Spectroscopy of the CH Free Radical

P. F. BERNATH, C. R. BRAZIER,¹ T. OLSEN, R. HAILEY, AND W. T. M. L. FERNANDO

Department of Chemistry, The University of Arizona, Tucson, Arizona 85721

AND

CHRISTINE WOODS AND J. L. HARDWICK

Chemical Physics Institute, University of Oregon, Eugene, Oregon 97403

New emission observations of the $A^2\Delta - X^2\Pi$ and $B^2\Sigma^- - X^2\Pi$ electronic transitions of the CH free radical were recorded. The $A^2\Delta - X^2\Pi$ and $B^2\Sigma^- - X^2\Pi$ data were obtained with a Fourier transform spectrometer and additional measurements of the $A^2\Delta - X^2\Pi$ transition were made with a spectrograph. These line positions were combined with the previous infrared vibration-rotation measurements in a simultaneous fit to determine the molecular parameters for the $X^2\Pi$, $A^2\Delta$, and $B^2\Sigma^-$ states. © 1991 Academic Press. Inc.

INTRODUCTION

CH is one of the most studied free radicals because it occurs in such a wide variety of environments. A partial review of the spectroscopic literature on CH was provided in a previous paper (1). Since 1986, when the vibration-rotation emission spectrum was observed with a Fourier transform spectrometer (1), we have observed an additional vibration-rotation band (4-3) as well as the $A^2\Delta - X^2\Pi$ and $B^2\Sigma^- - X^2\Pi$ electronic transitions. In this paper, we take the opportunity to correct an error in the fitting of our previous infrared data and we report a combined fit of all of our CH observations.

There has been considerable spectroscopic, kinetic, and theoretical work on the CH free radical since 1986. The hyperfine structure of the $A^2\Delta - X^2\Pi(2)$ and $C^2\Sigma^+ - X^2\Pi(3)$ transitions was measured in molecular beam experiments. The hyperfine parameters of the low-lying states in CH were also calculated ab initio by several groups (4-6). The microwave optical double resonance experiments of Steimle *et al.* provided the hyperfine parameters for the $X^2\Pi$ state of ¹³CH (7).

Tunable far infrared and laser magnetic resonance measurements of the pure rotational transitions of CD (8), CH, and ¹³CH (9) were made in Boulder. The metastable $a^{4}\Sigma^{-}$ state was discovered by Nelis *et al.* (10) by far infrared laser magnetic resonance. This state may be important in the production of ions in flames by the reaction

¹ Current address: Astronautics Laboratory/LSX, Edwards Air Force Base, CA 93523.

TABLE	ΞI
-------	----

Line Positions for the 4-3 Vibration-Rotation Band of CH (in cm⁻¹)

J"	R _{1e}	R _{lf}	R _{2e}	R _{2f}
0.5	-	<u>.</u>		2417.3613(2)
1.5	2404.7967(16)ª	2404.6711(-85)	2429.2943(6)	2429.4952(6)
2.5	2427.4996(9)	2427.3204(-34)	2449.4551(0)	2449.7081(-24)
3.5	2448.6388(3)	2448.4071(-2)	2468.8674(-45)	-
4.5	2468.4795(-8)	2468.1974(9)	-	2487.5717(22)
5.5	2487.0703(34)	2486.7409(61)	2504.3913(80)	-
6.5	2504.3913(-29)	2504.0176(-8)	-	2520,7620(98)
7.5	-	2520.0290(-4)	2534.9809(2)	2535.4536(60)
8.5	2535.1936(4)	2534.7430(-17)		2548,8321(2)
9.5	-	2548.1338(-60)		-
J"	Ple	P _{lf}	P _{2e}	P _{2f}
15	-	-	2296.2426(14)	-
2.5	-	-	2279.2365(-53)	2279.0068(-18)
3.5	2280.4625(-11)	2280,6694(55)	2251,7012(-9)	2251,3920(-22)
4.5	2252.0956(54)	2252.3615(-34)	2222,9084(187)	-
5 5	2222.9084(-77)	2223.2650(-20)	2193,1051(30)	2192,6392(0)
6.5	2192.9111(-15)	-	-	-

^a Observed-Calculated line positions in units of 10⁻⁴ cm⁻¹.

 $CH(a^{4}\Sigma^{-}) + O \rightarrow HCO^{+} + e^{-}(11)$. The microwave spectra of CH have been reviewed by Lovas and Suenram in 1989 (12).

Other spectroscopic measurements of CH include the dipole moment (13) of the $A^2\Delta$ state (0.77 D), a reanalysis of the $A^2\Delta - X^2\Pi$ transition (14), and a measurement of isotopic shifts in the rotational lines of the $A^2\Delta - X^2\Pi$ transition (15). CH is widely observed in extraterrestrial sources including the sun (16) and diffuse interstellar clouds (17-20). Highly excited states of CH were found by resonance enhanced multiphoton ionization with the detection of the ion and/or the photoelectron (21-27). Very good ab initio calculations by van Dishoeck (28) are now available for these highly excited states.

The CH molecule is readily detected in hydrocarbon flames (29-32) and shock tubes (33). The formation of the $A^2\Delta$ state by electron impact on methyl halides has been studied (34). Reaction rates of CH can be measured by laser-induced fluorescence (35-37). Radiative lifetimes, rotational energy transfer, and quenching rates of the $A^2\Delta$ state are known (38-44). Even state-to-state energy transfer rates in the ground $X^2\Pi$ state have been measured (45) and theoretically explained (46).

