
1034 . 302 | | 46
47
48
49 | | | 1114.672
1114.657
1114.623
1114.564 | 3
0
3
4 | 1100.869 1
1100.854 0
1100.815 -1
1100.752 -3 | 1087.231 -
1087.216 -
1087.180
1087.120 | -2
-2
1
3 | 1073.759
1073.744
1073.708
1073.644 | -4
-2
1
0 | 1060 . 455
1060 . 437
1060 . 397
1060 . 334 | -1
-0
1 | 1047.292
1047.250
1047.185 | 2
1
2
2
2 | 1034.302
1034.257
1034.191 | $^{^{\}rm a}$ in units of $10^{-3}~{\rm cm}^{-1}$. TABLE I—Continued | R(J) | 2 0
v | Δν | 1 1 | Δν | 4 · 2
v | Δυ | 5-3
v | Δν | fi-4
₽ | Δν | ۶ ^۲
۷ | Δν | 8 G | Δν | o -
,, | Λν | |--|--|--|---|---
---|--|--|---|---|---|---|---|---|--|--|----------------------------| | 50
51
52
53
55
55
55
55
55
55
66
55
66
67
70
77
77
77
77
77
77
77
77
77
77
77
77 | 1124.306
1123.834 | 2 1 | 1114. 480
1114. 367
1114. 236
1114. 236
1114. 082
1113. 903
1113. 698
1113. 470
1113. 219 | 4
-1
-1
1
2
0
-0
0
-0
0 | 100, 668
1100, 563
1100, 563
1100, 428
1100, 272
1100, 092
1099, 891
1099, 663
1099, 415
1097, 407
1097, 407
1096, 995
1086, 551
1099, 2798
1092, 798
1092, 798
1093, 403
1092, 798
1093, 403
1092, 798
1093, 403
1094, 550
1093, 403
1092, 798
1098, 663
1098, 663
1099, 798
1098, 663
1099, 798
1098, 663
1099, 798
1098, 663
1099, 798
1098, | -2 1 -2 -3 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 | 1087, 033
1086, 925
1086, 793
1086, 634
1086, 634
1086, 625
1085, 777
1085, 501
1085, 207
1084, 883
1084, 341
1084, 174
1083, 185
1082, 931 | 1 2 2 2 -1 1 -0 0 -1 0 -2 1 -3 2 2 3 1 5 5 | 1073, 560
1073, 449
1073, 161
1072, 984
1072, 780
1072, 552
1072, 303
1071, 736
1071, | 20
11
31
11
-11
00
-01
00
-2
52
11
2-25
-12
-5
21 | 1058, 112
1058, 112
1057, 766
1057, 616
1057, 616
1055, 241
1058, 659
1053, 659
1053, 689 | 0
-3
-1
-4
-1
1
-2
-2
0 | 1047.096
1046.896
1046.899
1046.899
1045.696
1045.575
1045.276
1049.6516
1044.964
1044.964
1043.844
1042.596
1040.540
1040.540 | -0
-0
-4
-2
-3
-2
-1
-7
-3
-3
4
0
1
7 | 1034 104
1034 000
1033 863
1033 704
1030 527
1033 324 | -0
-0
-2
-2
-1 | | 89 | | | 1092.463 | -1 | ⁷ Li ⁷ | 9 _{Br} | | | | | | | | | | | | P(J) | 2-0 | Δν | 3-1
v | Δυ | 4-2
v | Δν | 5~3
لا | Δν | 6-4
v | Δυ | 7-5
v | Δν | | | | | | 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 22 25 26 27 28 9 300 31 2 23 32 25 26 37 38 39 44 40 44 44 44 44 | 1099.175 1096.765 1094.258 1092.987 1099.361 1089.013 1087.650 1086.253 1064.841 1078.985 1075.327 1074.365 1077.89 1074.366 1077.89 1066.252 1064.564 1062.855 1061 137 1057.614 1062.952 1064.062 1052.194 1064.082 1064.082 1064.082 1064.083 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 - | 1085 522
