Fourier Transform Infrared Emission Spectroscopy of NaCl and KCl R. S. Ram,* M. Dulick,†;‡ B. Guo,‡ K.-Q. Zhang,‡ and P. F. Bernath*;‡ *Department of Chemistry, University of Arizona, Tucson, Arizona 85721; †National Solar Observatory, National Optical Astronomy Observatories, Tucson, Arizona 85726; and ‡Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 Received November 25, 1996; in revised form March 3, 1997 The infrared emission spectra of NaCl and KCl have been recorded at high resolution with a Fourier transform spectrometer. A total of 929 lines belonging to 8 vibrational bands, 1-0 to 8-7, for Na 35 Cl, 252 lines of 1-0, 2-1, and 3-2 bands of Na 37 Cl, and 355 lines of 1-0, 2-1, 3-2, and 4-3 bands of K 35 Cl have been measured and combined with the existing microwave and millimeter-wave data to obtain a set of refined molecular constants. The data for Na 35 Cl and Na 37 Cl have also been fitted to determine the Dunham Y_{ij} constants and mass-reduced Dunham constants U_{ij} . In one fit all U_{ij} 's were treated as adjustable parameters while in a second fit only U_{i0} 's and U_{i1} 's were allowed to vary freely with the remaining U_{ij} constants determined by the constraints imposed by the Dunham model. In addition, the internuclear potential energy parameters were determined by fitting the entire NaCl data set to the eigenvalues of the Schrödinger equation containing a parameterized potential energy function. © 1997 Academic Press ## INTRODUCTION Diatomic alkali halides are high temperature species of fundamental importance. Their low vapor pressures and highly ionic nature present challenges for gas phase experimental studies (1). There are many studies of NaCl (2-9) and KCl (2-4, 10-14) in the near-ultraviolet and microwave regions. NaCl (2, 3) and KCl (10-12) have a long series of unresolved bands in the near ultraviolet which have been called "fluctuation bands" (15). These bands arise from transitions between individual vibrational levels of one electronic state and a rather flat portion of the potential curve of the other state. The ground state of these molecules are relatively well characterized experimentally by infrared and microwave studies. The NaCl and KCl molecules are important species in the combustion of coal. Coal contains substantial amounts of inorganic material that are responsible for slagging and fouling of coal-fired power plants. NaCl and KCl can, in principle, be monitored by the absorption or emission using the vibration—rotation bands. The low resolution infrared spectra of NaCl and KCl were first observed in absorption by Rice and Klemperer (4), who determined the ground state vibrational constants ω_e and $\omega_e x_e$ from band head positions in conjunction with the ground state B values, previously reported by Honig $et\ al.$ (5) in a microwave study. The high-resolution infrared vibration–rotation spectra of Na 35 Cl and Na 37 Cl have been studied by Horiai $et\ al.$ (6) and Uehara $et\ al.$ (7) by infrared diode laser spectroscopy. These measurements were used to determine a set of Dunham parameters Y_{ij} for the ground state of NaCl. The potential constants for the ground state were also calculated by Uehara $et\ al.$ (7) in a least squares fit using the Dunham equations. In a separate study, Uehara *et al.* (13) investigated the infrared emission spectra of KCl at a resolution of 0.1 cm⁻¹ and provided a set of Dunham coefficients for the ground electronic state. Some matrix isolation studies of NaCl and KCl are also available. Martin and Schaber (8) observed the infrared spectra of NaCl while Ismail *et al.* (14) observed both NaCl and KCl in a solid argon matrix. Extensive microwave data for NaCl and KCl have been published (5, 9). In the initial work of Honig *et al.* (5), several alkali halide molecules were investigated and they reported rotational constants and electric dipole moments. In another study, Clouser and Gordy (9) measured the millimeter-wave molecular beam absorption spectra of NaCl, KCl, and several other alkali chlorides. In this work they measured a number of pure rotational transitions in several vibrational levels of the ground state and reported improved values for $B_{\rm e}$, $\alpha_{\rm e}$ and $\gamma_{\rm e}$ for most of the molecules studied. They also provided indirect estimates for the vibrational constants. The alkali halides have dissociative UV absorption spectra. Silver *et al.* (16) measured the absolute UV dissociation cross sections for gas phase NaCl and Novick *et al.* (17) measured the photodetachment spectra of the alkali halide negative ions NaCl⁻, NaBr⁻, and NaI⁻. The ionic nature of the alkali halide ground states has led to the development of simple potential energy functions such as the Rittner model (18-20). There are a number of theoretical calculations of electronic structure and other properties available for NaCl (21-29) and KCl (30-35). Bounds and Hinchliffe (23) performed *ab initio* calculations of the SCF pair potential and polarizability of NaCl and Leasure *et al.* (26) calculated the electronic structure. Swaminathan FIG. 1. A compressed portion of infrared bands of KCl marking the band heads in the 1-0 sequence of K ³⁵Cl. et al. (28) calculated the potential energy of NaCl with large atomic basis sets and extensive configuration interaction. Bounds and Hinchliffe (32) studied the polarizability of KCl and Zeiri and Balint-Kurti (34) studied the potential energy curves and transition dipole moments of NaCl, KCl, and several other alkali halides. Some of the alkali halides are also of astrophysical importance. Recently the presence of NaCl and KCl, along with AlCl and AlF, has been established in the carbon star IRC + 10216 by millimeter-wave astronomers (36). Normally metals are depleted onto grains in the interstellar medium but this discovery indicates that metal-containing molecules are more abundant in cool circumstellar envelopes. Unfortunately, the infrared spectra of many of the metal halide diatomic molecules have not been investigated at high resolution and their vibrational constants are not precisely known. The high-resolution studies of these molecules are, therefore, **FIG. 2.** An expanded portion of the 1-0 band of Na³⁵Cl near the *R* head. TABLE 1 The R Head Positions (in cm $^{-1}$) of Vibration–Rotation Bands in the 1–0 Sequence of K 35 Cl | Band
v' - v" | Head Position (cm ⁻¹) | |-----------------|-----------------------------------| | 1 - 0 | 296.702 | | 2 - 1 | 294.181 | | 3 - 2 | 291.680 | | 4 - 3 | 289.201 | | 5 - 4 | 286.742 | | 6 - 5 | 284.303 | | 7 - 6 | 281.884 | | 8 - 7 | 279.488 | | 9 - 8 | 277.110 | | 10 - 9 | 274.752 | | 11 - 10 | 272.414 | | 12 - 11 | 270.012 | particularly important since high-quality spectroscopic parameters are necessary for infrared searches for these molecules. In this paper we report on the observation of vibration–rotation bands of Na³⁵Cl, Na³⁷Cl, and K³⁵Cl. Eight bands, 1–0, 2–1, 3–2, 4–3, 5–4, 6–5, 7–6, and 8–7, for Na³⁵Cl, three bands, 1–0, 2–1, and 3–2, for Na³⁷Cl, and four bands, 1–0, 2–1, 3–2, and 4–3, for K³⁵Cl have been observed at a resolution of 0.01 cm⁻¹. Analysis of the data has provided improved molecular constants and the Dunham coefficients Y_{ij} for these species. The Na³⁵Cl and Na³⁷Cl data sets have also been fitted together to obtain mass-reduced Dunham constants U_{ij} and the constants of a parameterized potential energy function. ## **EXPERIMENTAL** The high-resolution emission spectra of Na 35 Cl, Na 37 Cl, and K 35 Cl were recorded with a Bruker IFS 120HR Fourier transform spectrometer at the University of Waterloo. The molecules were vaporized in an alumina tube furnace by heating NaCl or KCl gradually until the operating temperature of 1000°C was achieved. A 3.5 μ m mylar beam splitter and a Si:B detector (NaCl) or a 4 K bolometer (KCl) were used to record the spectra. The cell was pressurized with about 5 Torr of argon to avoid the deposition of the solid material on the KRS-5 windows. The resolution was 0.01 cm $^{-1}$ for both molecules. The final interferograms for NaCl 362 TABLE~2 Observed Rotational Lines (in $cm^{-1})$ in the Vibration–Rotation Bands of Na ^{35}Cl and Na ^{37}Cl RAM ET AL. | v' | J' | v" | J″ | Obs | О-С | v' | J' | v" | J″ | Obs | O-C | v' | J' | v" | J" | Obs | О-С | |--------|-----------|--------|----------|-----------------------------|------------|--------|------------|--------|------------------|----------------------|------------|--------|---------------|--------|----------|----------------------|------------| | | | | | | | | | 1 | Na ³⁵ | Cl | | | | • | | | | | 0 | 2 | 0 | 1 | 0. 8689712a | | 1 | 56 | 0 | 55 | 380.1195 | 13 | 1 | 9 | 0 | 10 | 356.6637 | 16 | | 1 | 2 | 1 | 1 | 0.8625167a