EXPERIMENTAL DETAILS

The 4-3 vibration-rotation band was found in the same spectrum which yielded the 3-2, 2-1, and 1-0 bands previously reported (1). The experimental conditions used can be found in our previous CH paper (1).

The $A^2\Delta - X^2\Pi$ and $B^2\Sigma^- - X^2\Pi$ transitions were recorded in two Fourier transform

	TA	BL	Æ	Π
--	----	----	---	---

Measured Line Positions for the 2	$^{2}\Delta - X^{2}\Pi$ Transit	ion of CH (in cm ⁻¹)
-----------------------------------	---------------------------------	----------------------------------

			0-0 Band			
J	Q _{lfe}	0 - C	Q _{lef}	0 - C	R _{1e}	0 - C
$\begin{array}{c} 1 .5 \\ 2 .5 \\ 3 .5 \\ 5 .5 \\ 6 .5 \\ 6 .5 \\ 11 .5 \\ 12 .5 \\ 13 .5 \\ 14 .5 \\ 14 .5 \\ 14 .5 \\ 14 .5 \\ 12 .5 \\ 12 .5 \\ 22 .5 \\ 22 .5 \\ 22 .5 \\ \end{array}$	23172.5904 23175.6443 23179.0751 23183.0698 23187.6531 23198.7229 23205.1907 23212.2631 23219.9212 23236.8772 23246.1121 23255.7812 23256.8722 23276.3074 23298.0260 23309.1567 23320.3947 23331.5915 23342.7146	-17 -64 40 -40 111 -3 -8 -15 -1 15 -15 -37 -37 -97 -97 -17 -57 141 -17 -24 104	$\begin{array}{c} 23172.7567\\ 23176.0206\\ 23179.744\\ 23184.0952\\ 3189.1235\\ 23194.8433\\ 23201.2625\\ 32208.3690\\ 23216.1415\\ 32243.1922\\ 23253.3248\\ 23263.9616\\ 23275.0447\\ 23286.5473\\ 23286.5473\\ 23298.3379\\ 23310.3737\\ 23322.5675\\ 23334.9669\\ 23347.3079\\ \end{array}$	33 7 -12 26 50 27 9 20 23 4 -1 72 -32 -35 -35 -35 -35 -476 91 -7	23228.008 23260.0996 23292.0084 23324.1842 23356.7388 23399.6844 23423.0066 23450.6058 23592.7865 23599.6684 23593.6684 23593.6684 23593.6684 23593.6684 23593.6681 23697.2505 23667.2505 23731.5567 23765.6314 23832.7065 23865.5136	71 -16 2 -13 -8 -9 -11 -89 -33 -25 -122 -22 -11 -59 -62 -72 -64
J	R _{1f}	0-C	Ple	0-C	P _{lf}	0-C
1.5 2.5 3.5 5.5 6.5 9.5 10.5 11.5 16.5 16.5 14.5 14.5 14.5 19.5 20.5 22.5 23.5	23228.0070 23260.2657 23292.3839 23324.8480 23357.7674 23391.1482 23424.9716 23429.1963 23423.9716 23423.7812 23528.6750 23563.8011 23599.1048 23639.9997 23705.4149 23705.4149 23775.8239 23912.2480 23912.2480 23944.774 23976.467	-172 32 6 -14 14 18 25 1 1 10 82 43 3 -16 9 112 27 -12 58 160 -160 -127	23088.1369 23062.7172 23037.9608 23013.9820 22990.8426 22947.2610 22926.8492 22947.2610 22926.8492 22947.32610 22824.8515 22871.3326 22854.7627 22834.4509 22810.6408 22797.7398 22785.7140 22774.5013	13 -9 -12 -51 -51 -23 -23 -406 -170 -14 -223 -52 -147 -72 -40	23088.5123 23063.3828 23038.9894 23015.4457 22992.7976 22990.7353 22950.4316 22930.7353 22812.0221 22834.32403 22847.6383 22861.9579 22847.2923 22833.5861 22808.9831 22808.9831 22778.6538	15 7 9 100 -156 200 8 115 -75 -148 -197 -24 -7 -148 -148 -148 -148 -148 -148 -148 -148

^a Observed minus calculated line positions are in units of 10^{-4} cm⁻¹.

emission experiments and the $A^2\Delta - X^2\Pi$ transition was also measured with the Oregon grating spectrograph. In the first Fourier transform measurement, a Cossart source (47) was used with a trace of CH₄ in 2 Torr of Ar gas on the low pressure side of the capillary discharge. The current was about 100 mA. The emission from the lamp was focused onto the entrance aperture of the McMath Fourier transform spectrometer of the National Solar Observatory at Kitt Peak. Three scans were coadded in 22 min of integration at a resolution of 0.071 cm⁻¹. Two cooled photomultiplier detectors (RCA 31034) and CuSO₄ filters limited the spectral band pass to approximately 2800– 5800 Å. In the second experiment, the pressure in the Cossart cell was about 0.7 Torr and the other experimental parameters were very similar. For this experiment, 12 scans were coadded in 85 min of integration.