1084 341
1083 138
1078 103
1078 103
1077 450
1074 104
1072 732
1071 333
1069 912
1066 912
1066 929
1057 011
1060 959
1057 802
1057 802
1057 802
1057 802
1059 912
1059 912
1059 912
1060 959
1057 802
1059 912
1059 912
105 | -0 1 1 0 -2 0 -1 3 2 -1 6 -1 1 1 1 4 2 2 -3 2 3 -1 6 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 | 1056.579
1053.705
1052.242
1050.751
1049.240
1047.715
1046.163
1044.588
1042.999
1041.387
1039.756
1038.095 | 250-1250-212-43-2-11-220027-00 | 1060.859
1057.551
1055.852
1055.172
1053.943
1052.943
1052.943
1052.953
1052.953
1062.953
1075.521
1044.798
1046.171
1044.798
1049.109
1034.629
1033.091 | -2
-0 -3 1 -0 -2 -2 -2 2 1 -2 2 -2 3 -3 0 -2 | 1046.670
1045.546
1043.232
1040.330
1039.603
1038.349
1035.775
1034.469
1033.133 | -1 0 0 -3 1 -1 -1 -2 1 | - | -3 | | | | | | R(J) | 2-0
v | Δν | 3-1
v | Δν | 4-2
v | Δν | 5-3
u | Δν | 6-4
v | Δν | 7-5
v | · | 8-6
v | Δυ | 9-7
v | ν | | 0
1
2
3
4
5
6
7
8 | | | 1092.149
1093.180
1094.186
1095.128
1097.068 | -3
1
2
-0
2 | 1078.601
1079.619
1083.460
1084.370
1085.252 | 5
6
-1
3
1 | 1064 . 175
1065 . 209
1066 . 209
1067 . 196
1068 . 159
1069
. 104
1070 . 019
1070 . 917
1071 . 790 | - 2
- 3
- 0
- 0
- 0
- 1
- 1 | 1051.979
1052.971
1053.948
1054.903
1056.741
1057.625 | - 1
1
3
- 1
- 3 | 1038, 908
1039, 896
1040, 854
1042, 718
1043, 624
1045, 354 | 3
4
-3
-4
2 | | | | | TABLE I—Continued | R(J) | 2-0
v | Δυ | 3-1
v | Δυ | 4-2
v | Δν | 5-3
V | Δν | 5-4
v | Δν | 7-5
v | Δν | 8-6
v | ۵۷ | g-7
ν | Δν | |--|----------------------|----------|--|-------------------------------------|--|---|--|---|---|--|---|--|---|--|--|---| | 9
10
11 | 1113.547
1114.404 | -0
-1 | 1099.747
1100.596 | 0
1 | 1086.115
1086.958
1087.777 | 2
6
8 | 1072.642
1073.476
1074.281 | - 2
2
- 1 | 1060.160
1060.959 | 1 | 1047.005
1047.799 | 0 3 | 1033.205
1034.792 | 1
0 | | | | 11
12
13
14 | | | 1103.002
1103.761 | -2
-0 | 1088.569
1089.337
1090.089 | 6
2
4 | 1075.068
1075.832
1075.568 | - 0
- 0
- 6 | 1061.736
1062.495
1063.219 | - 0
3
- 6 | 1049.312
1050.039 | -1
1 | 1035,550 | -3 | | | | 14
15
16
17
18
19
20
21 | | | | · | 1090.818
1092.197
1092.858
1093.492
1094.106 | 6
-0
2
-0
1 | 1078.670
1079.312
1079.948 | 7
- 3
4 | 1063.936
1064.626
1065.297
1065.935
1066.558
1067.154
1067.733
1068.287 | - 1
0
5
- 2
- 1
- 4