0.8561423a | | 1 | 57 | 0 | 56 | 380.3561
380.5933 | -10
7 | 1
1 | 10 | 0 | 11 | 356.1926
355.7249 | -32 | | 2 | 2
2 | 2
3 | 1
1 | 0.8361423a
0.8497178a | | 1
1 | 58
59 | 0 | 57
58 | 380.8261 | 18 | 1 | 11
12 | 0 | 12
13 | 355.7249
355.2537 | -13
1 | | 0 | 8 | 0 | 7 | 3.47539564b | 31 | 1 | 60 | 0 | 59 | 381.0519 | -6 | 1 | 13 | Ō | 14 | 354.7737 | -41 | | 0 | 12 | 0 | 11 | 5.21189229Ь | -1 | 1 | 61 | 0 | 60 | 381.2786 | 16 | 1 | 14 | 0 | 15 | 354.2974 | -15 | | 0 | 14
15 | 0 | 13
14 | 6.07963560b
6.51335231b | 16
8 | 1
1 | 62
63 | 0 | 61
62 | 381.4982
381.7140 | -10 | i
I | 15
16 | 0
0 | 16
17 | 353.8169
353.3329 | 1
12 | | ő | 17 | ŏ | 16 | 7.38044417b | 15 | ì | 64 | Õ | 63 | 381.9296 | 12 | î | 17 | Ö | 18 | 352.8412 | -23 | | 0 | 18 | 0 | 17 | 7.81379997b | -14 | 1 | 65 | 0 | 64 | 382.1393 | 10 | ì | 18 | 0 | 19 | 352.3510 | -11 | | 0 | 21
24 | 0 | 20
23 | 9.11303913b
10.41086497b | -12
-20 | 1
1 | 66
67 | 0 | 65
66 | 382.3432
382.5482 | -13
12 | 1 | 19
20 | 0 | 20
21 | 351.8582
351.3605 | 5
3
| | i | 14 | ì | 13 | 6.03443400b | -18 | 1 | 68 | 0 | 67 | 382.7475 | 18 | i | 21 | 0 | 22 | 350.8618 | 21 | | 1 | 15 | 1 | 14 | 6.46492681b | 8 | 1 | 69 | 0 | 68 | 382.9416 | 9 | 1 | 22 | 0 | 23 | 350.3634 | 73 | | 1 | 18 | 1 | 17 | 7.75569711b | 17 | 1 | 70 | 0 | 69 | 383.1325 | 3 | l | 23 | 0 | 24 | 349.8491 | -2 . | | 1
2 | 24
15 | 1
2 | 23
14 | 10.33340939b
6.41680752b | 12
-24 | l
1 | 71
72 | 0 | 70
71 | 383.3218
383.5027 | 20
-11 | 1 | 24
25 | 0 | 25
26 | 349.3420
348.8275 | 24
6 | | 1 | 3 | 0 | 2 | 362.4283 | -70 | ì | 73 | ŏ | 72 | 383.6837 | -3 | i | 26 | ő | 27 | 348.3125 | 14 | | 1 | 4 | 0 | 3 | 362.8527 | -42 | 1 | 74 | 0 | 73 | 383.8602 | -4 | 1 | 27 | 0 | 28 | 347.7903 | -20 | | 1 | 5
6 | 0 | 4
5 | 363.2724
363.6873 | -27
-28 | 1
1 | 75
76 | 0 | 74
75 | 384.0346 | 13 | 1 | 28 | 0 | 29 | 347.2715 | 11 | | l
l | 8 | 0 | 7 | 364,5144 | 40 | ì | 77 | 0 | 76 | 384.2024
384.3674 | 1
-2 | 1
1 | 29
30 | 0 | 30
31 | 346.7440
346.2173 | -16
-5 | | 1 | 9 | 0 | 8 | 364.9176 | 21 | 1 | 78 | 0 | 77 | 384.5289 | -3 | ì | 31 | Ö | 32 | 345.6861 | -9 | | 1 | 10 | 0 | 9 | 365.3188 | 14 | 1 | 79 | 0 | 78 | 384.6870 | 1 | 1 | 32 | 0 | 33 | 345.1529 | -3 | | 1
1 | 11
12 | 0 | 10
11 | 365.7155
366.1119 | -5
6 | I
1 | 81
82 | 0 | 80
81 | 384.9916
385.1384 | 5
8 | 1
1 | 33
34 | 0 | 34
35 | 344.6194
344.0770 | 30
3 | | 1 | 13 | 0 | 12 | 366.5005 | -27 | 1 | 83 | 0 | 82 | 385.2803 | 0 | ì | 35 | 0 | 36 | 343.5292 | -48 | | 1 | 14 | 0 | 13 | 366.8955 | 37 | l | 84 | 0 | 83 | 385.4198 | 6 | 1 | 36 | 0 | 37 | 342.9910 | 26 | | i | 15
16 | 0 | 14
15 | 367.2807 | 35 | l | 85
86 | 0 | 84 | 385.5546 | 4 | 1 | 37 | 0 | 38 | 342.4364 | -34 | | 1
1 | 17 | 0 | 16 | 367.6604
368.0428 | 13
51 | 1 | 86
87 | 0 | 85
86 | 385.6853
385.8123 | -3
-8 | 1
1 | 38
39 | 0 | 39
40 | 341.8879
341.3322 | -4
-16 | | 1 | 18 | 0 | 17 | 368.4120 | -9 | l | 88 | 0 | 87 | 385.9356 | -11 | ī | 40 | Ö | 41 | 340.7763 | -1 | | 1 | 19 | 0 | 18 | 368.7829 | -20 | 1 | 89 | 0 | 88 | 386.0555 | -11 | l | 41 | 0 | 42 | 340.2133 | -29 | | l
l | 20
2 î | 0 | 19
20 | 369.1527
369.5211 | -7
26 | l
I | 90
91 | 0 | 89
90 | 386.1726
386.2849 | -1
0 | l
I | 42
43 | 0 | 43
44 | 339.6488
339.0791 | -41
-78 | | î | 22 | 0 | 21 | 369.8813 | 10 | ì | 92 | ő | 91 | 386.3923 | -9 | ì | 44 | 0 | 45 | 338.5167 | -78
-12 | | l | 23 | 0 | 22 | 370.2380 | - 6 | 1 | 93 | 0 | 92 | 386,4972 | - 6 | 1 | 45 | 0 | 46 | 337.9399 | -62 | | 1 | 24
25 | 0 | 23
24 | 370.5906
370.9467 | -30
15 | l
l | 94
95 | 0
0 | 93
94 | 386.5986 | 2 | 1 | 46 | 0 | 47 | 337.3622 | -92 | | ì | 26 | 0 | 25 | 371.2934 | 0 | l | 93
96 | 0 | 94
95 | 386.6951
386.7886 | -2
3 | 1
2 | 47
3 | 0
1 | 48
2 | 336.7887
358.9248 | -51
-19 | | l | 27 | 0 | 26 | 371.6356 | -25 | 1 | 97 | Ö | 96 | 386.8776 | 3 | 2 | 4 | î | 3 | 359.3419 | -32 | | l
• | 28 | 0 | 27 | 371.9798 | 4 | 1 | 98 | 0 | 97 | 386.9643 | 18 | 2 | 5 | 1 | 4 | 359.7587 | -15 | | l
l | 29
30 | 0 | 28
29 | 372.3169
372.6519 | -5
1 | 1
1 | 99
100 | 0 | 98
99 | 387.0444
387.1219 | 5
5 | 2 | 6
8 | l
l | 5
7 | 360.1705
360.9890 | -16 | | i | 31 | 0 | 30 | 372.9817 | -11 | i | 101 | 0 | 100 | 387.1219 | -0 | 2 | 9 | ì | 8 | 361.3886 | 28
3 | | 1 | 32 | 0 | 31 | 373.3111 | 7 | l | 102 | 0 | 101 | 387.2650 | 3 | 2 | 10 | l | 9 | 361.7867 | -5 | | l | 33 | 0 | 32 | 373.6320 | -25 | l | 103 | 0 | 102 | 387.3320 | 15 | 2 | 11 | 1 | 10 | 362.1852 | 24 | | l | 34
35 | 0 | 33
34 | 373.9554
374.2739 | 3
17 | i
I | 104 | 0 | 103
104 | 387.3905
387.4499 | -19
-5 | 2 | 12
13 | l
l | 11
12 | 362.5740
362.9612 | -11
-29 | | 1 | 36 | 0 | 35 | 374.5851 | -8 | 1 | 106 | 0 | 105 | 387.5034 | -11 | 2 | 14 | i | 13 | 363.3523 | 26 | | l | 37 | 0 | 36 | 374.8961 | 0 | 1 | 107 | 0 | 106 | 387.5516 | -31 | 2 | 15 | 1 | 14 | 363.7320 | -1 | | l
l | 38
39 | 0 | 37
38 | 375.2052
375.5006 | 24
-54 | }
 | 108
109 | 0 | 107
108 | 387.5996
387.6400 | -13 | 2 | 16 | 1 | 15 | 364.1106 | -5
10 | | ì | 40 | ŏ | 39 | 375.8057 | 0 | ì | 110 | 0 | 109 | 387.6812 | -31
-3 | 2 | 17
18 | 1
1 | 16
17 | 364.4850
364.8553 | -19
-40 | | 1 | 41 | 0 | 40 | 376.1035 | 16 | l | 111 | | 110 | 387.7139 | -21 | 2 | 19 | ì | 18 | 365.2298 | 15 | | 1 | 42 | 0 | 41 | 376.3954 | 8 | 1 | 112 | | 111 | 387.7481 | 17 | 2 | 20 | 1 | 19 | 365.5939 | -2 | | 1
1 | 43
44 | 0 | 42
43 | 376.6846
376.9689 | 10
-3 | 1
1 | 113
114 | | 112
113 | 387.7742
387.7972 | 12
17 | 2 | 21
22 | 1 | 20 | 365,9572
366,3145 | 8 | | i | 45 | 0 | 44 | 377.2505 | -8 | ì | 115 | | 114 | 387.8164 | 23 | 2 | 23 | ì | 21
22 | 366.6693 | -9
-17 | | 1 | 46 | 0 | 45 | 377.5294 | -4 | ì | 116 | 0 | 115 | 387.8292 | 4 | 2 | 24 | I | 23 | 367.0289 | 56 | | 1 | 47
48 | 0 | 46 | 377.8065 | 18 | l | 117 | | 116 | 387.8419 | 24 | 2 | 25 | 1 | 24 | 367.3711 | -10 | | 1
1 | 48
49 | 0 | 47
48 | 378.0710
378.3423 | -51
-16 | 1
1 | 118
1 | 0
0 | 117
2 | 387.8458
360.2810 | -4
20 | 2 | 26
27 | 1
1 | 25
26 | 367.7226 | 50 | | ì | 50 | 0 | 49 | 378.6085 | 4 | 1 | 2 | 0 | 3 | 359.8413 | 32 | 2 | 28 | 1 | 26
27 | 368.0618
368.3975 | 21
-9 | | 1 | 51 | 0 | 50 | 378.8714 | 26 | 1 | 3 | 0 | 4 | 359.3926 | -13 | 2 | 29 | î | 28 | 368.7312 | -25 | | 1 | 52
53 | 0 | 51 | 379.1249 | -10 | 1 | 4 | 0 | 5 | 358.9496 | 30 | 2 | 30 | l | 29 | 369.0708 | 53 | | 1
1 | 53
54 | 0 | 52
53 | 379.3791
379.6285 | -3
-7 | l
i | 6
7 | 0
0 | 7
8 | 358.0445
357.5864 | 21
10 | 2 | 31
32 | l
I | 30
31 | 369.3940
369.7237 | 0
47 | | î | 55 | Ö | 54 | 379.8749 | -6 | ì | 8 | 0 | 9 | 357.1226 | -28 | 2 | 33 | 1 | 32 | 370.0431 | 26 | TABLE 2—Continued | <u>v</u> ′ | J' | v" | J″ | Obs | O-C | v' | J' | v" | J″ | Obs | 0-С | v' | J' | v" | J″ | Obs | О-С | |------------|------------------|--------|----------|----------------------|-----------|--------|----------------|--------|------------|----------------------|------------|--------|------------------|--------|----------|----------------------|------------| | 2 | 34 | 1 | 33 | 370.3587 | 1 | 2 | 104 | 1 | 103 | 383.6722 | -28 | 3 | 19 | 2 | 18 | 361.7074 | 1 | | 2 | 35 | 1 | 34 | 370.6727 | -6 | 2 | 105 | 1 | 104 | 383.7317 | -4 | 3 | 20 | 2 | 19 | 362.0687 | -15 | | 2 | 36 | l | 35 | 370.9872 | 27 | 2 | 106 | l | 105 | 383.7846 | -7 | 3 | 21 | 2 | 20 | 362.4283 | -15 | | 2 | 37 | 1 | 36 | 371.2934 | 12 | 2 | 108 | 1 | 107 | 383.8795
383.9208 | -5
-7 | 3
3 | 22
23 | 2
2 | 21
22 | 362.7855
363.1383 | -5
-6 | | 2 | 38 | 1 | 37 | 371.5964 | -1
36 | 2
2 | 109
110 | 1
1 | 108
109 | 383.9585 | -6 | 3 | 23 | 2 | 23 | 363.4889 | 5 | | 2 | 39
40 | l
l | 38
39 | 371.9009
372.1935 | -11 | 2 | 111 | l | 110 | 383.9924 | -4 | 3 | 25 | 2 | 24 | 363.8348 | 1 | | 2 | 41 | 1 | 40 | 372.1933 | -11