J	R _{2f}	0-C	R ₂₀	0-C	Qzef	0-C
0.555555555555555555555555555555555555	$\begin{array}{c} 23247, 5241\\ 23267, 3831\\ 23296, 9053\\ 23327, 8103\\ 23359, 5419\\ 23391, 8921\\ 23424, 7570\\ 23424, 7570\\ 23424, 7570\\ 23424, 6800\\ 23525, 6079\\ 23559, 7687\\ 23594, 0421\\ 23626, 7899\\ 23697, 1139\\ 23626, 7899\\ 23697, 1139\\ 23626, 7899\\ 23697, 1139\\ 23626, 7899\\ 23684, 7680\\ 23896, 856\\ 23928, 169\\ 23$	-53 17 -6 2 26 -4 17 -12 50 -31 8 -69 -28 -177 -112 5 104 211 -118 -28 -179 -164	23247.6493 23267.6254 23297.3957 23328.6259 23360.7512 23933.5742 23426.9694 23460.8658 23495.1776 23529.8275 23564.7618 23599.8999 23635.1770 23670.4983 23705.7901 23740.9911 23775.9708 23845.0099 23912.054 23946.158	87 -13 -35 0 1 -25 12 10 -30 -31 -70 -31 -71	23180.4563 23180.8797 23182.9343 23186.0336 23189.9974 23194.7962 23200.2032 23206.3536 23213.1615 23220.5775 23228.5972 23237.1325 23265.663 23275.9699 23308.4607 23319.5771 23341.7076	- 3 14 17 - 4 579 579 - 3 - 8 48 2 153 - 16 8 3 3 - 44 - 44 23 3 - 128
	Q _{2fe}	0-C	P _{2f}	0-C	P _{2e}	0-C
$\begin{array}{c} 1 & 5 \\ 2 & 5 \\ 3 & 5 \\ 5 & 5 \\ 5 & 5 \\ 9 & 5 \\ 10 & 5 \\ 11 & 5 \\ 13 & 5 \\ 14 & 5 \\ 14 & 5 \\ 17 & 5 \\ 18 & 5 \\ 19 & 5 \\ 20$	23180.7043 23181.3721 23183.7338 23187.2481 23191.6754 23203.0242 23209.8421 23217.3644 23225.812 23234.4376 23243.8752 23263.8765 23264.3819 23275.3445 23286.1075 23288.4153 23310.3724 23322.5340 23334.8099 23347.0692	25 6 -145 24 -17 -12 -2 -21 -123 -44 46 -36 -29 -58 -73 -71 18 -70 -22 104 -73	23093.9503 23066.9027 23016.4928 22992.8273 22970.1919 22948.5198 22927.8196 229281.6699 22854.9058 22854.9058 22839.1129 22824.2575 22810.3503 22785.1594	- 31 - 22 4 4 - 163 55 5 6 - 67 19 - 180 - 180 - 39 - 39 - 34 - 35 1000 31 - 72	23094.4421 23067.7166 23042.3644 23018.1712 22995.0572 22952.0091 22932.0549 22932.0549 22932.0549 22932.2681 22855.2681 22855.2681 22862.5897 22862.5897 22862.5897	-46 -41 -38 -6 -30 -12 52 88 121 127 -98 127 -98 -189 -21

TABLE II—Continued

The Fourier transform spectra were calibrated to an absolute accuracy of about ± 0.001 cm⁻¹ with the argon atomic line positions of Norlen (48). The observed CH linewidths were about 0.12 cm⁻¹, consistent with Doppler broadening with a translational temperature of about 600 K. Since the maximum signal-to-noise ratio was about 50, the strong, unblended low-J CH lines have an accuracy of about ± 0.002 cm⁻¹. However, many lines were blended or they were considerably weaker with a typical accuracy of ± 0.01 cm⁻¹.

The $A^2\Delta - X^2\Pi$ emission spectra recorded in Oregon used a direct current flowing afterglow seeded with a small amount of acetylene downstream of the discharge. The spectrograph was a Czerny-Turner grating instrument with a 1.9-m focal length Newtonian collimating mirror, a 350-mm by 175-mm plane diffraction grating and a 7m focal length focusing mirror. The slit was 15 μ m wide. Spectra were recorded on Kodak 103a0 photographic plates which had been hypersensitized by baking in an atmosphere of 8% hydrogen and 92% nitrogen for 2 hr at 50°C. Wavelength calibration was provided by an iron-neon hollow cathode lamp which was focused and directed onto the slit next to the CH signal using a right-angle prism.