- 2
- 3 | 1050.742
1051.422
1052.084
1052.717
1053.335
1053.926
1054.500
1055.048 | 0
-1
1
-3
-0
-2
1 | 1038.379
1039.033
1039.665
1040.267
1040.854 | -1
1
2
-4
-3 | | | | 22
23
24
25
26
27
28
29 | 1123.992
1124.501 | -0 | | | 1095.804
1096.328
1096.828
1097.302
1097.755 | -4
-1
0
-2
-1 | 1083.240
1083.710
1084.159 | - 1
- 1
0 | 1068.826
1069.334
1069.821
1070.281
1070.725 | 2
2
- 2
- 0 | 1056.557
1057.016
1057.453 | -1
-1
-1 | 1042.982
1043.459
1043.916 | 1
2
5 | | | | 28
30
31
33
33
36
37
89
40
42
44
44
45 | | | 1113.458
1113.778
1114.072
1114.392
1114.591
1114.813
1115.015 | -2
0
-0
-1
1
-0
2 | 1099.333
1099.672
1099.984
1100.272
1100.544
1100.782
1101.007
1101.205
1101.379 | -2
0
-1
-3
2
-4
1
2
3 | 1084, 583
1084, 983
1085, 363
1085, 373
1085, 074
1086, 0358
1086, 643
1086, 910
1087, 738
1087, 738
1087, 738
1088, 167
1088, 167
1088, 254 | 0 - 2 1 1 - 4 - 1 3 1 1 1 5 9 6 - 1 8 - 1 1 0 - 1 8 | 1071.145
1071.540
1071.913
1072.591
1072.900
1073.182
1073.673
1073.673
1074.245
1074.275
1074.675
1074.728 | 1
0 1 7 2 2 2 2 0 3 7 3 2 0 1 6 9 0 - 12 | 1057, 867
1058, 259
1060, 135
1060, 368
1060, 576
1060, 929
1061, 072
1061, 194
1061, 364
1081, 413
1081, 440 | -1
0
2
2
-0
1
2
5
5
7
5
5 | 1044.747
1045.502
1045.844
1046.457
1046.457
1046.733
1046.986
1047.217
1047.425
1047.772
1047.772
1048.193
1048.121
1048.123
1048.268 | -4
-3
0
-0
-0
-3
-1
1
2
2
2
2
2
3
5
4 | 1032.175
1033.185
1033.479
1033.755
1034.000
1034.224
1034.611
1034.768
1034.904
1035.108
1035.108
1035.108
1035.255 | 1 -10 5 1 1 1 3 1 1 1 2 4 3 1 2 1 3 2 2 2 4 | | 46748905123555555556612345 | | | 1114.983
1114.775
1114.547
1114.015
1114.015
1113.715
1113.385 | 3
0
2
-1
0
2
-3 | 1101.331
1101.148
1100.938
1100.710
1100.458
1100.182
1099.852
1099.210 | 4
2
-3
-2
-2
-1
-1 | 1088 266 1088 242 1088 243 1088 137 1088 047 1087 942 1087 828 1087 656 1087 483 1087 1086 223 1085 552 1085 159 1086 393 1084 370 1083 393 1084 393 1084 393 1088 39 | - 3
-10
-12
-15
-10
10
5
3
1
4
- 3
- 3
- 2
- 2
- 0
0 | 1074 761
1074 7743
1074 704
1074 644
1074 657
1074 314
1074 158
1073 975
1073 774
1073 774
1073 296
1073 296
1072 729
1072 108
1071 301
1071 883
1070 883
1070 883
1070 883 | -1120
-11652324101344101213 | 1061 .442
1061 .424
1061 .248
1061 .388
1061 .338
1061 .230
1061 .118
1060 .820
1060 .437
1060 .213 | 3
4
5
5
5
4
0
3
-2
2
1
1
-1
-0
2 | 1048. 268
1048. 252
1048. 208
1048. 140
1048. 052
1047. 940
1047. 805
1047. 647
1047.