-7 | 2 | 112 | ì | 111 | 384.0235 | 10 | 3 | 26 | 2 | 25 | 364.1785 | ii | | 2 | 42 | i | 41 | 372.7781 | -6 | 2 | 113 | i | 112 | 384.0477 | -7 | 3 | 27 | 2 | 26 | 364.5144 | -25 | | 2 | 43 | î | 42 | 373.0660 | 6 | 2 | 114 | 1 | 113 | 384.0692 | -10 | 3 | 28 | 2 | 27 | 364.8553 | 24 | | 2 | 44 | 1 | 43 | 373.3469 | -19 | 2 | 115 | 1 | 114 | 384.0880 | -2 | 3 | 29 | 2 | 28 | 365.1856 | -0 | | 2 | 45 | 1 | 44 | 373.6320 | 35 | 2 | 116 | 1 | 115 | 384.1031 | 9 | 3 | 30 | 2 | 29 | 365.5157 | 8 | | 2 | 46 | 1 | 45 | 373.9046 | -2 | 2 | 117 | 1 | 116 | 384.1154 | 31 | 3 | 31 | 2 | 30 | 365.8411 | 4 | | 2 | 47 | 1 | 46 | 374.1809 | 35 | 2 | 2 | 1 | 3 | 356.3523 | 35 | 3 | 32 | 2 | 31 | 366.1594 | -38 | | 2 | 48 | 1 | 47 | 374.4467 | 1 | 2 | 3 | 1 | 4 | 355.9063 | -16 | 3 | 33 | 2
2 | 32
33 | 366.4840
366.7982 | 18 | | 2 | 49 | 1 | 48 | 374.7121 | -1
-5 | 2 | 4
5 | 1 | 5
6 | 355.4658
355.0189 | 20
23 | 3 | 34
35 | 2 | 33
34 | 367.1087 | 4
-13 | | 2 | 50
51 | 1
1 | 49
50 | 374.9738
375.2335 | -3
6 | 2 | 8 | i | 9 | 353.6590 | 30 | 3 | 36 | 2 | 35 | 367.4195 | 7 | | 2 | 52 | ì | 51 | 375.4875 | -3 | 2 | 9 | i | 10 | 353.2014 | 52 | 3 | 37 | 2 | 36 | 367.7226 | -15 | | 2 | 53 | i | 52 | 375.7376 | -15 | 2 | 10 | i | 11 | 352.7360 | 26 | 3 | 38 | 2 | 37 | 368.0270 | 10 | | 2 | 54 | î | 53 | 375.9865 | -4 | 2 | 11 | i | 12 | 352.2694 | 21 | 3 | 39 | 2 | 38 | 368.3235 | -8 | | 2 | 56 | ì | 55 | 376.4724 | 7 | 2 | 12 | 1 | 13 | 351.7984 | 3 | 3 | 40 | 2 | 39 | 368.6188 | -5 | | 2 | 57 | 1 | 56 | 376.7085 | -3 | 2 | 13 | 1 | 14 | 351.3278 | 20 | 3 | 41 | 2 | 40 | 368.9102 | -6 | | 2 | 58 | 1 | 57 | 376.9422 | 1 | 2 | 14 | 1 | 15 | 350.8512 | 8 | 3 | 42 | 2 | 41 | 369.1958 | -29 | | 2 | 59 | ì | 58 | 377.1724 | 4 | 2 | 15 | 1 | 16 | 350.3746 | 27 | 3 | 43 | 2 | 42 | 369.4854 | 22 | | 2 | 60 | 1 | 59 | 377.3983 | 1 | 2 | 16 | 1 | 17 | 349.8908 | 5 | 3 | 44 | 2 | 43 | 369.7634 | -8 | | 2 | 61 | 1 | 60 | 377.6204 | -3 | 2 | 17 | 1 | 18 | 349.4050 | - 6 | 3 | 45 | 2 | 44 | 370.0431 | 14 | | 2 | 62 | 1 | 61 | 377.8400 | 3 | 2 | 18 | 1 | 19 | 348.9179 | 0 | 3 | 46 | 2 | 45 | 370.3161 | 4 | | 2 | 63 | 1 | 62 | 378.0554 | 5 | 2 | 19 | 1 | 20 | 348.4267 | -4 | 3 | 47 | 2 | 46 | 370.5906 | 44 | | 2 | 64 | 1 | 63 | 378.2666 | -0 | 2 | 20 | l | 21 | 347.9357 | 24 | 3 | 48 | 2 | 47 | 370.8479 | -53 | | 2 | 65 | 1 | 64 | 378.4744 | -2
-1 | 2 | 21
22 | l
1 | 22
23 | 347.4379
346.9347 | 16
-17 | 3
3 | 49
50 | 2
2 | 48
49 | 371.1160
371.3762 | -7
-4 | | 2 | 66
67 | 1
1 | 65
66 | 378.6789
378.8820 | -1
24 | 2 | 23 | 1
1 | 23 | 346,4318 | -16 | 3 | 51 | 2 | 50 | 371.3762 | 26 | | 2 | 68 | ì | 67 | 379.0762 | -4 | 2 |
24 | 1 | 25 | 345,9290 | 16 | 3 | 52 | 2 | 51 | 371.8904 | 46 | | 2 | 69 | î | 68 | 379.2711 | 12 | 2 | 25 | i | 26 | 345.4174 | -11 | 3 | 53 | 2 | 52 | 372.1351 | 0 | | 2 | 70 | ì | 69 | 379.4594 | -2 | 2 | 26 | ì | 27 | 344.9032 | -32 | 3 | 54 | 2 | 53 | 372.3817 | 9 | | 2 | 71 | 1 | 70 | 379.6397 | -59 | 2 | 27 | 1 | 28 | 344.3908 | - 6 | 3 | 55 | 2 | 54 | 372.6238 | 8 | | 2 | 72 | 1 | 71 | 379.8274 | -4 | 2 | 28 | 1 | 29 | 343.8727 | -6 | 3 | 56 | 2 | 55 | 372.8642 | 27 | | 2 | 73 | 1 | 72 | 380.0067 | 3 | 2 | 29 | ì | 30 | 343.3576 | 52 | 3 | 57 | 2 | 56 | 373.0992 | 26 | | 2 | 74 | 1 | 73 | 380,1833 | 20 | 2 | 30 | 1 | 31 | 342.8297 | 14 | 3 | 58 | 2 | 57 | 373.3278 | -2 | | 2 | 75 | l | 74 | 380.3561 | 37 | 2 | 31 | 1 | 32 | 342.3018 | 4 | 3 | 59 | 2 | 58 | 373.5548 | -10 | | 2 | 76 | l | 75 | 380.5197 | -1 | 2 | 32 | 1 | 33 | 341.7706 | -9 | 3 | 60 | 2 | 59 | 373.7810 | 8 | | 2 | 77 | l
, | 76 | 380.6838 | 2 | 2 | 33 | 1 | 34 | 341.2390 | 4 | 3 | 61 | 2 | 60 | 374.0013 | 5 | | 2 | 78 | 1 | 77
78 | 380.8446 | 10 | 2 | 34 | ì | 35 | 340.6957 | -71
25 | 3 | 62 | 2 | 61 | 374.2193
374.4307 | 15
-5 | | 2 | 79
8 0 | 1
1 | 78
79 | 380.9992
381.1539 | -7
15 | 2 | 35
36 | 1
1 | 36
37 | 340.1666
339.6219 | 25
-4 | 3 | 63
64 | 2 | 62
63 | 374.4307 | -3
-1 | | 2 | 81 | 1 | 80 | 381.3012 | 0 | 2 | 3 7 | 1 | 38 | 339.0791 | 13 | 3 | 65 | 2 | 64 | 374.8460 | -13 | | 2 | 82 | l | 81 | 381.4465 | 4 | 2 | 38 | 1 | 39 | 338.5260 | -42 | 3 | 66 | 2 | 65 | 375.0487 | -13
-11 | | 2 | 83 | ì | 82 | 381.5857 | -17 | 2 | 39 | i | 40 | 337.9782 | -16 | 3 | 67 | 2 | 66 | 375.2491 | 4 | | 2 | 84 | i | 83 | 381.7259 | 10 | 2 | 40 | i | 41 | 337.4265 | 0 | 3 | 68 | 2 | 67 | 375.4446 | 7 | | 2 | 85 | ì | 84 | 381.8577 | -9 | 2 | 41 | i | 42 | 336.8675 | -28 | 3 | 69 | 2 | 68 | 375.6355 | -1 | | 2 | 86 | 1 | 85 | 381.9896 | 11 | 2 | 42 | 1 | 43 | 336.3154 | 42 | 3 | 70 | 2 | 69 | 375.8221 | -14 | | 2 | 87 | 1 | 86 | 382.1162 | 15 | 2 | 43 | 1 | 44 | 335.7478 | -15 | 3 | 71 | 2 | 70 | 376.0075 | -3 | | 2 | 88 | 1 | 87 | 382.2368 | -2 | 2 | 44 | l | 45 | 335.1800 | -44 | 3 | 72 | 2 | 71 | 376.1862 | -22 | | 2 | 89 | 1 | 88 | 382.3546 | -10 | 3 | 3 | 2 | 2 | 355.4544 | 13 | 3 | 74 | 2 | 73 | 376.5400 | 14 | | 2 | 90 | 1 | 89 | 382.4693 | -11 | 3 | 5 | 2 | 4 | 356.2826 | 21 | 3 | 75 | 2 | 74 | 376.7085 | 3 | | 2 | 91 | 1 | 90 | 382.5820 | 6 | 3 | 6 | 2 | 5 | 356.6872 | -21 | 3 | 76 | 2 | 75
76 | 376.8741 | 1 | | 2 | 92 | 1 | 91 | 382.6879 | -6
5 | 3 | 7 | 2 | 6 | 357.0904 | -45 | 3 | 77
78 | 2 | 76 | 377.0359 | -3
7 | | 2 | 93
94 | 1 | 92
93 | 382.7924 | 5 | 3 | 8
9 | 2 | 7 | 357.4990 | 18 | 3 | 78
70 | 2 | 77
79 | 377.1940 | -7
2 | | 2 | 94
95 | 1
1 | 93
94 | 382.8911
382.9879 | -3
8 | 3 | 9
10 | 2 2 | 8
9 | 357.8953
358.2932 | -10
10 | 3
3 | 79
8 0 | 2 2 | 78
79 | 377.3497
377.5002 | 2
-3 | | 2 | 96 | 1 | 95 | 383.0782 | -7 | 3 | 11 | 2 | 10 | 358.2932 | 17 | 3 | 81 | 2 | 80 | 377.6488 | -3
10 | | 2 | 97 | 1 | 96 | 383.1673 | 4 | 3 | 12 | 2 | 11 | 359.0756 | 15 | 3 | 82 | 2 | 81 | 377.7910 | -4 | | 2 | 98 | 1 | 97 | 383.2495 | -16 | 3 | 13 | 2 | 12 | 359.4565 | -36 | 3 | 83 | 2 | 82 | 377.7310 | 12 | | 2 | 99 | î | 98 | 383.3332 | 18 | 3 | 14 | 2 | 13 | 359.8413 | -17 | 3 | 84 | 2 | 83 | 378.0710 | 37 | | 2 | 100 | î | 99 | 383.4073 | -6 | 3 | 15 | 2 | 14 | 360.2227 | 3 | 3 | 85 | 2 | 84 | 378.1998 | 1 | | 2 | 101 | 1 | 100 | 383.4804 | -0 | 3 | 16 | 2 | 15 | 360.6025 | 39 | 3 | 86 | 2 | 85 | 378.3272 | -11 | | 2 | 102 | 1 | 101 | 383,5473 | -18 | 3 | 17 | 2 | 16 | 360.9721 | 6 | 3 | 87 | 2 | 86 | 378.4533 | 2 | | 2 | 103 | 1 | 102 | 383.6145 | 5 | 3 | 18 | 2 | 17 | 361.3425 | 15 | 3 | 88 | 2 | 87 | 378.5742 | -1 | TABLE 2—Continued | v' | J' | v" | J″ | Obs | О-С | v' | J′ | v" | J″ | Obs | О-С | v' | J′ | v" | J″ | Obs | О-С | |--------|------------|--------|------------|----------------------|-------------|--------|----------|--------|----------|---|------------|--------|------------|--------|------------|----------------------|------------| | 3 | 89 | 2 | 88 | 378.6938 | 22 | 4 | 13 | 3 | 12 | 355.9945 | 32 | 4 | 84 | 3 | 83 | 374.4467 | 3 | | 3 | 90 | 2 | 89 | 378.8042 | -8 | 4 | 14 | 3 | 13 | 356.3713 | 1 | 4 | 85 | 3 | 84 | 374.5742 | -31 | | 3 | 91 | 2 | 90 | 378.9146 | -3 | 4 | 15 | 3 | 14 | 356.7499 | 22 | 4 | 86 | 3 | 85 | 374.7021 | -26 | | 3 | 92 | 2 | 91 | 379.0219 | 11 | 4 | 16 | 3 | 15 | 357.1226 | 15 | 4 | 87 | 3 | 86 | 374.8270 | -12 | | 3 | 93 | 2 | 92 | 379.1249 | 19 | 4 | 17 | 3 | 16 | 357.4883 | -28 | 4
4 | 88 | 3 | 87
88 | 374.9480
375.0630 | -1
-11 | | 3 | 94
95 | 2
2 | 93
94 | 379.2211
379.3144 | -3
-15 | 4
4 | 18
19 | 3
3 | 17
18 | 357.8537
358.2185 | -41
-28 | 4 | 89
90 | 3
3 | 89 | 375.1785 | 21 | | 3 | 95
96 | 2 | 95 | 379.3144 | -13
-3 | 4 | 20 | 3 | 19 | 358.5819 | 5 | 4 | 91 | 3 | 90 | 375.2860 | 10 | | 3 | 97 | 2 | 96 | 379.4929 | -7 | 4 | 21 | 3 | 20 | 358.9390 | 7 | 4 | 92 | 3 | 91 | 375.3895 | -3 | | 3 | 98 | 2 | 97 | 379.5767 | -1 | 4 | 22 | 3 | 21 | 359.2934 | 16 | 4 | 93 | 3 | 92 | 375.4875 | -33 | | 3 | 99 | 2 | 98 | 379.6521 | -39 | 4 | 23 | 3 | 22 | 359.6417 | -3 | 4 | 94 | 3 | 93 | 375.5905 | 24 | | 3 | 100 | 2 | 99 | 379.7296 | -19 | 4 | 24 | 3 | 23 | 359.9902 | 13 | 4 | 95 | 3 | 94 | 375.6793 | -22 | | 3 | 101 | 2 | 100 | 379.8042 | 11 | 4 | 25 | 3 | 24 | 360.3322 | -1 | 4 | 96 | 3 | 95 | 375.7715 | 3 | | 3 | 102 | 2 | 101 | 379.8749 | 40 | 4 | 26 | 3 | 25 | 360.6737 | 11 | 4 | 97 | 3 | 96 | 375.8570 | -1 | | 3 | 103 | 2 | 102 | 379.9333 | -15 | 4 | 27 | 3 | 26 | 361.0076 | -18 | 4 | 98 | 3 | 97 | 375.9387 | -5 | | 3 | 104 | 2 | 103 | 379.9955 | 7 | 4 | 28 | 3 | 27 | 361.3425 | -3 | 4 | 99 | 3 | 98 | 376.0215 | 41 | | 3 | 105 | 2 | 104 | 380.0533 | 22 | 4 | 29 | 3 | 28 | 361.6718 | -11 | 4 | 100 | 3 | 99 | 376.0903 | -17 | | 3 | 106 | 2 | 105 | 380.1033