			1-1 Band	ł		
J	Q _{lfe}	0-C	Q _{lef}	0-C	R _{le}	0 - C
$\begin{array}{c} 1.5\\ 2.5\\ 3.5\\ 5.5\\ 5.5\\ 7.5\\ 9.5\\ 10.5\\ 11.5\\ 13.5\\ 13.5 \end{array}$	23181.3726 23183.6986 23186.2495 23189.1233 23192.3521 23195.8564 23199.6753 23203.7198 23208.0160 23212.4932 23217.0432	-52 146 -49 -146 81 -62 39 -192 -107 45 -296	$\begin{array}{c} 23179.3259\\ 23184.7332\\ 23184.3222\\ 23184.3222\\ 23187.2445\\ 23190.5458\\ 23194.1944\\ 23198.3194\\ 23207.4678\\ 23207.4678\\ 23212.4934\\ 23217.7416\\ 23223.1543\\ \end{array}$	-132 -53 -12 -4 -443 109 152 -35 54 99 78	23232.5330 23262.6719 23292.3841 23322.0821 23351.8755 23381.7663 23411.6946 23441.6484 23471.527 23501.3457 23530.9495	91 -31 22 -14 25 124 -4 14 -230 100 204
J	R _{1f}	0-C	Ple	0-C	P _{lf}	0 - C
$ \begin{array}{r} 1.5\\2.5\\4.5\\5.5\\7.5\\8.5\\9.5\\10.5\\13.5\end{array} $	23232.5331 23262.8327 23292.7466 23322.7166 23352.8613 2343.5997 23444.1003 23474.6127 23505.0580 23595.286	-112 36 40 -64 -9 41 101 74 33 -100 49	23097.8831 23072.6839 23047.8559 23023.5135 22999.7321 22976.4964 22953.8615	-47 41 -58 41 -154 -255	23098.2577 23073.3111 23048.8438 23024.9202 23001.6410 22978.9404	92 -82 -3 -74 184 -172
J	R _{2f}	0-C	R _{2e}	0-C	Q _{2#f}	0-C
$\begin{array}{c} 0.5\\ 1.5\\ 2.5\\ 3.5\\ 5.5\\ 6.5\\ 7.5\\ 8.5\\ 10.5\\ 11.5\\ 112\\ 5\end{array}$	23251.9656 23269.6983 23297.0999 23325.5896 23354.5817 23383.8870 23413.3910 23442.9971 23502.1278 23531.5135	53 48 -85 43 0 -59 -53 12 -110 18	23252.0733 23269.9245 23297.5819 23326.3677 23355.7454 23385.5066 23415.5537 23445.7290 23475.9800 23506.1952 23536.2255 23566.283	67 -17 19 3 -1 63 200 180 -36 -50 179 -255	23186.7662 23186.4304 23187.4182 23189.1235 23191.4076 23194.1259 23197.3074 23200.7987 23204.6030 23208.6699 23212.9482	-43 7 133 -23 18 -266 39 -85 -116 -53 124

TABLE II—Continued

RESULTS AND DISCUSSION

The 4-3 vibration-rotation band was identified with the help of the constants obtained from the ATMOS observations of the sun (16). Table I lists our newly identified 4-3 band measurements. The ATMOS lines for the 1-0 through 4-3 bands complement our work because we observe mainly low-J transitions, while the much hotter (5000 K) solar measurements provide the high-J transitions. The two data sets were integrated and fitted together. If there were two unblended measurements for the same line, the slightly more accurate laboratory measurement was chosen.

The 0-0, 1-1, and 2-2 bands were measured for the $A^2\Delta - X^2\Pi$ transition (Table II) in three different spectra. The measurements were integrated into a single data set, again favoring the Fourier transform measurements in the case of multiple determinations of a line position.

The 2-2 band assignments of the $A^2\Delta - X^2\Pi$ transition required some care because no previous modern observations were available at the time this work was completed. Recently, Bembenek *et al.* (14) have reanalyzed the $A^2\Delta - X^2\Pi$ transitions and our 2-2 band assignments are in agreement with theirs. Our 0-0 band measurements also

TABLE II—Continued

J	Q2fe	0-C	P ₂₁	0 ~ C	P2.	0-C
1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5	23187.0324 23186.9119 23188.1858 23190.2914 23193.0271 23196.2885 23200.0203 23208.6699 23213.5012 23208.5699	292 106 -12 23 75 50 38 -47 72	23103.4963 23076.7247 23050.9438 23025.9490 23001.6410 22978.0689 22955.1049 22932.7941 22911.1664	-104 -15 -16 -9 -244 93 -98 -227 154	23103.9863 23077.5009 23052.1070 23027.5628 23003.7911 22980.7452 22958.4550	80 - 74 - 17 - 8 - 53 - 275 - 168

			2-2 Band	L		
J	R _{1e}	0-C	R _{lf}	0-C	Q _{1e}	0-C
1.5 2.5 3.5 4.5 6.5 7.5 8.5	23169.4838 23197.3077 23224.3421 23250.9534 23277.2365	51 -95 33 7 4	23169.4832 23197.4682 23224.6712 23251.5531	-122 53 -122 -127	23118.1865 23119.1486 23119.8357 23120.3303 23120.7711 23121.1228 23121.3065	14 -8 41 -376 -227 179 314
J	Qit	0-C	Pia	0-C	P _{1f}	0-C
2.5 3.5 4.5 5.5 6.5 7.5 8.5	23118.3276 23119.4976 23120.4256 23121.3065 23122.1547 23122.9236 23123.6104	- 33 36 -191 -112 77 -25 -164	23040.0433 23014.6253 22989.2545 22963.9887 22938.7244	259 -170 77 631 34	23015.2572 22990.1893	19 -73
J	R _{2f}	0-C	R ₂₀	0-C	Q2t	0-C
0.5 1.5 2.5 3.5 4.5 5.5 6.5	23188.7963 23204.0610 23228.8479 23254.3166 23279.8292	-126 159 -210 101 23	23188.9166 23204.2503 23229.3052 23255.0806	53 -158 -150 239	23125.4771 23124.0115 23123.3932 23123.1067 23122.9203 23122.8244	86 124 -80 -126 -432 -65

J	Q _{2e}	0-0	
1.	5 23125.6765	-130	
2.	5 23124.4583	79	
4.	5 23124.2187	-179	
5. 6.	5 23124.4583 5 23124.8773	-560 -23	
•			

Satellite lines for the $A^2\Delta\text{-}X^2\Pi$ transition of CH (in $\text{cm}^{-1})$.