488
1047. 265
1046. 785
1046. 785
1046. 785
1046. 516
1045. 561 | 2652322122
-130 -11 -2 40 | 1035_250
1035_229
1035_186
1035_186
1035_107
1035_028
1034_918
1034_85
1034_629
1034_452
1034_452 | -3
-2
-4
-4
-3
-1
-0
3 | | 66
67
68 | 1124.417
1123.897 | 1 2 | | | 1097.116
1096.621
1096.104 | 3
-1
-2 | 1083,460
1082,979 | - 6
1 | 1069.985
1069.502
1068.996
1068.460 | 0
3
6
2 | 1056.665
1056.183 | -2
-2 | 1043.512
1043.032 | -0 | | | | 68
69
70
71
72
73
74 | | | | | 1094.417
1093.804
1093.170
1092.508 | 1
-1
-0
-3 | 1079.549
1078.214 | 0 - 2 | 1067.902
1067.321
1066.715
1066.095
1065.443
1064.770 | - 0
- 2
- 5
- 0 | 1054.600
1054.022
1053.424
1052.801
1052.158
1051.486 | 2
0
-1
2
-1 | | | | | | 74
75
76
77
78
79
80 | | | 1104.164 | 4 | 1090.398
1089.637
1088.854 | 8
2
-2 | | | 1064.070
1063.347
1062.612
1061.841 | - 2
- 5
4
1 | | | | | | | | 80
81
82
83
84
85 | | | 1100.971
1100.114
1099.231 | -2
-2
-4 | 2000.034 | ٠ | | | 1061.051
1060.238 | 2 4 | | | | | | | | 63 | | | 1097.395 | | ⁶ Li ⁸¹ Br | | | | | | | | | | | | | P(J) | 2-0
v | Δυ | 3-1 | Δν | 4-2
v | Δν | 5-3
v | | 6-4
v | Δν | | | | | | _ | | 25
26
27
28
29
30
31
32
33
34
35
37
38
39
40
41
42
43 | | | 1113.340 | -2 | 1096.306
1094.213
1089.961 | 0
-2
1 | 1097.232
1093.462
1089.589
1085.621 | 0 | 1078.781
1074.948 | 2
-1 | | | | | | | | 38
39
40
41
42
43
44 | | | 1095.948
1093.670 | -3
1 | 1083.398 | -0
0 | 1070.968 | | | | | | | | | | TABLE I—Continued | | | | | | ⁶ Li ⁸¹ Bı | 2 | | | | | | | |--|----------|----|----------------------|----|--|--------------------|----------------------------------|---------------|----------|----|----------|----| | P(J) | 2-0
v | Δυ | 3-1
v | Δυ | 4-2
v | ν. | 5-3
v | Δν | 6~4
v | Δν | | | | 45
46
47
48 | 1094.291 | -0 | 1084.304 | 2 | 1069.640
1067.258
1064.861
1062.443 | 5
-2
-0
3 | | | | | | | | 49
50
51
52
53
54 | | | 1072.066 | -2 | 1057.528 | 0 | | | | | | | | 54 | 1076.492 | -3 | | | | | | | | | | | | | | | | | ⁶ I | .i ⁷⁹ B | r | | | | | | | P(J) | 2-0
V | עב | 3-1
v | Δν | 4-2
V | νΔ | 5-3
v | - ν | 6~4
⊁ | ν۵ | 7-5
V | ν۵ | | 20 | | | | | | | | | 1092.269 | 1 | | | | 21
22
23
24 | | | | | | | | | 1088.775 | -0 | 1072.396 | -3 | | 21
22
22
23
24
25
26
27
28
29
20
21
22
23
24
24
25
26
27
28
29
20
20
21
21
21
21
21
21
21
21
21
21
21
21
21 | | | | | | | 1096.218
1094.318
1092.383 | 1
3
-5 | 1075.771 | 1 | 1065.097 | 2 | | 30
31 | | | 1114,222 | -3 | 1101.280 | 3 | 1088.455 | -4 | 1071.835 | -0 | | | | 32
33
34 | | | 1114.222 | -3 | 1097.161 | 1 | | | | | | | | 35
36 | | | | | 1092.948
1088.635 | 3 | 1076.090 | -2 | | | | | | 38
39
40 | | | 1096,798 | -1 | 1086.441
1084.228 | -0
2 | 1071.778
1069.588
1067.367 | -0
3
-2 | | | | | | 41 | | | 1000,750 | • | 1079.723 | 0 | 1065.131 | 2 | | | | | | 43 | | | 1089 868
1087 507 | -0 | 1075.125 | -0 | | | | | | | | 46
47 | | | 1085.126 | 1 | 1070.436
1068.053 | -0
-0 | | | | | | | | 48