380.1446 | -1
-73 | 4 | 31
32 | 3
3 | 30
31 | 362.3244 | 15
14 | 4
4 | 101
103 | 3
3 | 100
102 | 376.1631
376.2909 | 5
-15 | | 3 | 107
108 | 2 2 | 106
107 | 380.1446 | 3 | 4 | 33 | 3 | 32 | 362.6443
362.9612 | 18 | 4 | 103 | 3 | 102 | 376.2909 | -13
19 | | 3 | 109 | 2 | 108 | 380.2367 | -5 | 4 | 34 | 3 | 33 | 363.2724 | -l | 4 | 105 | 3 | 103 | 376.4089 | 19 | | 3 | 110 | 2 | 109 | 380.2722 | -19 | 4 | 35 | 3 | 34 | 363.5850 | 27 | 4 | 106 | 3 | 105 | 376.4611 | 26 | | 3 | 111 | 2 | 110 | 380.3014 | -56 | 4 | 36 | 3 | 35 | 363.8877 | <u>-9</u> | 4 | 108 | 3 | 107 | 376.5507 | 6 | | 3 | 112 | 2 | 111 | 380.3372 | 11 | 4 | 37 | 3 | 36 | 364.1925 | 10 | 4 | 111 | 3 | 110 | 376,6595 | 11 | | 3 | 113 | 2 | 112 | 380.3561 | -51 | 4 | 38 | 3 | 37 | 364,4936 | 26 | 4 | 112 | 3 | 111 | 376.6846 | -21 | | 3 | 114 | 2 | 113 | 380.3791 | -33 | 4 | 39 | 3 | 38 | 364.7857 | -13 | 4 | 113 | 3 | 112 | 376.7085 | -28 | | 3 | 115 | 2 | 114 | 380.3986 | -12 | 4 | 40 | 3 | 39 | 365.0821 | 25 | 4 | 114 | 3 | 113 | 376.7244 | -74 | | 3 | 116 | 2 | 115 | 380.4129 | -3 | 4 | 41 | 3 | 40 | 365.3681 | -6 | 4 | 115 | 3 | 114 | 376.7481 | -5 | | 3 | 117 | 2 | 116 | 380.4254 | 27 | 4 | 42 | 3 | 41 | 365.6558 | 14 | 4 | 116 | 3 | 115 | 376.7606 | -8 | | 3 | 3 | 2 | 4 | 352.4549 | -19 | 4 | 43 | 3 | 42 | 365.9343 | -23 | 4 | 117 | 3 | 116 | 376.7725 | 21 | | 3 | 5 | 2 | 6 | 351.5728 | 6 | 4 | 44 | 3 | 43 | 366.2161 | 8 | 4 | 3 | 3 | 4 | 349.0375 | -28 | | 3 | 6 | 2 | 7 | 351.1244 | -7 | 4 | 45 | 3 | 44 | 366,4840 | -66 | 4 | 4 | 3 | 5 | 348.6060 | 32 | | 3 | 7 | 2 | 8
9 | 350.6754 | 5 | 4 | 46 | 3 | 45 | 366.7615 | -9
10 | 4 | 5 | 3 | 6 | 348.1629 | 6 | | 3 | 8
10 | 2 | 9
11 | 350.2217
349.3059 | 1
2 | 4 | 47
48 | 3
3 | 46
47 | 367.0289
367.2959 | -18
4 | 4
4 | 6
7 | 3
3 | 7
8 | 347.7188
347.2715 | 3
-1 | | 3 | 11 | 2 | 12 | 348.8431 | 1 | 4 | 49 | 3 | 48 | 367.5543 | -25 | 4 | 8 | 3 | 9 | 346.8215 | -3 | | 3 | 12 | 2 | 13 | 348.3775 | 2 | 4 | 50 | 3 | 49 | 367.8133 | -13 | 4 | 9 | 3 | 10 | 346.3662 | -25 | | 3 | 13 | 2 | 14 | 347.9067 | -18 | 4 | 52 | 3 | 51 | 368,3235 | 39 | 4 | 10 | 3 | 11 | 345.9128 | 2 | | 3 | 14 | 2 | 15 | 347.4379 | 14 | 4 | 53 | 3 | 52 | 368.5675 | 6 | 4 | 11 | 3 | 12 | 345.4553 | 20 | | 3 | 15 | 2 | 16 | 346.9643 | 27 | 4 | 54 | 3 | 53 | 368.8107 | 2 | 4 | 12 | 3 | 13 | 344.9871 | -39 | | 3 | 16 | 2 | 17 | 346.4844 | 8 | 4 | 55 | 3 | 54 | 369.0491 | -16 | 4 | 13 | 3 | 14 | 344.5232 | -24 | | 3 | 17 | 2 | 18 | 346.0052 | 27 | 4 | 56 | 3 | 55 | 369.2839 | -34 | 4 | 14 | 3 | 15 | 344.0558 | -14 | | 3 | 18 | 2 | 19 | 345.5195 | 12 | 4 | 57 | 3 | 56 | 369.5211 | 7 | 4 | 15 | 3 | 16 | 343.5885 | 27 | | 3 | 19 | 2 | 20 | 345.0315 | 4 | 4 | 58 | 3 | 57 | 369.7495 | -3 | 4 | 16 | 3 | 17 | 343.1114 | l | | 3 | 20 | 2 | 21 | 344.5365 | -4 3 | 4 | 59 | 3 | 58 | 369.9747 | -10 | 4 | 17 | 3 | 18 | 342.6338 | 1 | | 3 | 21 | 2 | 22 | 344.0460 | -16 | 4 | 60 | 3 | 59 | 370.1977 | -4 | 4 | 18 | 3 | 19 | 342.1510 | -20 | | 3
3 | 22
23 | 2
2 | 23
24 | 343.5579
343.0533 | 66
13 | 4 | 61
62 | 3 | 60
61 | 370.4173
370.6334 | 4
13 | 4 | 19
20 | 3 | 20
21 | 341.6663
341.1799 | -32 | | 3 | 24 | 2 | 25 | 343.0333 | 33 | 4 | 63 | 3 | 62 | 370.8334 | 43 | 4 | 21 | 3 | 22 | 341.1799 | -29
26 | | 3 | 25 | 2 | 26 | 342.3330 | -4 | 4 | 64 | 3 | 63 | 370.8479 | - 3 | 4 | 22 | 3 | 23 | 340.6937 | -24 | | 3 | 26 | 2 | 27 | 341.5320 | -41 | 4 | 65 | 3 | 64 | 371.0513 | 2 | 4 | 23 | 3 | 24 | 339,7008 | -24
-41 | | 3 | 27 | 2 | 28 | 341.0279 | 31 | 4 | 66 | 3 | 65 | 371.4569 | 2 | 4 | 25 | 3 | 26 | 338.7027 | -19 | | 3 | 28 | 2 | 29 | 340.5125 | 19 | 4 | 67 | 3 | 66 | 371.6522 | -17 | 4 | 26 | 3 | 27 | 338.1970 | -31 | | 3 | 29 | 2 | 30 | 339.9929 | -5 | 4 | 68 | 3 | 67 | 371.8478 | 4 | 4 | 28 | 3 | 29 | 337.1873 | 53 | | 3 | 30 |
2 | 31 | 339.4731 | -1 | 4 | 69 | 3 | 68 | 372.0377 | 3 | 4 | 29 | 3 | 30 | 336.6718 | 31 | | 3 | 31 | 2 | 32 | 338.9502 | 0 | 4 | 70 | 3 | 69 | 372.2223 | -13 | 4 | 30 | 3 | 31 | 336.1601 | 79 | | 3 | 32 | 2 | 33 | 338.4227 | -14 | 4 | 71 | 3 | 70 | 372.4085 | 22 | 4 | 31 | 3 | 32 | 335.6320 | -10 | | 3 | 34 | 2 | 35 | 337.3622 | -10 | 4 | 72 | 3 | 71 | 372.5854 | 2 | 5 | 3 | 4 | 2 | 348.6060 | -40 | | 3 | 35 | 2 | 36 | 336.8319 | 36 | 4 | 73 | 3 | 72 | 372.7574 | -32 | 5 | 4 | 4 | 3 | 349.0193 | 1 | | 3 | 36 | 2 | 37 | 336.2920 | 13 | 4 | 74 | 3 | 73 | 372.9345 | 22 | 5 | 5 | 4 | 4 | 349,4289 | 39 | | 3 | 37 | 2 | 38 | 335.7478 | -22 | 4 | 75 | 3 | 74 | 373.0992 | -10 | 5 | 6 | 4 | 5 | 349.8327 | 49 | | 3 | 38 | 2 | 39 | 335.2043 | -22 | 4 | 76 | 3 | 75
76 | 373.2642 | -4 | 5 | 8 | 4 | 7 | 350.6262 | 25 | | 4 | 6
7 | 3 | 5 | 353.2427 | 14 | 4 | 77
79 | 3 | 76
77 | 373.4237 | -16 | 5 | 9 | 4 | 8 | 351.0187 | 19 | | 4 | 8 | 3 | 6
7 | 353.6448 | 10
2 | 4 | 78
70 | 3 | 77
70 | 373.5822 | -0
12 | 5 | 10 | 4 | 9 | 351.4097 | 30 | | 4
4 | 9 | 3 | 8 | 354.0434
354.4373 | -19 | 4 | 79
80 | 3
3 | 78
79 | 373.7368
373.8879 | 13 | 5 | 11 | 4 | 10 | 351.7984 | 50 | | 4 | 10 | 3 | 9 | 354.4373
354.8301 | -19 | 4 | 80
18 | 3 | 79
80 | 374.0301 | 28
-9 | 5
5 | 12
13 | 4
4 | 11
12 | 352.1733
352.5572 | -35
2 | | 4 | 11 | 3 | 10 | 355.2211 | -20
-7 | 4 | 82 | 3 | 80
81 | 374.0301 | -9
-13 | 5 | 14 | 4 | 13 | 352.5572
352.9328 | 2
-13 | | 4 | 12 | 3 | 11 | 355.6087 | 5 | 4 | 83 | 3 | 82 | 374.1718 | -13
-5 | 5 | 15 | 4 | 13 | 353.3051 | -13
-27 | | | | | | | - | | | - | | - · · · · · · · · · · · · · · · · · · · | - | - | | • | | 555.5051 | | TABLE 2—Continued | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 16
17
18
19
20
21
22
23
24
25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 15
16
17
18
19
20
21
22
23
24
26
27
28
29
30
31
32 | 353.6786
354.0434
354.4081
354.7737
355.1257
355.4804
355.8329
356.1760
356.5270
356.8650
357.5350
357.8676
358.1997
358.5272
358.8426 | 3
-22
-14
35
-19
-13
5
-40
28
-0
-18
-1
45
78 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 87
88
89
90
91
92
93
94
95
96 | 4
4
4
4
4
4
4
4
4 | 86
87
88
89
90
91
92
93 | 371.2393
371.3611
371.4730
371.5845
371.6928
371.7937
371.9009
371.9941 | -2
29
0
4
13
-14
58
29 | 6
6
6
6
6 | 43
44
45
46
47
48
49 | 5
5
5
5
5
5 | 42
43
44
45
46
47
48 | 358.9496
359.2260
359.4992
359.7674
360.0246
360.2810
360.5406 | 5
27
50
58
-11
-51 | |---|--|---|--|--|--|---|--|---|--|--|---|-----------------------|--|----------------------------|--|--|-----------------------------------| | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 18
19
20
21
22
23
24
25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 17
18
19
20
21
22
23
24
26
27
28
29
30
31 | 354.4081
354.7737
355.1257
355.4804
355.8329
356.1760
356.5270
356.8650
357.3350
357.8676
358.1997
358.5272
358.8426 | -14
35
-19
-13
5
-40
28
-0
-18
-1
45 | 5
5
5
5
5
5
5
5
5
5 | 89
90
91
92
93
94
95
96
97 | 4
4
4
4
4
4 | 88
89
90
91
92
93 | 371.4730
371.5845
371.6928
371.7937
371.9009 | 0
4
13
-14
58 | 6
6
6 | 45
46
47
48 | 5
5
5
5 | 44
45
46
47 | 359.4992
359.7674
360.0246
360.2810 | 50
58
-11
-51 | | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 19
20
21
22
23
24
25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 18
19
20
21
22
23
24
26
27
28
29
30
31 | 354.7737
355.1257
355.4804
355.8329
356.1760
356.5270
356.8650
357.5350
357.8676
358.1997
358.5272
358.8426 | 35
-19
-13
5
-40
28
-0
-18
-1
45
78 | 5
5
5
5
5
5
5
5
5 | 90
91
92
93
94
95
96 | 4
4
4
4
4 | 89
90
91
92
93 | 371.5845
371.6928
371.7937
371.9009 | 4
13
-14
58 | 6
6
6 | 46
47
48 | 5
5
5 | 45
46
47 | 359.7674
360.0246
360.2810 | 58
-11
-51 | | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 20
21
22
23
24
25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 19
20
21
22
23
24
26
27
28
29
30
31 | 355.1257
355.4804
355.8329
356.1760
356.5270
356.8650
357.5350
357.8676
358.1997
358.5272
358.8426 | -19
-13
5
-40
28
-0
-18
-1
45
78 | 5
5
5
5
5
5
5 | 91
92
93
94
95
96
97 | 4
4
4
4 | 90
91
92
93 | 371.6928
371.7937
371.9009 | 13
-14
58 | 6
6 | 47
48 | 5
5 | 46
47 | 360.0246
360.2810 | -11
-51 | | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 21
22
23
24
25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 20
21
22
23
24
26
27
28
29
30
31 | 355.4804
355.8329
356.1760
356.5270
356.8650
357.5350
357.8676
358.1997
358.5272
358.8426 | -13
5
-40
28
-0
-18
-1
45
78 | 5
5
5
5
5
5 | 92
93
94
95
96
97 | 4
4
4
4 | 91