	0-0 Band				1-1 Band		
J		0 - C		J		0-C	
1.555555555555555555555555555555555555	$\begin{array}{c} 23229.7477\\ 23261.2437\\ 23177.1672\\ 23229.7477\\ 23261.4201\\ 23293.1865\\ 23325.4362\\ 23358.1767\\ 23174.3265\\ 23176.8011\\ 23178.7237\\ 23178.7237\\ 23182.7237\\ 23092.2169\\ 23065.7664\\ 23040.3454\\ 23092.7166\\ 23066.5729\\ 23041.5512\\ \end{array}$	$\begin{array}{c} 127\\ -73\\ 102\\ -25\\ -105\\ -88\\ -9\\ -88\\ -9\\ -88\\ -66\\ -17\\ -25\\ 113\\ 29\\ 20\\ -30\\ \end{array}$	${}^{R}Q_{1fe}$ ${}^{O}P_{1f}$ ${}^{R}Q_{1\bullet f}$ ${}^{O}P_{1e}$ ${}^{O}R_{2f}$ ${}^{e}Q_{2f}$ ${}^{F}Q_{2\bullet}$	1.5 125 2.5 3.5 1.5 1.5 3.5	23185 . 3085 23185 . 0872 23185 . 3085 23102 . 2866 23076 . 3686 23076 . 3686 23293 . 1921 23234 . 2273 23263 . 9613 23293 . 5492	-46 68 19 -16 -166 30 125 -71 89	$\begin{array}{c} {}^{C}R_{2e}\\ {}^{C}R_{2f}\\ {}^{F}Q_{2e}\\ {}^{P}Q_{2e}\\ {}^{P}Q_{2f}\\ {}^{R}Q_{1f}\\ {}^{R}Q_{1e}\end{array}$

TABLE III

$M_{Cloured Line i Ostions for the D = M is industrion (in chi)$

			0-0 Band	1		
J	P ₂	0 - C	P ₁	0-C	Q1	0-0
$\begin{array}{c} 0.5\\ 1.5\\ 2.5\\ 3.5\\ 4.5\\ 5.5\\ 7.5\\ 9.5\\ 10.5\\ 11.5\\ 12.5\\ 13.5\\ 14.5\end{array}$	25680. 3491 25650. 3381 25616. 5756 25579. 5354 255496. 0072 25449. 5100 25399. 7871 25346. 7351 25290. 2503 25230. 1590 25166. 2941	- 37 - 22 - 9 - 2 43 12 - 43 12 - 69 - 25 - 34 146	25698.2278 25656.5907 75620.8454 25582.8211 25542.0293 25498.2995 25451.5148 25401.5767 25348.3991 25291.7449 25231.5369 25167.5763	-74 -46 -8 19 32 50 15 -9 -111 -76 -220 -158	25705.5902 25700.6576 25691.7992 25663.6300 25644.3539 25621.5270 25550.3030 25554.7160 25554.7160 25530.4007 25491.8771 25448.8678 25401.0946 25348.1698	24 - 3 10 25 29 - 46 - 39 - 45 - 35 92 108 189 - 131
J	Q2	0-C	R ₂	0-C	R ₁	0-C
0.5 1.5 3.5 4.5 5.5 7.5 9.5 10.5 11.5 13.5	25723.4079 25706.8543 25695.9788 25682.5947 25666.1592 25623.3100 25596.5653 25566.0530 25531.5831 25492.9189 25449.7854 25401.9159 25348.8892	-150 -18 20 43 25 13 15 -44 -77 -12 49 -34 72 -404	25756.0838 25776.4275 25792.7352 25805.4199 25814.4178 25819.7880 25821.2957 25811.9103 25800.5884	-62 115 20 92 -446 -14 154 -94 -250	25797.0675 25808.7525 25817.2144 25822.1333 25823.3784 25820.5741	105 40 102 -88 402 31
			1-0 Band			
J	P ₂	0-C	P ₁	0-C	Q ₁	0-C
0.5 1.5 2.5 3.5 4.3 5.5 6.5	27475.3607 27442.3986 27402.6728 27356.6150 27304.2908 27245.5908	-58 109 87 -53 -67 -105	27493.2579 27448.6360 27406.9201 27359.8939 27306.9503 27247.8618	90 23 13 109 -78 49	27497.6280 27486.7419 27468.8877 27444.3915 27413.2190 27375.2055	-72 -36 48 11 -35 168
L	Qz	0-C	R ₂	0-C	R ₁	0 - C
0.5 1.5 2.5 3.5 4.5 5.5	27515.4606 27492.9324 27473.0374 27447.5350 27415.7179 27377.2302	-7 37 -32 125 -12 -171	27542.1795 27553.5026 27557.6669 27555.0491	19 19 -253 431	27559.7839 27561.9923 27558.2941	- 50 32 - 169
			1-1 Band			
J	P ₂	0-C	P1	0-C	Q ₁	0 - C
0.5 1.5 2.5 3.5 4.5 5.5 6.5	24743.5981 24712.6773 24676.1125 24634.2763 24587.2344	34 -40 27 -82 -50	24761.4231 24680.2084 24637.4339 24589.8099 24537.0481	-38 60 95 85 -4	24765.8692 24757.0463 24742.3410 24722.0808 24696.2013 24664.5166	31 -0 -21 15 -4 14
J	Q ₂	0-C	R ₂	0-C	R ₁	0 - C
0.5 1.5 2.5 3.5 4.5 5.5	24783.6398 24762.9887 24746.3448 24725.0943 24698.6104 24666.5026	-43 -59 -10 -33 -3 -19	24810.4088 24831.1310 24832.6616 24828.2477	31 -69 -87 82	24828.2477 24829.8611	-430 189

Molecular Constants for the $X^2\Pi$ State of CH (in cm⁻¹)