49 | 1092.649 | -1 | | | 1060,773 | ~0 | | | | | | | | 51 | | | 1070,346 | 3 | | | | | | | | | TABLE II $\label{eq:Dunham Parameters for 7Li9Br and 7Li8Br (in cm$^{-1}$)}$ | Constant | ⁷ Li ⁷⁹ Br | ⁷ Li ⁸¹ Br | |--|----------------------------------|----------------------------------| | $Y_{10} = \omega_e$ | 562.28564 (78) | 561.71538 (70) | | $Y_{20} = -\omega_{\bullet} x_{\bullet}$ | -3.51011 (27) | -3.50195 (25) | | $Y_{30} = \omega_e y_e$ | 0.014363 (40) | 0.014170 (37) | | $0^5 Y_{40} = \omega_0 z_0$ | -4.81 (21) | -4.05 (20) | | $Y_{01} = B_{e}$ | 0.55539720 (36) | 0.55427796 (42) | | Υ ₁₁ = -α _e | -0.00564616 (57) | -0.00562876 (45) | | $0^5 Y_{21} = \gamma_e$ | 2.4952 (77) | 2.4776 (66) | | 0 ⁸ Y ₃₁ | -4.77 (43) | -4.52 (39) | | $0^6 Y_{02} = -D_e$ | -2.1678 (18) | -2.1634 (17) | | $0^8 Y_{12} = -\beta_e$ | 1.144 (19) | 1.165 (16) | | 0 ¹¹ Y ₂₂ | 1.94 (75) | 1.84 (64) | | $0^{12} Y_{03} - H_{\bullet}$ | 3.59 (53) | 3.01 (45) | FIG. 2. A section of the lithium bromide spectrum, showing the essentially random appearance of the spectrum away from the bandheads. Also shown are two ⁶Li⁷⁹Br lines in natural abundance (4%). measurements of Honig et al. (1) did not fit with the other observations to within the published precision, so they were deweighted by a factor of 6. Small inconsistencies with the data of Honig et al. (1) were also reported by Hebert et al. (3) in their work on ⁶LiBr. TABLE III Mass Reduced Dunham Constants for LiBr (in cm⁻¹) | | U ₁₀ | 1427.2689 (12) | |------------------|--------------------|-----------------| | | U ₂₀ | -22.6119 (11) | | | U ₃₀ | 0.23344 (42) | | | U ₄₀ | -0.001822 (57) | | | Uoı | 3.5784421 (93) | | | Δ_{01}^{Li} | 0.314 (29) | | | U ₁₁ | -0.0923319 (31) | | | U ₂₁ | 0.0010327 (16) | | 10 ⁶ | U ₃₁ | -4.74 (27) | | 10 ⁵ | U ₀₂ | -9.0152 (30) | | 10 ⁶ | U ₁₂ | 1.2083 (53) | | 10 ⁹ | U ₂₂ | 6.21 (89) | | 10 ¹⁰ | U ₀₃ | 9.77 (48) | | | | | | | TABLE IV | |-----|---| | RKR | Turning Points for the $X^{1}\Sigma^{+}$ State of ${}^{7}\text{Li}^{79}\text{Br}$ | | v | $E_{v}(cm^{-1})$ | $R_{min}(\text{\AA})$ | $R_{max}(\text{Å})$ | |---|------------------|-----------------------|---------------------| | 0 | 280.4123 | 2.07952 | 2.27301 | | 1 | 835.7230 | 2.01957 | 2.35640 | | 2 | 1384.1421 | 1,98124 | 2.41833 | | 3 | 1925.7530 | 1.95174 | 2.47160 | | 4 | 2460.6383 | 1.92737 | 2.51991 | | 5 | 2988.8794 | 1.90645 | 2.56494 | | 6 | 3510.5566 | 1.88803 | 2.60762 | | 7 | 4025.7493 | 1.87154 | 2.64854 | | 8 | 4534.5358 | 1.85660 | 2.68809 | | 9 | 5036.9932 | 1.84291 | 2.72655 | | | | | | The data for the two isotopic species were then combined and fitted to the mass reduced Dunham expression including Watson's Born-Oppenheimer breakdown coefficients (37). All of the data could be fitted without the introduction of any of Watson's coefficients. The microwave lines of Hebert *et al.* (3) for ⁶LiBr were then included and a prediction of the ⁶LiBr vibration-rotation lines was made. ⁶LiBr lines could not be picked out without this prediction because ⁶Li is present at only 7.5%, in natural abundance, and the large shift in the vibrational frequency ($\omega_e = 562.28 \text{ cm}^{-1}$ for ⁷Li⁷⁹Br, $\omega_e = 603.72 \text{ cm}^{-1}$ for ⁶Li⁷⁹Br) meant that only the widely spaced *P*-branch lines could be seen in the region observed. Based on the prediction, a total of 59 ⁶LiBr lines could be picked out from the existing spectra. These were all moderate to high *J*-, *P*-branch lines ranging from the 2-0 to the 7-5 bands for both isotopic species, ⁶Li⁷⁹Br and ⁶Li⁸¹Br. A typical section of the LiBr spectrum including two