92
93 | 371.7937
371.9009 | -14
58 | 6 | 48 | 5 | 47 | 360.2810 | -51 | | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 22
23
24
25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4
4
4
4
4
4 | 21
22
23
24
26
27
28
29
30
31 | 355.8329
356.1760
356.5270
356.8650
357.5350
357.8676
358.1997
358.5272
358.8426 | 5
-40
28
-0
-18
-1
45
78 | 5
5
5
5
5 | 93
94
95
96
97 | 4 4 4 | 92
93 | 371.9009 | 58 | | | | | | | | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 23
24
25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4
4
4 | 22
23
24
26
27
28
29
30
31 | 356.1760
356.5270
356.8650
357.5350
357.8676
358.1997
358.5272
358.8426 | -40
28
-0
-18
-1
45
78 | 5
5
5
5
5 | 94
95
96
97 | 4 | 93 | | | U | | , | 40 | 300.3400 | | | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 24
25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4
4 | 23
24
26
27
28
29
30
31 | 356.5270
356.8650
357.5350
357.8676
358.1997
358.5272
358.8426 | 28
-0
-18
-1
45
78 | 5
5
5
5 | 95
96
97 | 4 | | 3/1.//41 | | 6 | 50 | 5 | 49 | 360,7988 | 20 | | 5
5
5
5
5
5
5
5
5
5
5 | 25
27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4
4 | 24
26
27
28
29
30
31 | 356.8650
357.5350
357.8676
358.1997
358.5272
358.8426 | -0
-18
-1
45
78 | 5
5
5 | 96
97 | | , , | 372.0848 | 12 | 6 | 51 | 5 | 50 | 361.0463 | -6 | | 5
5
5
5
5
5
5
5
5
5 | 27
28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4
4 | 26
27
28
29
30
31 | 357.5350
357.8676
358.1997
358.5272
358.8426 | -18
-1
45
78 | 5
5 | 97 | | 95 | 372.1731
 9 | 6 | 52 | 5 | 51 | 361.2972 | 36 | | 5
5
5
5
5
5
5
5
5 | 28
29
30
31
32
33
34
35
36 | 4
4
4
4
4
4 | 27
28
29
30
31 | 357.8676
358.1997
358.5272
358.8426 | -1
45
78 | 5 | | 4 | 96 | 372.2574 | 3 | 6 | 53 | 5 | 52 | 361.5393 | 26 | | 5
5
5
5
5
5
5 | 29
30
31
32
33
34
35
36 | 4
4
4
4
4 | 28
29
30
31 | 358.1997
358.5272
358.8426 | 45
78 | | 98 | 4 | 97 | 372.3369 | -13 | 6 | 54 | 5 | 53 | 361.7750 | -14 | | 5
5
5
5
5
5 | 30
31
32
33
34
35
36 | 4
4
4
4 | 29
30
31 | 358.5272
358.8426 | 78 | | 100 | 4 | 99 | 372.4877 | -14 | 6 | 55 | 5 | 54 | 362.0074 | -52 | | 5
5
5
5
5
5 | 31
32
33
34
35
36 | 4
4
4
4 | 30
31 | 358.8426 | | 5 | 101 | 4 | 100 | 372.5582 | -6 | 6 | 56 | 5 | 55 | 362.2447 | -6 | | 5
5
5
5
5 | 32
33
34
35
36 | 4
4
4 | 31 | | 24 | 5 | 102 | 4 | 101 | 372.6238 | -9 | 6 | 57 | 5 | 56 | 362.4751 | 7 | | 5
5
5
5 | 33
34
35
36 | 4 | | 359.1586 | 10 | 5 | 103 | 4 | 102 | 372.6870 | 2 | 6 | 58 | 5 | 57 | 362.7022 | 21 | | 5
5
5 | 34
35
36 | 4 | | 359.4704 | -13 | 5 | 105 | 4 | 104 | 372.7976 | -21 | 6 | 59 | 5 | 58 | 362,9246 | 24 | | 5
5 | 35
36 | | 33 | 359,7830 | 6 | 5 | 106 | 4 | 105 | 372.8508 | 4 | 6 | 60 | 5 | 59 | 363.1383 | -24 | | 5 | 36 | 4 | 34 | 360,0888 | -9 | 5 | 4 | 4 | 5 | 345.2290 | 50 | 6 | 61 | 5 | 60 | 363,3523 | -35 | | | | 4 | 35 | 360.3937 | 1 | 5 | 5 | 4 | 6 | 344.7880 | 14 | 6 | 62 | 5 | 61 | 363.5713 | 40 | | 5 | 37 | 4 | 36 | 360.6920 | -21 | 5 | 6 | 4 | 7 | 344.3452 | -10 | 6 | 63 | 5 | 62 | 363,7729 | -25 | | 5 | 38 | 4 | 37 | 360.9890 | -22 | 5 | 7 | 4 | 8 | 343.9017 | -10 | 6 | 64 | 5 | 63 | 363.9814 | 17 | | 5 | 39 | 4 | 38 | 361.2861 | 13 | 5 | 8 | 4 | 9 | 343.4583 | 22 | 6 | 65 | 5 | 64 | 364.1785 | -21 | | 5 | 40 | 4 | 39 | 361.5723 | -28 | 5 | 9 | 4 | 10 | 343.0078 | 14 | 6 | 66 | 5 | 65 | 364.3776 | -3 | | 5 | 41 | 4 | 40 | 361.8617 | -3 | 5 | 10 | 4 | 11 | 342.5530 | -6 | 6 | 67 | 5 | 66 | 364.5692 | -25 | | | 42 | 4 | 41 | 362.1447 | -7 | 5 | 11 | 4 | 12 | 342.0966 | -12 | 6 | 68 | 5 | 67 | 364.7664 | 46 | | | 43 | 4 | 42 | 362.4283 | 30 | 5 | 12 | 4 | 13 | 341.6350 | -39 | 6 | 69 | 5 | 68 | 364.9467 | -16 | | - | 44 | 4 | 43 | 362.7022 | 4 | 5 | 13 | 4 | 14 | 341.1799 | 29 | 6 | 70 | 5 | 69 | 365.1332 | 19 | | | 45 | 4 | 44 | 362.9760 | 11 | 5 | 14 | 4 | 15 | 340.7116 | -4 | 6 | 71 | 5 | 70 | 365.3060 | -4 7 | | | 46 | 4 | 45 | 363.2481 | 36 | 5 | 15 | 4 | 16 | 340.2418 | -22 | 6 | 72 | 5 | 71 | 365.4860 | -4 | | | 47 | 4 | 46 | 363.5113 | 7 | 5 | 16 | 4 | 17 | 339.7751 | 21 | 6 | 73 | 5 | 72 | 365.6558 | -28 | | | 48 | 4 | 47 | 363.7729 | -4 | 5 | 20 | 4 | 21 | 337.8656 | 69 | 6 | 74 | 5 | 73 | 365.8259 | -12 | | | 49 | 4 | 48 | 364.0344 | 20 | 5 | 21 | 4 | 22 | 337.3760 | 33 | 6 | 75
75 | 5 | 74 | 365.9987 | 65 | | | 50 | 4 | 49 | 364.2877 | -4 | 5 | 22 | 4 | 23 | 336.8776 | -60 | 6 | 76 | 5 | 75 | 366.1594 | 60 | | | 51 | 4 | 50 | 364.5406 | 3 | 5 | 23 | 4 | 24 | 336.3888 | -28 | 6 | 77 | 5 | 76 | 366.3145 | 34 | | | 52 | 4 | 51 | 364.7857 | -33 | 6 | 8 | 5 | 7 | 347.2386 | 1 | 6 | 78
70 | 5 | 77 | 366.4672 | 21 | | | 53 | 4 | 52 | 365.0320 | -22 | 6 | 9 | 5 | 8 | 347.6306 | 20 | 6 | 79 | 5 | 78 | 366.6176 | 21 | | | 54 | 4 | 53 | 365.2742 | -16 | 6 | 10 | 5
5 | 9 | 348.0166 | 9 | 6 | 80 | 5 | 79 | 366.7615 | -8 | | | 55
56 | 4 | 54
55 | 365.5157
365.7457 | 17
-29 | 6 | 11 | 5 | 10 | 348.4044 | 50 | 6 | 82 | 5 | 81 | 367.0451 | 2 | | | 56
57 | 4 | 56 | 365.9806 | 9 | 6
6 | 12
13 | 5 | 11
12 | 348.7832
349.1577 | 32
3 | 6
6 | 83
84 | 5 | 82
83 | 367.1821 | 15
7 | | | 58 | 4 | 57 | 366.2040 | -33 | 6 | 14 | 5 | 13 | 349.5288 | -27 | 6 | 85 | 5 | 84 | 367.3134
367.4381 | -30 | | | 59 | 4 | 58 | 366.4320 | -33
7 | 6 | 15 | 5 | 14 | 349.9060 | 36 | 6 | 86 | 5 | 85 | 367.5701 | 43 | | | 60 | 4 | 59 | 366.6511 | - 6 | 6 | 16 | 5 | 15 | 350.2729 | 29 | 6 | 87 | 5 | 86 | 367.6886 | 17 | | | 61 | 4 | 60 | 366.8672 | -15 | 6 | 17 | 5 | 16 | 350.6362 | 17 | 6 | 88 | 5 | 87 | 367.8011 | -31 | | | 62 | 4 | 61 | 367.0784 | -36 | 6 | 18 | 5 | 17 | 351.0043 | 86 | 6 | 89 | 5 | 88 | 367.9191 | 12 | | | 63 | 4 | 62 | 367.2959 | 41 | 6 | 19 | 5 | 18 | 351.3605 | 70 | 6 | 90 | 5 | 89 | 368.0270 | -8 | | | 64 | 4 | 63 | 367.4975 | -4 | 6 | 20 | 5 | 19 | 351.7097 | 14 | 6 | 91 | 5 | 90 | 368.1358 | 17 | | | 65 | 4 | 64 | 367,7062 | 57 | 6 | 21 | 5 | 20 | 352.0599 | 2 | 6 | 92 | 5 | 91 | 368.2354 | -12 | | _ | 66 | 4 | 65 | 367.9014 | 18 | 6 | 22 | 5 | 21 | 352.4090 | 12 | 6 | 93 | 5 | 92 | 368.3373 | 19 | | | 67 | 4 | 66 | 368.0971 | 21 | 6 | 23 | 5 | 22 | 352.7519 | -7 | 6 | 94 | 5 | 93 | 368.4283 | -22 | | | 68 | 4 | 67 | 368.2888 | 20 | 6 | 24 | 5 | 23 | 353.0921 | -21 | 6 | 95 | 5 | 94 | 368.5200 | -18 | | | 69 | 4 | 68 | 368.4740 | -11 | 6 | 25 | 5 | 24 | 353.4322 | -2 | 6 | 96 | 5 | 95 | 368,6058 | -36 | | | 70 | 4 | 69 | 368.6589 | -8 | 6 | 26 | 5 | 25 | 353,7676 | 2 | 6 | 98 | 5 | 97 | 368.7680 | -54 | | | 71 | 4 | 70 | 368.8404 | -2 | 6 | 27 | 5 | 26 | 354.0979 | -10 | 6 | 99 | 5 | 98 | 368.8523 | 26 | | | 72 | 4 | 71 | 369.0182 | 2 | 6 | 28 | 5 | 27 | 354.4240 | -33 | 6 | 100 | 5 | 99 | 368.9234 | 11 | | | 73 | 4 | 72 | 369.1958 | 40 | 6 | 29 | 5 | 28 | 354.7562 | 39 | 6 | 101 | 5 | 100 | 368.9918 | 6 | | | 74 | 4 | 73 | 369.3649 | 30 | 6 | 30 | 5 | 29 | 355.0767 | 28 | 6 | 102 | 5 | 101 | 369.0616 | 54 | | | 75 | 4 | 74 | 369.5373 | 90 | 6 | 31 | 5 | 30 | 355.3910 | -12 | 6 | 104 | 5 | 103 | 369.1772 | 22 | | | 76 | 4 | 75 | 369.6933 | 22 | 6 | 32 | 5 | 31 | 355.7097 | 25 | 6 | 106 | 5 | 105 | 369.2839 | 52 | | | 77 | 4 | 76 | 369.8507 | 4 | 6 | 33 | 5 | 32 | 356.0145 | -44 | 6 | 109 | 5 | 108 | 369.4086 | 30 | | | 79 | 4 | 78 | 370.1556 | -21 | 6 | 34 | 5 | 33 | 356.3238 | -33 | 6 | 110 | 5 | 109 | 369.4426 | 23 | | | 80 | 4 | 79 | 370.3049 | -9 | 6 | 35 | 5 | 34 | 356.6324 | 5 | 6 | 112 | 5 | 111 | 369.5026 | 43 | | | 81 | 4 | 80 | 370.4503 | ó | 6 | 36 | 5 | 35 | 356.9328 | -7 | 6 | 113 | 5 | 112 | 369.5211 | -5 | | | 82 | 4 | 81 | 370.5906 | -4 | 6 | 38 | 5 | 37 | 357.5230 | -33 | 6 | 114 | 5 | 113 | 369.5373 | -37 | | | 83 | 4 | 82 | 370.7302 | 20 | 6 | 39 | 5 | 38 | 357.8179 | 2 | 6 | 115 | 5 | 114 | 369.5551 | -14 | | | 84 | 4 | 83 | 370.8606 | -10 | 6 | 40 | 5 | 39 | 358.1063 | 6 | 6 | 117 | 5 | 116 | 369.5781 | 19 | | | 85 | 4 | 84 | 370.9872 | -41 | 6 | 41 | 5 | 40 | 358.3894 | -8 | 7 | 15 | 6 | 14 | 346.5349 | 38 | | | 8 6 | 4 | 85 | 371.1160 | -13 | 6 | 42 | 5 | 41 | 358.6731 | 18 | 7 | 16 | 6 | 15 | 346.9023 | 64 | TABLE 2—Continued | <u>v</u> ′ | J' | v" | J″ | Obs | О-С | v' | J' | v" | J″ | Obs | 0- C | v' | J' | v" | J" | Obs | О-С | |------------|----------|--------|----------|--|-------------|--------|----------|--------|--------------------|----------------------|-------------|--------|----------|--------|----------|----------------------|-------------| | 7 | 17 | 6 | 16 | 347.2582 | 6 | 7 | 58 | 6 | 57 | 359.2260 | -19 | 8 | 36 | 7 | 35 | 350.1175 | 8 | | 7 | 18 | 6 | 17 | 347.6194 | 34 | 7 | 59 | 6 | 58 | 359.4421 | -61 | 8 | 37 | 7 | 36 | 350.4158 | 56 | | 7 | 19 | 6 | 18 | 347.9719 | 6 | 7 | 60 | 6 | 59 | 359.6641 | -9 | 8 | 38 | 7 | 37 | 350.7058 | 55 | | 7 | 20 | 6 | 19 | 348.3259 | 27 | 7 | 61 | 6 | 60 | 359.8743 | -39 | 8 | 39 | 7 | 38 | 350.9881 | 10 | | 7 | 21 | 6 | 20 | 348.6725 | 6 | 7 | 62 | 6 | 61 | 360.0888 | 9 | 8 | 40 | 7 | 39 | 351.2687 | -17 | | 7 | 22 | 6 | 21 | 349.0193 | 19 | 7 | 63 | 6 | 62 | 360.2944