Constant	v = 0	v = 1	v = 2	v = 3	v = 4
T,	0.0	2732.97814(48)	5339.90441(76)	7822.22091(109)	10180.9997(15)
Bv	14.192330(30) ^b	13.661754(30)	13.135801(34)	12.613444(39)	12.093088(47)
10 ³ x D _v	1.46083(26)	1.43747(27)	1.41590(30)	1.39663(31)	1.38007(36)
10 ⁷ x H _v	1.1215(89)	1.0845(91)	1.0480(92)	1.0066(87)	0.9482(93)
$10^{12} \times L_v$	~8.75(116)	-9.13(103)	-9.97(90)	-11.24(77)	-12.46(77)
A,	28.1468022ª	28.3383(24)	28.5277(50)	28.6913(131)	28.888(22)
$10^2 \times \gamma_v$	~2.513(31)	-2.341(31)	-2.179(32)	-2.041(32)	-1.868(35)
$10^6 \times \gamma_{Dv}$	4.28(167)	4.29(154)	4.52(143)	5.18(132)	4.62(125)
10 ² x p _v	3.3918(187)	3.185(22)	3.062(27)	2.914(32)	2.802(42)
10° x p _{Dv}	~8.39(103)	-5.80(95)	-5.11(90)	-4.30(87)	-4.00(103)
10 ⁹ х р _{ну}	1.09 ^a	0.0	0.0	0.0	0.0
$10^2 \times q_v$	3.86766(170)	3.7280(20)	3.5895(24)	3.4514(27)	3.3119(34)
10 ⁵ x q _{ov}	-1.5233(141)	-1.4839(142)	-1.4437(142)	-1.4024(139)	-1.3480(167)
$10^{\circ} \times q_{\mu\nu}$	2.99(25)	2.86(22)	2.728(194)	2.619(170)	2.265(191)

* Fixed to the values of Ref. 49.

^b One standard deviation uncertainty.

agree with the very accurate measurements of Brazier and Brown (49), but our observations are more extensive.

The 0-0, 1-0, and 1-1 bands of the $B^2\Sigma^- - X^2\Pi$ transition were observed by Fourier transform emission spectroscopy. The line positions are listed in Table II.

The previous investigations of the $B^2\Sigma^- - X^2\Pi$ transition are by Shidei (50) and Gerö (51) as well as Herzberg and Johns (52). Term values of the $B^2\Sigma^-$ state are provided by Elander *et al.* (53) and Botterud *et al.* (54). The $B^2\Sigma^-$ potential curve has a barrier to dissociation and the emission breaks off because of predissociation (52, 53). Elander *et al.* combined the spectroscopic data for the $B^2\Sigma^-$ state with some

TABLE V

Molecular Constants for the $A^2\Delta$ State of CH (in cm⁻¹)

Constant		v = 0	v=1	v - 2
	T,	23173.4622(8)	25913.7467(23)	28460.7451(47)
	B _v	14.578957(45)	13.910842(146)	13.18626(43)
10 ³ x	D,	1.56460(42)	1.6037(22)	1.6652(74)
10 ⁸ x	H,	9.216(129)	6.38(85)	3.12*
10 ¹¹ x	L,	-2.040(129)	0.0	0.0
	A.,	-1.09958(112)	-1.0696(31)	-1.0460(50)
10² x	γ_v	4.255(37)	4.011(91)	4.031(158)
10 ⁵ x	$\gamma_{\rm Dv}$	-1.301(175)	-1.06(82)	-0.599*
10 ⁶ x	Pv	1.02(78)	0.0	0.0
10 ⁸ x	٩v	-6.6(20)	0.0	0.0

Molecular Constants for $B^2\Sigma^-$ State of CH (in cm ⁻¹)				
Constant	v - 0	v = 1		
T.	25712.5101(9)	27507.5239(20)		
B.	12.640178(60)	11.15745(48)		
$10^3 \times D_v$	2.13069(80)	3.107(29)		
10' x H _v	-4.031(30)	-30.9(45)		
$10^2 \times \gamma_v$	-2.710(33)	-2.112(50)		

TABL	E	V	I
------	---	---	---

lifetime measurements to derive a potential curve (53). Our Fourier transform measurements (Table III) are more accurate than the previous spectroscopic work.

A combined fit of the vibration-rotation data (1–0 to 4–3 bands), the $A^2\Delta - X^2\Pi$ transition (0–0, 1–1, and 2–2 bands), and the $B^2\Sigma^- - X^2\Pi$ transition (0–0, 1–0, and 1-1 bands) was carried out. The effective Hamiltonian of Brown et al. (55) was used

ΤA	ΒL	Æ	V]	II

Equilibrium Molecular Constants for CH in the X^2 II, $A^2\Delta$, and $B^2\Sigma^-$ States (in cm⁻¹)