weak ⁶LiBr lines is shown in Fig. 2. The ⁶LiBr vibration-rotation lines were then fitted with the rest of the observed transitions to mass-reduced Dunham coefficients. One of Watson's Δ 's (37) was needed for the B_e (Y_{01}) rotational constant for lithium. This was due primarily to the high precision microwave data available for ⁶LiBr. The results of this fit are given in Table III. ## DISCUSSION The vibration-rotation constants were used as input to an RKR program. The classical turning points are given in Table IV, and the lower part of the curve is shown in Fig. 3. The bands observed, up to v = 9, cover the first 15% of the potential well. The equilibrium bond length was calculated to be 2.17043 Å. As was mentioned earlier, the intensities of the hot bands 3-1, 4-2, etc. are higher FIG. 3. The potential energy curve for ⁷Li ⁷⁹Br. The equilibrium constants, from Table II, were used to calculate the RKR turning points. than that of the 2–0 band. An estimate of the relative intensity of the bands was made from the diode-laser spectrum. This is difficult to do except where lines are very close together, because of the variation in diode-laser power. Initially, pairs of lines in a given band were measured, usually R-branch lines going into and coming out of a bandhead. From these data, the rotational temperature was found to be 1150 ± 50 K. The vibrational and rotational temperatures were presumed to be the same, and the relative intensities of all the bands 2–0 through 9–7 for each isotope were predicted TABLE V Variation of the Intensity of Overtone Bands with v'' | Band | Measured | Calculated | |-------|----------|------------| | 2 - 0 | 1.0ª | 1 | | 3 - 1 | 2.7 | 3 | | 4 - 2 | 5.7 | 6 | | 5 - 3 | 9.1 | 10 | | 6 - 4 | 13.7 | 15 | | 7 - 5 | 18.6 | 21 | | 8 - 6 | 30.1 | 28 | | 9 - 7 | 34.1 | 36 | | | | | a Intensities relative to 2 - 0 = 1.0 assuming equal strength for each band. The relative intensity of lines from different bands was then measured and the intensity "enhancement" from the predicted value was calculated. These were then fitted using a least-squares procedure to yield the intensity enhancements given in Table V. There have been several papers recently involving the calculation of vibration-rotation intensities (38-41), but these generally involve fairly complex expressions including the dipole moment function for the molecule. The data determined here are not sufficiently precise to warrant
this type of treatment. The relative intensities are accurate to about 10%. The simple form of the vibrational intensity expression involving Hermite polynomials yields intensities proportional to (v'' + 1)(v'' + 2). The intensities calculated from this formula relative to the 2-0 band intensity (set equal to 1) are given in Table V. It can be seen that the agreement with experiment is good, of the order of the 10% estimated precision. ### **ACKNOWLEDGMENT** The diode-laser system was purchased with a grant from the Department of Defense University Instrumentation Program. RECEIVED: November 21, 1988 ### REFERENCES - I. A. HONIG, M. MANDEL, M. L. STITCH, AND C. H. TOWNES, Phys. Rev. 96, 629-642 (1954). - 2. J. R. RUSK AND W. GORDY, Phys. Rev. 127, 817-830 (1962). - 3. A. J. HEBERT, F. W. BREIVOGEL, JR., AND K. STREET, JR., J. Chem. Phys. 41, 2368-2376 (1964). - 4. S. E. VEAZEY AND W. GORDY, Phys. Rev. A 138, 1303-1311 (1965). - 5. A. G. Maki and F. J. Lovas, J. Mol. Spectrosc. 