360.4998 | 3
30 | 8
8 | 41
42 | 7
7 | 40
41 | 351.5525
351.8281 | 20
9 | | 7
7 | 23 | 6 | 22 | 349.3608
349.6953 | 13 | 7
7 | 64
65 | 6 | 63
64 | 360.4998 | -38 | 8 | 42 | 7 | 41 | 352.1026 | 21 | | 7 | 24
25 | 6 | 23
24 | 3 4 9.6933
3 5 0.0313 | -31
-28 | 7 | 66 | 6
6 | 65 | 360.8883 | -32 | 8 | 44 | 7 | 43 | 352.1028 | -26 | | 7 | 26 | 6
6 | 25 | 350.3634 | -28
-31 | 7 | 67 | 6 | 66 | 361.0821 | -14 | 8 | 45 | 7 | 44 | 352.6389 | 19 | | 7 | 27 | 6 | 26 | 350.6942 | -14 | 7 | 68 | 6 | 67 | 361.2675 | -45 | 8 | 46 | 7 | 45 | 352.8988 | -13 | | 7 | 28 | 6 | 27 | 351.0187 | -26 | 7 | 69 | 6 | 68 | 361.4579 | 10 | 8 | 47 | 7 | 46 | 353.1544 | -54 | | 7 | 29 | 6 | 28 | 351.3465 | 28 | 7 | 70 | 6 | 69 | 361.6396 | 13 | 8 | 48 | 7 | 47 | 353,4194 | 32 | | 7 | 30 | 6 | 29 | 351.6615 | -15 | 7 | 71 | 6 | 70 | 361.8173 | 12 | 8 | 49 | 7 | 48 | 353.6693 | 3 | | 7 | 32 | 6 | 31 | 352.2905 | -8 | 7 | 73 | 6 | 72 | 362.1649 | 41 | 8 | 50 | 7 | 49 | 353.9187 | 2 | | 7 | 33 | 6 | 32 | 352.6029 | 25 | 7 | 74 | 6 | 73 | 362.3244 | -35 | 8 | 51 | 7 | 50 | 354.1658 | 12 | | 7 | 34 | 6 | 33 | 352.9101 | 38 | 7 | 75 | 6 | 74 | 362.4924 | 11 | 8 | 52 | 7 | 51 | 354.4081 | 8 | | 7 | 35 | 6 | 34 | 353.2148 | 60 | 7 | 76 | 6 | 75 | 362,6443 | -69 | 8 | 53 | 7 | 52 | 354.6424 | -41 | | 7 | 36 | 6 | 35 | 353.5106 | 26 | 7 | 77 | 6 | 76 | 362.8088 | 14 | 8 | 54 | 7 | 53 | 354.8861 | 40 | | 7 | 37 | 6 | 36 | 353,8030 | -7 | 7 | 78 | 6 | 77 | 362.9612 | 12 | 8 | 55 | 7 | 54 | 355.1126 | -19 | | 7 | 38 | 6 | 37 | 354.0979 | 18 | 7 | 79 | 6 | 78 | 363.1045 | -45 | 8 | 56 | 7 | 55 | 355.3394 | -39 | | 7 | 39 | 6 | 38 | 354.3914 | 62 | 7 | 80 | 6 | 79 | 363.2481 | -63 | 8 | 57 | 7 | 56 | 355.5714 | 28 | | 7 | 40 | 6 | 39 | 354.6712 | 3 | 7 | 81 | 6 | 80 | 363.3938 | -23 | 8 | 58 | 7 | 57 | 355.7849 | -56 | | 7 | 41 | 6 | 40 | 354.9523 | -9 | 7 | 82 | 6 | 81 | 363.5330 | -11 | 8 | 59 | 7 | 58 | 356.0145 | 55 | | 7 | 42 | 6 | 41 | 355.2323 | 2 | 8 | 20 | 7 | 19 | 344.9735 | 14 | 8 | 60 | 7 | 59 | 356.2242 | 3 | | 7 | 43 | 6 | 42 | 355.5098 | 22 | 8 | 21 | 7 | 20 | 345.3165 | -17 | 8 | 61 | 7 | 60 | 356.4329 | -24 | | 7 | 44 | 6 | 43 | 355.7849 | 53 | 8 |
22 | 7 | 21 | 345.6574 | -35 | 8 | 62 | 7 | 61 | 356.6466 | 33 | | 7 | 45 | 6 | 44 | 356.0606 | 122 | 8 | 23 | 7 | 22 | 345.9947 | -58 | 8 | 63 | 7 | 62 | 356.8485 | 8 | | 7 | 46 | 6 | 45 | 356.3238 | 102 | 8 | 25 | 7 | 24 | 346.6641 | -58 | 8 | 64 | 7 | 63 | 357.0499 | 12 | | 7 | 47 | 6 | 46 | 356.5811 | 56 | 8 | 26 | 7 | 25 | 346.9932 | -65 | 8 | 66 | 7 | 65 | 357.4388 | -12 | | 7
7 | 48
49 | 6 | 47 | 356.8357 | 18 | 8 | 27 | 7 | 26 | 347.3230 | -32 | 8 | 67 | 7 | 66 | 357.6329 | 26 | | 7 | 50 | 6
6 | 48
49 | 357.0904
357.3395 | 16
-9 | 8
8 | 28
29 | 7
7 | 27
28 | 347.6492
347.9719 | -3
24 | 8
8 | 68
69 | 7
7 | 67
68 | 357.8179
358.0011 | 7
6 | | 7 | 51 | 6 | 50 | 357.5864 | -20 | 8 | 30 | 7 | 29 | 348.2874 | 13 | 8 | 70 | 7 | 69 | 358,1777 | -26 | | 7 | 52 | 6 | 51 | 357.8342 | 11 | 8 | 31 | 7 | 30 | 348.5960 | -34 | 8 | 71 | 7 | 70 | 358.3533 | -32 | | 7 | 53 | 6 | 52 | 358.0759 | 16 | 8 | 32 | 7 | 31 | 348.9051 | -45 | 8 | 72 | 7 | 71 | 358.5272 | -19 | | 7 | 54 | 6 | 53 | 358.3102 | -18 | 8 | 33 | 7 | 32 | 349.2124 | -39 | 8 | 73 | 7 | 72 | 358.6993 | 11 | | 7 | 55 | 6 | 54 | 358.5565 | 103 | 8 | 34 | 7 | 33 | 349.5142 | -55 | 8 | 74 | 7 | 73 | 358.8618 | -19 | | 7 | 56 | 6 | 55 | 358,7786 | 16 | 8 | 35 | 7 | 34 | 349.8173 | -26 | 8 | 75 | 7 | 74 | 359.0275 | 19 | | 7 | 57 | 6 | 56 | 359.0087 | 45 | | | | | 017,0110 | | • | | • | | 307.02.0 | • • | | | | | | | | | | Na | ı³ ⁷ Cl | 0 | 2 | 0 | 1 | 0.8503850a | -182 | 1 | 21 | 0 | 20 | 365.4860 | -57 | 1 | 45 | 0 | 44 | 373.0992 | 86 | | 1 | 2 | l | 1 | 0.8441673a | 104 | 1 | 22 | 0 | 21 | 365.8411 | -54 | 1 | 46 | 0 | 45 | 373.3626 | -24 | | 2 | 2 | 2 | 1 | 0.8379230a | -276 | 1 | 23 | 0 | 22 | 366.2040 | 59 | 1 | 47 | 0 | 46 | 373.6466 | 106 | | 0 | 9 | 0 | 8 | 3.8260245b | 280 | 1 | 25 | 0 | 24 | 366.8955 | 40 | 1 | 48 | 0 | 47 | 373.9046 | 12 | | 0 | 15 | 0 | 14 | 6.3741303b | 182 | 1 | 26 | 0 | 25 | 367.2423 | 90 | 1 | 49 | 0 | 48 | 374.1718 | 43 | | 0 | 17 | 0 | 16 | 7.2227114b | 15 | 1 | 27 | 0 | 26 | 367.5701 | -15 | I | 50 | 0 | 49 | 374.4307 | 27 | | 1 | 9 | 1 | 8 | 3.7978951b | 56 | l | 28 | 0 | 27 | 367.9014 | -54 | 1 | 52 | 0 | 51 | 374.9480 | 91 | | 1 | 12 | 1 | 11 | 5.0629549b | -68 | 1 | 29 | 0 | 28 | 368.2354 | -31 | 1 | 53 | 0 | 52 | 375.1907 | 17 | | 1 | 15 | 1 | 14 | 6.3272482b | -222 | 1 | 30 | 0 | 29 | 368.5675 | 4 | 1 | 54 | 0 | 53 | 375.4335 | -21 | | 1 | 6 | 0 | 5 | 359.7674 | -126 | l | 31 | 0 | 30 | 368.8951 | 29 | 1 | 55 | 0 | 54 | 375.6793 | 4 | | 1 | 7
8 | 0 | 6
7 | 360.1705
360.5741 | -127
-92 | 1 | 32 | 0 | 31 | 369.2150 | 10 | 1 | 57 | 0 | 56 | 376.1631 | 84 | | 1
1 | 9 | 0 | 7
8 | 360.5741
360.9721 | -92 | 1 | 33 | 0 | 32 | 369.5373 | 49 | 1 | 58 | 0 | 57 | 376.3954 | 80 | | l | 12 | 0 | 11 | 360.9721 | -80
-68 | 1 | 34 | 0 | 33 | 369.8507
370.1651 | 31
57 | 1 | 60 | 0 | 59 | 376.8435 | 14 | | I | 13 | 0 | 11 | 362.1447
362.5300 | -68
-55 | 1 | 35
37 | 0 | 34 | | 57
50 | 1 | 61 | 0 | 60 | 377.0580 | -6 3 | | l | 14 | 0 | 13 | 362.5300
362.9146 | -55
-18 | l
l | 37
38 | 0 | 36
37 | 370.7777 | 50 | 1 | 62 | 0 | 61 | 377.2859 | 31 | | l | 14
16 | 0 | 15 | 363.6696 | 13 | l | 38
39 | 0 | 37
39 | 371.0715 | -28
36 | 1 | 63 | 0 | 62 | 377.5002 | 24 | | l | 17 | 0 | 16 | 364.0344 | -51 | 1 | | 0 | 38 | 371.3762 | 36 | 1 | 64 | 0 | 63 | 377.7046 | -47 | | l | 18 | 0 | 17 | 364.4049 | -31
-26 | 1 | 40 | 0 | 39
40 | 371.6675 | 0 | 1 | 65 | 0 | 64 | 377.9161 | -11 | | 1 | 19 | 0 | 18 | 364.4049
364.7664 | -26
-57 | l
l | 41 | 0 | 40
41 | 371.9627
372.2574 | 38 | 1 | 66 | 0 | 65 | 378.1231 | 15 | | l | 20 | 0 | 19 | 365.1332 | -3 /
-3 | l
l | 42
44 | 0 | 41 | | 104 | 1 | 67
60 | 0 | 66
40 | 378.3272 | 48 | | | 20 | v | 17 | 202.1334 | -5 | | 77 | U | 43 | 372.8143 | 14 | 1 | 69 | 0 | 68 | 378.7128 | -4 | TABLE 2—Continued | <u>v</u> ' | J' | v" | J″ | Obs | О-С | v' | J' | v" | J″ | Obs | O-C | v' | J' | v" | J″ | Obs | O-C | |------------|----------|--------|------------------|----------------------|------------|--------|------------|--------|----------|----------------------|-------------|--------|----------|--------|------------|----------------------|-------------| | 1 | 70 | 0 | 69 | 378.9146 | 113 | 2 | 21 | 1 | 20 | 362.0074 | 7 | 2 | 7 | 1 | 8 | 350.4037 | -39 | | ì | 71 | 0 | 70 | 379.0936 | 39 | 2 | 22 | 1 | 21 | 362.3576 | -13 | 2 | 8 | 1 | 9 | 349.9642 | 32 | | 1 | 72 | 0 | 71 | 379.2711 | -14 | 2 | 23 | 1 | 22 | 362.7022 | -56 | 2 | 9 | 1 | 10 | 349.5142 | 30 | | l | 73 | 0 | 72 | 379.4594 | 77 | 2 | 24 | 1 | 23 | 363.0561 | 27 | 2 | 10 | 1 | 11 | 349.0571 | -14 | | 1 | 74 | 0 | 73 | 379.6397 | 123 | 2 | 25 | l | 24 | 363.3938 | -21 | 2 | 11 | l | 12 | 348.6060
348.1434 | 32
-6 | | 1 | 75 | 0 | 74 | 379.8042 | 48 | 2 | 26 | 1 | 25 | 363.7320 | -30 | 2
2 | 12
13 | 1
1 | 13
14 | 348.1434 | -0
-17 | | 1 | 77 | 0 | 76 | 380.1446 | 121 | 2 | 27 | 1 | 26
27 | 364.0720
364.4049 | 11
15 | 2 | 14 | ì | 15 | 347.2123 | -52 | | 1 | 78 | 0 | 77
7 0 | 380.3014 | 78 | 2
2 | 28
30 | l
l | 29 | 365.0585 | -1 | 2 | 15 | ì | 16 | 346.7440 | -57 | | l | 80 | 0 | 79
8 0 | 380.6115
380.7538 | 66
-12 | 2 | 31 | l | 30 | 365.3866 | 54 | 2 | 17 | ì | 18 | 345.7993 | -59 | | l
l | 81