Cons	tant	Х ² П	A ² Δ	B ² Σ [−]
	Bea	14.45981(15)	14.8918 *	13.3815°
	α_{e}	0.53657(27)	0.6116°	1.4827°
10 ³	γ_{e}	3.33(13)	28.23°	-
10 4	€e	-2.15(18)	-	
	D,b	1.47355(28)	1.5435(29)	1.6425°
10 ²	$\boldsymbol{\beta}_{\mathbf{e}}$	-2.586(28)	4.21(50)	97.63°
10 ³	δ.	1.123(57)	-	-
	A,c	28.05212(97)	-1.1134(14)	
	α _A	0.1894(19)	0.280(17)	-
	ω_{e}^{d}	2860.7512°	2933.5706°	-
	$\omega_{\mathbf{e}} \mathbf{x}_{\mathbf{e}}$	64.4390°	96.6431°	-
	$\omega_{e}y_{e}$	0.3637°	-	-
10 ²	$\omega_{e} z_{e}$	-1.542°	-	-

```
<sup>a</sup> B_v = B_e - \alpha_e(v+1/2) + \gamma_e(v+1/2)^2 + \epsilon_e(v+1/2)^3
<sup>b</sup> D_v = D_e + \beta_e(v+1/2) + \delta_e(v+1/2)^2
<sup>c</sup> A_v = A_e + \alpha_A(v+1/2)
<sup>d</sup> G(v) = \omega_{e}(v+1/2) - \omega_{e}x_{e}(v+1/2)^{2} + \omega_{e}y_{e}(v+1/2)^{3} + \omega_{e}z_{e}(v+1/2)^{4}
```

exact fit

for the ²II and ² Σ^- vibrational states. An explicit listing of the matrix elements of this Hamiltonian is provided for the ²II state by Amiot *et al.* (56), while ² Σ^+ matrix elements are tabulated by Douay *et al.* (57). For the $A^2\Delta$ vibrational states, the effective Hamiltonian of Brown *et al.* (58) is utilized, along with their case (a) matrix elements.

A weighted nonlinear least-squares fit of our data provided the spectroscopic constants of Tables IV, V, and VI. A copy of the input data set and the final fit (including term values) can be obtained from one of the authors (PFB) on an IBM compatible floppy disk. The constants of Table IV for the $X^2\Pi$ state supersede those previously reported from the infrared measurements. The constants for v=0 in Table IV differ slightly from our previous determination (1) because we now include the solar data of Mélen *et al.* (16) and because we have corrected a small typographical error in the computer code for the matrix elements of H in the original program. The molecular constants of Tables IV–VI were used to determine the equilibrium molecular constants of Table VII.

ACKNOWLEDGMENTS

The expert technical assistance of J. Wagner, G. Ladd, and R. Hubbard in obtaining the spectra at Kitt Peak is appreciated. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Incorporated, under contract with the National Science Foundation. This research was partially supported by the Astronautics Laboratory, Edwards Air Force Base, CA. The work at Oregon was supported by the National Science Foundation (CHE 8713008). Acknowledgment is also made to the donors of the Petroleum Research Fund, administered by the ACS, for partial support of this research.

RECEIVED: November 17, 1990

REFERENCES

- I. P. F. BERNATH, J. Chem. Phys. 86, 4838-4842 (1987).
- W. UBACHS, W. M. VAN HERPEN, J. J. TER MEULEN, AND A. DYMANUS, J. Chem. Phys. 84, 6575– 6580 (1986).
- 3. W. UBACHS, G. MEYER, J. J. TER MEULEN, AND A. DYMANUS, J. Chem. Phys. 84, 3032-3041 (1986).
- 4. P. KRISTIANEN AND L. VESETH, J. Chem. Phys. 84, 6336-6344 (1986).
- 5. B. ENGELS, S. D. PEYERIMHOFF, S. P. KARNA, AND F. GREIN, Chem. Phys. Lett. 152, 397-401 (1988).
- 6. B. ENGELS AND S. D. PEYERIMHOFF, Z. Phys. D. 13, 335-343 (1989).
- 7. T. C. STEIMLE, D. R. WOODWARD, AND J. M. BROWN, J. Chem. Phys. 85, 1276-1282 (1986).
- 8. J. M. BROWN AND K. M. EVENSON, J. Mol. Spectrosc. 136, 65-85 (1989).
- 9. S. A. DAVIDSON, K. M. EVENSON, AND J. M. BROWN, in preparation; S. A. Davidson, Ph.D thesis. University of Colorado, 1987.
- T. NELIS, J. M. BROWN, AND K. M. EVENSON, J. Chem. Phys. 88, 2087–2088 (1988); 92, 4067–4076 (1990).
- 11. K. D. BAYES, Chem. Phys. Lett. 152, 424-426 (1988).
- 12. F. J. LOVAS AND R. D. SUENRAM, J. Phys. Chem. Ref. Data 18, 1249-1524 (1989).
- T. C. STEIMLE, D. F. NACHMAN, D. A. FLETCHER, AND J. M. BROWN, J. Mol. Spectrosc. 138, 222-229 (1989).
- 14. Z. BEMBENEK, R. KEPA, A. PARA, M. RYTEL, M. ZACHWIEJA, J. D. JANJIC, AND E. MARX, J. Mol. Spectrosc. 139, 1-10 (1990).
- 15. S. M. ANDERSON AND K. E. MCCURDY, Chem. Phys. Lett. 157, 531-534 (1989).
- F. MÉLEN, N. GREVESSE, A. J. SAUVAL, C. B. FARMER, R. H. NORTON, H. BREDOHL, AND I. DUBOIS, J. Mol. Spectrosc. 134, 305-313 (1989).
- 17. D. L. LAMBERT, Y. SHEFFER, AND P. CRANE, Astrophys. J. 359, L19-L22 (1990).
- 18. S. R. FEDERMAN AND W. T. HUNTRESS, JR., Astrophys. J. 338, 140-149 (1989).

BERNATH ET AL.