95, 80-91 (1982). - 6. A. G. Maki, J. Mol. Spectrosc. 102, 361-367 (1983). - 7. G. THOMSON, A. G. MAKI, AND A. WEBER, J. Mol. Spectrosc. 118, 540-543 (1986). - 8. G. A. THOMSON, A. G. MAKI, WM. B. OLSON, AND A. WEBER, J. Mol. Spectrosc. 124, 130-138 (1987). - 9. H. JONES AND J. LINDENMAYER, Chem. Phys. Lett. 135, 189–192 (1987). - 10. K. HORIAI, T. FUJIMOTO, K. NAKAGAWA, AND H. UEHARA, Chem. Phys. Lett. 147, 133-136 (1988) and J. Mol. Spectrosc., submitted for publication. - M. C. DOUAY, A. M. R. P. BOPEGEDERA, C. R. BRAZIER, AND P. F. BERNATH, Chem. Phys. Lett. 148, 1-5 (1988). - R. C. HILBORN, T. F. GALLAGHER, JR., AND N. F. RAMSEY, J. Chem. Phys. 56, 855-861 (1972); J. L. CECCHI AND N. F. RAMSEY, J. Chem. Phys. 60, 53-65 (1974). - 13. W. KLEMPERER AND S. A. RICE, J. Chem. Phys. 26, 618-624 (1957). - W. KLEMPERER, W. G. NORRIS, A. BÜCHLER, AND A. G. EMSLIE, J. Chem. Phys. 33, 1534-1540 (1960). - R. S. BERRY, "Alkali Halide Vapors" (P. Davidovits and D. L. McFadden, Eds.), Chap. 3, Academic Press, New York, 1979. - 16. A. S. RAGONE, D. H. LEVY, AND R. S. BERRY, J. Chem. Phys. 77, 3784-3789 (1982). - 17. S. H. SCHAEFER, D. BENDER, AND E. TIEMANN, Chem. Phys. Lett. 92, 273-278 (1982). - 18. P. DAVIDOVITS AND D. C. BRODHEAD, J. Chem. Phys. 46, 2968-2973 (1967). - 19. R. S. BERRY AND W. KLEMPERER, J. Chem. Phys. 26, 724-726 (1957). - 20. A. W. POTTS AND E. P. F. LEE, J. Chem. Soc. Faraday Trans. 2 75, 941-951 (1979). - 21. J. BERKOWITZ, C. H. BATSON, AND G. L. GOODMAN, J. Chem. Phys. 71, 2624-2636 (1979). - 22. L. Brewer and E. Brackett, Chem. Rev. 61, 425-432 (1961). - 23. E. M. BULEWICZ, L. F. PHILLIPS, AND T. M. SUGDEN, Trans. Faraday Soc. 57, 921-931 (1961). - 24. R. L. MATCHA, J. Chem. Phys. 53, 485-495 (1970). - 25. A. HINCHLIFFE, Chem. Phys. Lett. 70, 610-612 (1980). - 26. P. Brumer and M. Karplus, J. Chem. Phys. 58, 3903-3918 (1973). - 27. J. SHANKER AND H. B. AGRAWAL, Canad. J. Phys. 58, 950-956 (1980). - 28. J. SHANKER, H. B. AGRAWAL, AND G. G. AGRAWAL, J. Chem. Phys. 73, 4056-4060 (1980). - 29. J. SHANKER AND H. B. AGRAWAL, Canad. J. Phys. 60, 1187-1192 (1982). - 30. B. T. GOWDA AND S. W. BENSON, J. Phys. Chem. 86, 847-857 (1982). - 31. J. E. SZYMANSKI AND J. A. D. MATHEW, Canad. J. Phys. 62, 583-589 (1984). - 32. M. KUMAR, A. J. KAUR, AND J. SHANKER, J. Chem. Phys. 84, 5735-5740 (1986). - 33. E. S. RITTNER, J. Chem. Phys. 19, 1030-1035 (1951). - 34. G. VAN HOOYDONK, J. Mol. Struct. 105, 69-90 (1983). - 35. G. GUELACHVILLI AND K. NARAHARI RAO, "Handbook of Infrared Standards," Academic Press, San Diego/Orlando, 1986. - 36. J. L. DUNHAM, Phys. Rev. 41, 721-731 (1932). - 37. J. K. G. WATSON, J. Mol. Spectrosc. 80, 411-421 (1980). - 38. C. CHACKERIAN, JR., AND R. H. TIPPING, J. Mol. Spectrosc. 93, 237-244 (1982). - 39. R. H. TIPPING AND J. F. OGILVIE, J. Mol. Spectrosc. 96, 442-450 (1982). - 40. J.-P. BOUANICH, NGUYEN-VAN-THANH, AND I. ROSSI, J. Quant. Spectrosc. Radiat. Transfer 30, 9-15 (1983). - 41. J.-P. BOUANICH, J. Quant. Spectrosc. Radiat. Transfer 37, 17-46 (1987).