82 | 0 | 81 | 380.7338 | 6 | 2 | 32 | l | 31 | 365.7002 | -4 | 2 | 18 | ì | 19 | 345.3295 | 10 | | 1 | 83 | 0 | 82 | 381.0519 | 75 | 2 | 33 | ì | 32 | 366.0202 | 36 | 2 | 19 | ì | 20 | 344.8474 | -14 | | ì | 84 | ő | 83 | 381.1828 | -7 | 2 | 34 | ì | 33 | 366.3298 | 6 | 2 | 20 | 1 | 21 | 344.3613 | -48 | | ì | 85 | Õ | 84 | 381.3192 | 3 | 2 | 35 | 1 | 34 | 366.6385 | -1 | 2 | 21 | ì | 22 | 343.8727 | -78 | | i | 86 | 0 | 85 | 381.4465 | -42 | 2 | 36 | 1 | 35 | 366.9453 | 7 | 3 | 20 | 2 | 19 | 358.1900 | -120 | | ī | 87 | 0 | 86 | 381.5857 | 69 | 2 | 37 | 1 | 36 | 367.2423 | -49 | 3 | 21 | 2 | 20 | 358.5437 | -111 | | ì | 88 | 0 | 87 | 381.7140 | 109 | 2 | 38 | 1 | 37 | 367.5543 | 78 | 3 | 24 | 2 | 23 | 359.5976 | 40 | | 1 | 90 | 0 | 89 | 381.9436 | 29 | 2 | 39 | 1 | 38 | 367.8423 | -1 | 3 | 25 | 2 | 24 | 359.9379 | 44 | | i | 91 | 0 | 90 | 382.0549 | 10 | 2 | 40 | 1 | 39 | 368.1358 | 8 | 3 | 26 | 2 | 25 | 360.2679 | -21 | | 1 | 92 | 0 | 91 | 382.1595 | -39 | 2 | 41 | l | 40 | 368.4283 | 42 | 3 | 27 | 2 | 26 | 360.6025 | -8 | | 1 | 93 | 0 | 92 | 382.2661 | -31 | 2 | 43 | 1 | 42 | 368.9918 | -5 | 3 | 28 | 2 | 27 | 360.9323 | -10 | | 1 | 94 | 0 | 93 | 382.3673 | -39 | 2 | 44 | 1 | 43 | 369.2670 | -43 | 3 | 29
30 | 2
2 | 28
29 | 361.2675
361.5844 | 75
9 | | 1 | 95 | 0 | 94 | 382.4693 | -2
20 | 2 | 45 | l | 44 | 369.5373
370.3587 | -96
55 | 3
3 | 31 | 2 | 30 | 361.9022 | -14 | | I | 96 | 0 | 95 | 382.5670
353.8030 | 30
-31 | 2
2 | 48
49 | l
l | 47
48 | 370.3387 | 40 | 3 | 32 | 2 | 31 | 362.2265 | 60 | | 1 | 7
8 | 0
0 | 8
9 | 353.3468 | -31
-94 | 2 | 50 | ì | 49 | 370.8734 | -1 | 3 | 34 | 2 | 33 | 362.8527 | 83 | | 1
1 | 9 | 0 | 10 | 352.8988 | -44 | 2 | 51 | ì | 50 | 371.1296 | 11 | 3 | 35 | 2 | 34 | 363.1527 | 14 | | î | 10 | 0 | 11 | 352.4380 | -92 | 2 | 52 | i | 51 | 371.3762 | -39 | 3 | 36 | 2 | 35 | 363.4520 | -29 | | i | 12 | ő | 13 | 351.5199 | -60 | 2 | 53 | i | 52 | 371.6356 | 74 | 3 | 37 | 2 | 36 | 363.7555 | 3 | | ì | 13 | o | 14 | 351.0611 | 3 | 2 | 54 | ì | 53 | 371.8731 | 2 | 3 | 38 | 2 | 37 | 364.0515 | -7 | | 1 | 14 | 0 | 15 | 350.5926 | 0 | 2 | 55 | 1 | 54 | 372.1150 | 10 | 3 | 39 | 2 | 38 | 364.3478 | 21 | | 1 | 15 | 0 | 16 | 350.1175 | -39 | 2 | 56 | 1 | 55 | 372.3513 | -4 | 3 | 40 | 2 | 39 | 364.6349 | -11 | | 1 | 16 | 0 | 17 | 349.6504 | 32 | 2 | 57 | 1 | 56 | 372.5854 | -5 | 3 | 41 | 2 | 40 | 364.9176 | -52 | | l | 18 | 0 | 19 | 348.6901 | 3 | 2 | 58 | 1 | 57 | 372.8143 | -24 | 3 | 43 | 2 | 42 | 365.4860 | -5 | | l | 19 | 0 | 20 | 348.2034 | -32 | 2 | 59 | l | 58 | 373.0475 | 36 | 3 | 44 | 2 | 43 | 365.7609 | -24 | | 1 | 20 | 0 | 21 | 347.7188 | -16 | 2 | 60 | 1 | 59 | 373.2642 | -34 | 3 | 45 | 2 | 44 | 366.0358 | -9 | | 1 | 22 | 0 | 23 | 346.7440 | 48 | 2 | 61 | 1 | 60 | 373.4825 | -5 3 | 3 | 46 | 2 | 45 | 366.3032 | -35 | | 1 | 24 | 0 | 25 | 345.7523 | 62 | 2 | 62 | l | 61 | 373.7025 | -20 | 3 | 49
52 | 2
2 | 48
51 | 367.0924
367.8535 | -39
-16 | | 1 | 25 | 0 | 26 | 345.2505 | 54 | 2 | 63 | l | 62 | 373.9193 | 16 | 3
3 | 53 | 2 | 52 | 368.0971 | -10
-41 | | 1
1 | 32
33 | 0 | 33
34 | 341.6557
341.1328 | -10
4 | 2
2 | 64
65 | 1
1 | 63
64 | 374.1268
374.3303 | -6
-31 | 3 | 54 | 2 | 5 3 | 368.3504 | 66 | | l
l | 34 | 0 | 35 | 340.5981 | -72 | 2 | 66 | l | 65 | 374.5338 | -23 | 3 | 55 | 2 | 54 | 368.5856 | 26 | | i | 35 | Ö | 36 | 340.0749 | -4 | 2 | 67 | ì | 66 | 374.7325 | -25 | 3 | 56 | 2 | 55 | 368.8226 | 39 | | i | 36 | 0 | 37 | 339.5469 | 44 | 2 | 68 | i | 67 | 374.9325 | 20 | 3 | 57 | 2 | 56 | 369.0616 | 106 | | ì | 37 | 0 | 38 | 339.0157 | 89 | 2 | 69 | ì | 68 | 375.1197 | -27 | 3 | 58 | 2 | 57 | 369,2839 | 41 | | 1 | 38 | 0 | 39 | 338.4737 | 55 | 2 | 71 | 1 | 70 | 375.5006 | 51 | 3 | 59 | 2 | 58 | 369.5026 | -25 | | 1 | 39 | 0 | 40 | 337.9280 | 12 | 2 | 72 | 1 | 7 i | 375.6793 | 26 | 3 | 60 | 2 | 59 | 369.7237 | -33 | | 1 | 40 | 0 | 41 | 337.3760 | -66 | 2 | 73 | ì | 72 | 375.8570 | 27 | 3 | 62 | 2 | 61 | 370.1556 | -4 6 | | 1 | 41 | 0 | 42 | 336.8319 | -36 | 2 | 74 | 1 | 73 | 376.0215 | -67 | 3 | 63 | 2 | 62 | 370.3587 | -128 | | 1 | 42 | 0 | 43 | 336.2920 | 63 | 2 | 7 7 | 1 | 76 | 376.5292 | 5 | 3 | 64 | 2 | 63 | 370.5769 | -24 | | 1 | 43 | 0 | 44 | 335.7313 | -18 | 2 | 78 | l | 77 | 376.6846 | -36 | 3 | 65 | 2 | 64 | 370.7777 | -60 | | 1 | 44 | 0 | 45 | 335.1800 | 24 | 2 | 79 | 1 | 78 | 376.8435 | - 6 | 3 | 66 | 2 | 65 | 370.9872 | 27 | | 2 | 5 | 1 | 4 | 355.9366 | 23 | 2 | 81 | ì |
80 | 377.1468 | 17 | 3 | 67 | 2 | 66 | 371.1802 | -15 | | 2 | 6 | 1 | 5 | 356.3363 | -14 | 2 | 82 | l | 81 | 377.2859 | -43 | 3 | 68 | 2 | 67 | 371.3762 | 7 | | 2 | 7 | l | 6 | 356.7392 | 14 | 2 | 83 | 1 | 82 | 377.4298 | -18 | 3 | 69 | 2 | 68 | 371.5678 | 21 | | 2 | 8 | 1 | 7 | 357.1356 | 6 | 2 | 85 | 1 | 84 | 377.7046 | 13 | 3 | 70 | 2 | 69 | 371.7503 | -20 | | 2 | 9 | 1 | 8 | 357.5350 | 62 | 2 | 86 | l | 85 | 377.8400 | 62 | 3 | 72 | 2 | 71 | 372.1150 | -0 | | 2 | 11 | l | 10 | 358.3102 | 30 | 2 | 88 | l
i | 87 | 378.0836 | 1 | 3 | 73
75 | 2 | 72
74 | 372.2902 | -7 | | 2 | 12 | l | 11 | 358.6993 | 78 | 2 | 89 | l | 88 | 378.1998 | -30 | 3 | 75
76 | 2 | 74
75 | 372.6365 | 43 | | 2 | 13 | 1 | 12 | 359.0756 | 29 | 2 | 90 | l | 89 | 378.3167 | -17 | 3 | 76
78 | 2 | 75
77 | 372.7976 | l
17 | | 2 | 14 | 1 | 13 | 359.4565 | 59 | 2 | 91 | l
1 | 90 | 378.4327 | 23 | 3 | 78
79 | 2
2 | 77
78 | 373.1188 | 17
55 | | 2 2 | 15
16 | 1
1 | 14
15 | 359.8273
360.2035 | 18
64 | 2
2 | 1 2 | 1
1 | 2
3 | 353.0216
352.5904 | -17
-46 | 3
3 | 80 | 2 | 78
79 | 373.2771
373.4237 | 33
13 | | 2 | 17 | l | 16 | 360.2033 | 86 | 2 | 3 | l
l | 4 | 352.3904 | -46
-79 | 3 | 81 | 2 | 80 | 373.5679 | -18 | | 2 | 18 | 1 | 17 | 360.9323 | 17 | 2 | 4 | 1 | 5 | 351.7212 | -79
-81 | 3 | 82 | 2 | 81 | 373.7209 | 77 | | 2 | 19 | 1 | 18 | 361.2972 | 47 | 2 | 5 | 1 | 6 | 351.7212 | -21 | 3 | 83 | 2 | 82 | 373.7209 | 14 | | 2 | 20 | 1 | 19 | 361.6560 | 48 | 2 | 6 | 1 | 7 | 350.8512 | -0 | 3 | 84 | 2 | 83 | 373.9894 | -1 | | | | | | 202.0000 | | | | - | | | <u> </u> | | ٥, | | | 2.2.7071 | | Note: a and b mark pure rotational transitions from References 5 and 9, respectively. 368 $TABLE \ 3 \\ Observed \ Rotational \ Lines \ (in \ cm^{-1}) \ in \ the \ Vibration-Rotation \ Bands \ of \ K^{35}Cl$ | v | J' | v" | J″ | Obs | О-С | v′ | J' | v" | J″ | Obs | O-C | v' | J′ | v" | J″ | Obs | О-С | |--------|----------|--------|----------|--------------------------|-------------|--------|------------|----|------------|----------------------|------------|--------|------------|--------|------------|----------------------|-------------| | | | | | | | | | K | ³5CI | | | | | | | | | | 0 | 13 | 0 | 12 | 3.3332907a | 5 | 1 | 96 | 0 | 95 | 294.4183 | 60 | 1 | 39 | 0 | 40 | 266.0351 | -42 | | 0 | 20 | 0 | 19 | 5.1261290a | 6 | 1 | 97 | 0 | 96 | 294.5067 | 27 | 1 | 40 | 0 | 41 | 265.7189 | -30 | | 0 | 25 | 0 | 24 | 6.4052142a | 9
-5 | 1 | 98
99 | 0 | 97
98 | 294.5921 | -19 | l | 41 | 0 | 42 | 265.4039 | 6 | | 0 | 30
35 | 0 | 29
34 | 7.6826669a
8,9581633a | -3
-20 | 1
1 | 100 | 0 | 98
99 | 294.6857
294.7685 | 36
2 | l
l | 42
43 | 0 | 43
44 | 265.0822
264.7542 | -9
-73 | | ì | 13 | 1 | 12 | 3.3128398a | -1 | i | 101 | Õ | 100 | 294.8574 | 46 | î | 44 | ő | 45 | 264.4368 | -15 | | 1 | 25 | 1 | 24 | 6.3658870a | -9 | l | 102 | 0 | 101 | 294.9326 | -28 | 1 | 45 | 0 | 46 | 264.1067 | -71 | | 1 | 30 | 1 | 29 | 7.6354806a | 25 | l | 103 | 0 | 102 | 295.0166 | 4 | 1 | 46 | 0 | 47 | 263.7822 | -55 | | 2 | 25 | 2 | 24 | 6.3267275a | -6
70 | 1 | 104 | 0 | 103 | 295.0955 | 5 | 1 | 47 | 0 | 48 | 263.4576 | -27 | | 1
1 | 19
21 | 0 | 18
20 | 282.0766
282.5203 | 78
40 | 1
1 | 105
106 | 0 | 104
105 | 295,1744
295,2499 | 24
27 | 1
1 | 48
49 | 0 | 49
50 | 263.1324
262.8031 | 10
21 | | i | 22 | 0 | 21 | 282.7357 | -18 | ì | 107 | 0 | 106 | 295.3209 | 3 | i | 50 | ő | 51 | 262.4718 | 26 | | 1 | 23 | 0 | 22 | 282.9509 | -63 | 1 | 108 | 0 | 107 | 295.3904 | -18 | 1 | 51 | 0 | 52 | 262.1349 | -11 | | 1 | 24 | 0 | 23 | 283.1690 | -62 | 1 | 109 | 0 | 108 | 295.4567 | -50 | 1 | 52 | 0 | 53 | 261.7988 | -25 | | 1
1 | 25
26 | 0 | 24
25 | 283.3835
283.5976 | -81
-87 | 1
1 | 110
111 | 0 | 109
110 | 295.5320
295.5996 | 25
42 | 1
1 | 53
54 | 0 | 54
55 | 261.4626 | -26 | | 1 | 27 | 0 | 26 | 283.8127 | -67 | ì | 112 | 0 | 111 | 295.6639 | 45 | 1 | 55 | 0 | 56 | 261.1249
260.7838 | -27
-49 | | ī | 28 | 0 | 27 | 284.0252 | -56 | ī | 113 | Õ | 112 | 295.7189 | -27 | î | 56 | Õ | 57 | 260.4470 | -13 | | 1 | 29 | 0 | 28 | 284.2392 | -15 | 1 | 114 | 0 | 113 | 295.7825 | 7 | 1 | 57 | 0 | 58 | 260.1039 | -26 | | 1 | 39 | 0 | 38 | 286.2456 | -20 | 1 | 115 | 0 | 114 | 295.8360 | -43 | 1 | 58 | 0 | 59 | 259.7553 | -80 | | 1
1 | 40
41 | 0 | 39
40 | 286.4419
286.6339 | 28