- 19. L. MAGNANI, E. A. LADA, G. SANDELL, AND L. BLITZ, Astrophys. J. 339, 244-257 (1989).
- 20. E. PALAZZI, N. MANDOLESI, AND P. CRANE, Astrophys. J. 326, 905-908 (1988).
- 21. P. CHEN, W. A. CHUPKA, AND S. D. COLSON, Chem. Phys. Lett. 121, 405-407 (1985).
- 22. P. CHEN, J. B. PALLIX, W. A. CHUPKA, AND S. D. COLSON, J. Chem. Phys. 86, 516-520 (1987).
- 23. J. B. PALLIX, P. CHEN, W. A. CHUPKA, AND S. D. COLSON, J. Chem. Phys. 84, 5208-5209 (1986).
- 24. H. RUDOLPH, J. A. STEVENS, V. MCKOY, AND M. T. LEE, J. Chem. Phys. 91, 1374–1376 (1989).
- 25. V. MCKOY, M. BRAUNSTEIN, H. RUDOLPH, J. A. STEVENS, S. N. DIXIT, AND D. L. LYNCH, J. El. Spectrosc. Rel. Phenom. 52, 592-612 (1990).
- 26. P. J. H. TJOSSEM AND K. C. SMYTH, Chem. Phys. Lett. 144, 51-57 (1988).
- 27. J. W. HUDGENS, C. S. DULCEY, G. R. LONG, AND D. J. BOGAN, J. Chem. Phys. 87, 4546-4558 (1987).
- 28. E. F. VAN DISHOECK, J. Chem. Phys. 86, 196-214 (1987).
- 29. L. LYNDS AND B. A. WOODY, Appl. Opt. 27, 1225-1227 (1988).
- 30. J. B. JEFFRIES, R. A. COPELAND, AND D. R. CROSLEY, J. Quant. Spectrosc. Radiat. Transfer 37, 419-423 (1987).
- 31. N. L. GARLAND AND D. R. CROSLEY, Appl. Opt. 24, 4229-4237 (1985).
- 32. K. J. RENSBERGER, M. J. DYER, AND R. A. COPELAND, Appl. Opt. 27, 3679-3689 (1988).
- 33. A. J. DEAN AND R. K. HANSON, J. Quant. Spectrosc. Radiat. Transfer 42, 375-384 (1989).
- 34. Y. ITO, A. FUJIMAKI, K. KOBAYASHI, AND I. TOKUE, Chem. Phys. 105, 417-422 (1986).
- 35. T.-X. XIANG AND W. A. GUILLORY, Chem. Phys. 130, 299-305 (1989).
- 36. N. YISHIYAMA, H. SEKIYA, AND Y. NISHIMURA, J. Chem. Phys. 84, 5213-5214 (1986).
- 37. S. ZABARNICK, J. W. FLEMING, AND M. C. LIN, J. Chem. Phys. 85, 4375-4376 (1986).
- 38. W. BAUER, B. ENGELHARDT, P. WIESEN, AND K. H. BECKER, Chem. Phys. Lett. 158, 321-324 (1989).
- 39. G. THEODORAKOPOULOS, I. D. PETSALAKIS, R. J. BUENKER, AND M. HONIGMANN, Chem. Phys. 137, 137–141 (1989).
- 40. E. HONTZOPOULOS, Y. P. VLAHOYANNIS, AND C. FOTAKIS, Chem. Phys. Lett. 147, 321-325 (1988).
- 41. R. N. DIXON, D. P. NEWTON, AND H. RIELEY, J. Chem. Soc. Faraday Trans. 283, 675-682 (1987).
- 42. P. HEINRICH, R. D. KENNER, AND F. STUHL, Chem. Phys. Lett. 147, 575-580 (1988).
- 43. N. L. GARLAND AND D. R. CROSLEY, Chem. Phys. Lett. 134, 189-194 (1987).
- 44. D. R. CROSLEY, J. Phys. Chem. 93, 6273-6282 (1989).
- 45. R. G. MACDONALD AND K. LIU, J. Chem. Phys. 91, 821-838 (1989).
- 46. P. J. DAGDIGIAN, M. H. ALEXANDER, AND K. LIU, J. Chem. Phys. 91, 839-848 (1989).
- 47. D. COSSART, C. COSSART-MAGOS, G. GANDARA, AND J. M. ROBBE, J. Mol. Spectrosc. 109, 166–185 (1985).
- 48. G. NORLEN, Physica Scripta 8, 249-268 (1973).
- 49. C. R. BRAZIER AND J. M. BROWN, Canad. J. Phys. 62, 1563-1578 (1984).
- 50. T. SHIDEI, Japan. J. Phys. 11, 23-35 (1936).
- 51. L. GERÖ, Z. Phys. 118, 27-36 (1941).
- 52. G. HERZBERG AND J. W. C. JOHNS, Astrophys. J. 158, 399-418 (1969).
- 53. N. ELANDER, M. HEHENBERGER, AND P. R. BUNKER, Physica Scripta 20, 631-646 (1974).
- 54. J. BOTTERUD, A. LOFTHUS, AND L. VESETH, Physica Scripta 8, 218-224 (1973).
- 55. J. M. BROWN, E. A. COLBOURN, J. K. G. WATSON, AND F. D. WAYNE, J. Mol. Spectrosc. 74, 425-436 (1979).
- 56. C. AMIOT, J. P. MAILLARD, AND J. CHAUVILLE, J. Mol. Spectrosc. 74, 425-436 (1979).
- 57. M. DOUAY, S. A. ROGERS, AND P. F. BERNATH, Mol. Phys. 64, 425-436 (1988).
- 58. J. M. BROWN, A. S.-C. CHEUNG, AND A. J. MERER, J. Mol. Spectrosc. 124, 464–475 (1987).