50 | 1
1 | 116
117 | 0 | 115
116 | 295.9007
295.9536 | 40 | 1 | 59 | 0 | 60 | 259.4077 | -109 | | 1 | 42 | 0 | 41 | 286.8216 | 45 | i | 118 | 0 | 117 | 295.9336 | 22
-7 | l
l | 61
62 | 0 | 62
63 | 258.7250
258.3719 | -0
-42 | | i | 43 | 0 | 42 | 287.0106 | 70 | î | 119 | ŏ | 118 | 296.0573 | 23 | î | 63 | ő | 64 | 258.0159 | -98 | | l | 44 | 0 | 43 | 287.1997 | 113 | 1 | 120 | 0 | 119 | 296.1062 | 23 | 1 | 64 | 0 | 65 | 257.6615 | -126 | | 1 | 45 | 0 | 44 | 287.3796 | 81 | l | 121 | 0 | 120 | 296.1480 | -30 | 1 | 65 | 0 | 66 | 257.3097 | -113 | | 1
1 | 46
47 | 0 | 45
46 | 287.5561
287.7357 | 32
30 | 1
1 | 122
123 | 0 | 121
122 | 296,1925
296,2381 | -37
-13 | l | 66 | 0 | 67 | 256.9500 | -164 | | 1 | 48 | 0 | 47 | 287.7337 | 30 | ì | 123 | 0 | 122 | 296.2381 | -13
-81 | 1
2 | 67
63 | 0
1 | 68
62 | 256.5911
287.7972 | -194
43 | | ī | 49 | 0 | 48 | 288.0824 | -47 | i | 125 | 0 | 124 | 296.3182 | -20 | 2 | 64 | i | 63 | 287.9453 | 24 | | I | 50 | 0 | 49 | 288.2589 | -29 | 1 | 126 | 0 | 125 | 296.3524 | -53 | 2 | 65 | 1 | 64 | 288.0919 | 7 | | 1 | 51 | 0 | 50 | 288.4366 | 20 | 1 | 127 | 0 | 126 | 296.3902 | -31 | 2 | 66 | 1 | 65 | 288.2399 | 22 | | l
l | 52
53 | 0 | 51
52 | 288.6004
288.7692 | -55
-62 | 1
1 | 128
129 | 0 | 127 | 296.4247 | -24 | 2 | 67 | 1 | 66 | 288.3803 | -23 | | 1 | 54 | 0 | 53 | 288.9332 | -02
-100 | 1 | 130 | 0 | 128
129 | 296.4557
296.4861 | -32
-26 | 2 | 68
69 | 1
1 | 67
68 | 288.5187
288.6600 | -71
-73 | | l | 55 | 0 | 54 | 289.1086 | -7 | i | 131 | Ö | 130 | 296.5181 | 15 | 2 | 70 | i | 69 | 288,7976 | -94 | | 1 | 56 | 0 | 55 | 289.2688 | -50 | 1 | 132 | 0 | 131 | 296.5471 | 45 | 2 | 71 | 1 | 70 | 288.9332 | -118 | | 1 | 58 | 0 | 57 | 289.5959 | -14 | l | 133 | 0 | 132 | 296.5714 | 48 | 2 | 72 | 1 | 71 | 289.0749 | -65 | | 1
1 | 59
60 | 0 | 58
59 | 289.7549
289.9125 | -18
-17 | 1 | 134
135 | 0 | 133
134 | 296.5913 | 26 | 2 | 74
76 | 1 | 73 | 289.3425 | -63 | | ì | 62 | 0 | 61 | 290.2276 | 37 | 1 | 136 | 0 | 135 | 296.6074
296.6295 | -15
24 | 2 | 75
76 | 1
1 | 74
75 | 289.4791
289.6087 | -8
-5 | | 1 | 63 | 0 | 62 | 290.3752 | -10 | ì | 137 | 0 | 136 | 296.6462 | 29 | 2 | 77 | ì | 76 | 289.7362 | -7 | | 1 | 64 | 0 | 63 | 290.5265 | -3 | 1 | 11 | 0 | 12 | 274.3250 | 83 | 2 | 78 | 1 | 77 | 289.8557 | -72 | | I, | 65 | 0 | 64 | 290.6757 | 0 | l | 12 | 0 | 13 | 274.0472 | 56 | 2 | 79 | 1 | 78 | 289.9862 | -8 | | 1
1 | 66
68 | 0 | 65
67 | 290.8249
291.1194 | 22
77 | 1
1 | 13 | 0 | 14 | 273.7711 | 62 | 2 | 80 | l | 79 | 290.1042 | -53 | | i | 69 | 0 | 68 | 291.1194 | 73 | í | 14
15 | 0 | 15
16 | 273.4951
273.2081 | 85
13 | 2 | 81
82 | 1
1 | 80
81 | 290.2276
290.3474 | -26
-18 | | 1 | 70 | 0 | 69 | 291.4021 | 85 | ì | 16 | 0 | 17 | 272.9327 | 71 | 2 | 83 | 1 | 82 | 290.4711 | 47 | | 1 | 73 | 0 | 72 | 291.8083 | 49 | l | 17 | 0 | 18 | 272.6481 | 53 | 2 | 84 | 1 | 83 | 290.5859 | 40 | | l | 74 | 0 | 73 | 291.9414 | 50 | 1 | 18 | 0 | 19 | 272.3635 | 51 | 2 | 85 | 1 | 84 | 290.7039 | 83 | | 1
1 | 76
77 | 0 | 75
76 | 292.2027
292.3280 | 54
30 | l
l | 20 | 0 | 21 | 271.7834 | -18 | 2 | 86 | 1 | 85 | 290.8107 | 31 | | ì | 78 | 0 | 77 | 292.3280 | 85 | l | 21
22 | 0 | 22
23 | 271.5001
271.2027 | 38
-31 | 2 | 87
88 | 1
1 | 86
87 | 290.9193
291.0251 | 15
-12 | | 1 | 79 | 0 | 78 | 292.5771 | 19 | i | 23 | 0 | 24 | 270.9234 | 95 | 2 | 89 | ì | 88 | 291.0231 | 43 | | 1 | 80 | 0 | 79 | 292.6949 | -27 | 1 | 24 | 0 | 25 | 270.6244 | 40 | 2 | 90 | Ī | 89 | 291.2435 | 56 | | 1 | 81 | 0 | 80 | 292.8200 | 18 | 1 | 25 | 0 | 26 | 270.3276 | 21 | 2 | 91 | 1 | 90 | 291.3406 | -4 | | l
l | 82
83 | 0
0 | 81
82 | 292.9451 | 80 | l
1 | 26 | 0 | 27 | 270.0289 | -l | 2 | 92 | 1 | 91 | 291.4485 | 61 | | 1 | 84 | 0 | 82
83 | 293.0555
293.1693 | 13
-2 | 1
1 | 27
28 | 0 | 28
29 | 269.7395
269.4353 | 85
38 | 2 2 | 93
95 | 1
1 | 92
94 | 291.5488 | 68
51 | | i | 85 | 0 | 84 | 293.2839 | 10 | 1 | 29 | 0 | 30 | 269.4333 | 3 | 2 | 95
96 | 1 | 94
95 | 291.7410
291.8380 | 51
78 | | 1 | 86 | 0 | 85 | 293.3956 | 9 | i | 30 | 0 | 31 | 268.8242 | -39 | 2 | 97 | ì | 96 | 291.9271 | 44 | | 1 | 87 | 0 | 86 | 293.5013 | -32 | 1 | 31 | 0 | 32 | 268.5159 | -83 | 2 | 98 | ì | 97 | 292.0134 | 0 | | ì | 88 | 0 | 87 | 293.6054 | -73 | 1 | 32 | 0 | 33 | 268.2211 | 23 | 2 | 99 | 1 | 98 | 292.0990 | -33 | | 1
1 | 89
90 | 0 | 88
89 | 293.7153
293.8201 | -36
-34 | 1
1 | 33
34 | 0 | 34 | 267.9096 | -22 | 2 | 100 | 1 | 99 | 292.1884 | -10 | | ì | 91 | 0 | 90 | 293.8201 | -34
-34 | 1 | 34
35 | 0 | 35
36 | 267.6002
267.2995 | -33
60 | 2 | 102
103 | 1 | 101
102 | 292.3463
292.4356 | -120
-44 | | 1 | 92 | ŏ | 91 | 294.0224 | -45 | ì | 36 | 0 | 37 | 266.9814 | -8 | 2 | 103 | 1 | 102 | 292.4336 | -44
-6 | | 1 | 94 | 0 | 93 | 294.2197 | -36 | 1 | 37 | 0 | 38 | 266.6688 | -5 | 2 | 105 | î | 104 | 292.5986 | 7 | | 1 | 95 | 0 | 94 | 294.3213 | 26 | 1 | 38 | 0 | 39 | 266.3500 | -50 | 2 | 106 | 1 | 105 | 292.6674 | -68 | TABLE 3—Continued | <u>v</u> ′ | J' | v" | J″ | Obs | О-С | v' | J' | v" | J″ | Obs | О-С | v' | J' | v" | J" | Obs | O-C | |------------|------------|--------|------------|----------------------|-------------|-----|------------|--------|------------|----------------------
--------------|--------|------------|-----|------------|----------------------|-------------| | _ | 107 | , | 106 | 202 7414 | 72 | , | <i>(</i> 1 | | 60 | 285.0258 | -108 | 2 | 110 | 2 | 117 | 290,9625 | | | 2
2 | 107
108 | 1
1 | 106
107 | 292.7414
292.8200 | -73
-12 | 3 | 61
62 | 2
2 | 60
61 | 285.0238 | -108
-116 | 3 | 118
119 | 2 | 117
118 | 290.9623 | -4
-28 | | 2 | 108 | 1 | 107 | 292.8200 | -12
-5 | 3 | 63 | 2 | 62 | 285.3394 | -116 | 3 | 120 | 2 | 119 | 291.0650 | 13 | | 2 | 110 | i | 109 | 292.9628 | 18 | 3 | 64 | 2 | 63 | 285.4825 | -8 6 | 3 | 121 | 2 | 120 | 291.1060 | -52 | | 2 | 111 | ì | 110 | 293.0291 | 10 | 3 | 65 | 2 | 64 | 285.6311 | -80 | 3 | 122 | 2 | 121 | 291,1547 | -22 | | 2 | 112 | ì | 111 | 293.0932 | -2 | 3 | 66 | 2 | 65 | 285.7850 | -5 | 3 | 123 | 2 | 122 | 291.1986 | -21 | | 2 | 113 | ī | 112 | 293.1600 | 31 | 3 | 67 | 2 | 66 | 285.9224 | -78 | 3 | 124 | 2 | 123 | 291.2435 | 10 | | 2 | 114 | 1 | 113 | 293.2180 | -4 | 3 | 68 | 2 | 67 | 286.0679 | -52 | 3 | 125 | 2 | 124 | 291.2887 | 62 | | 2 | 115 | 1 | 114 | 293,2839 | 58 | 3 | 69 | 2 | 68 | 286.2177 | 34 | 3 | 126 | 2 | 125 | 291.3247 | 41 | | 2 | 116 | 1 | 115 | 293.3388 | 28 | 3 | 70 | 2 | 69 | 286.3466 | -72 | 3 | 127 | 2 | 126 | 291.3564 | -4 | | 2 | 117 | 1 | 116 | 293.3956 | 35 | 3 | 71 | 2 | 70 | 286.4887 | -28 | 3 | 128 | 2 | 127 | 291.3891 | -19 | | 2 | 118 | 1 | 117 | 293.4462 | 0 | 3 | 72 | 2 | 71 | 286.6245 | -31 | 4 | 91 | 3 | 90 | 286.5019 | -162 | | 2 | 119 | 1 | 118 | 293.5013 | 29 | 3 | 74 | 2 | 73 | 286.8910 | -34 | 4 | 92 | 3 | 91 | 286.6105 | -78 | | 2 | 120 | 1 | 119 | 293.5497 | 8 | 3 | 75 | 2 | 74 | 287.0234 | -19 | 4 | 93 | 3 | 92 | 286.7036 | -130 | | 2 | 121 | 1 | 120 | 293.5938 | -36 | 3 | 76 | 2 | 75 | 287,1577 | 34 | 4 | 94 | 3 | 93 | 286.8074 | -57 | | 2 | 122 | 1 | 121 | 293.6460 | 20 | 3 | 78 | 2 | 77 | 287.4118 | 46 | 4 | 95 | 3 | 94 | 286,9062 | -15 | | 2 | 123 | 1 | 122 | 293.6876 | -11 | 3 | 79 | 2 | 78 | 287.5393 | 82 | 4 | 96 | 3 | 95 | 287.0003 | -2 | | 2 | 124 | 1 | 123 | 293.7298 | -17 | 3 | 80 | 2 | 79 | 287.6611 | 79 | 4 | 97 | 3 | 96 | 287.0907 | -6 | | 2 | 125 | 1 | 124 | 293.7768 | 43 | 3 | 81 | 2 | 80 | 287.7830 | 95 | 4 | 98 | 3 | 97 | 287.1854 | 50 | | 2 | 126 | 1 | 125 | 293.8069 | -4 6 | 3 | 82 | 2 | 81 | 287.8972 | 51 | 4 | 100 | 3 | 99 | 287.3609 | 83 | | 2 | 127 | 1 | 126 | 293.8495 | 9 | 3 | 83 | 2 | 82 | 288.0138 | 49 | 4 | 101 | 3 | 100 | 287.4401 | 42 | | 2 | 128 | 1 | 127 | 293.8802 | -35 | 3 | 84 | 2
2 | 83
84 | 288.1248 | 8 | 4
4 | 102 | 3 | 101 | 287,5220
287,6039 | 47
72 | | 2 | 129
130 | 1 | 128
129 | 293.9130
293.9389 | -40
-94 | 3 | 85 | 2 | 85 | 288.2399
288.3474 | 27
-14 | 4 | 103
104 | 3 | 102
103 | 287.6039 | 8 | | 2
2 | 131 | 1
1 | 130 | 293.9369 | -94
-27 | 3 | 86
87 | 2 | 86 | 288.4509 | -14
-75 | 4 | 104 | 3 | 103 | 287.7533 | 34 | | 2 | 147 | 1 | 146 | 294.1844 | 62 | 3 | 88 | 2 | 87 | 288.5693 | 29 | 4 | 106 | 3 | 105 | 287.7333 | 66 | | 3 | 33 | 2 | 32 | 280.0533 | -137 | 3 | 89 | 2 | 88 | 288.6766 | 40 | 4 | 107 | 3 | 106 | 287.8972 | 18 | | 3 | 34 | 2 | 33 | 280.2544 | -124 | 3 | 90 | 2 | 89 | 288.7840 | 70 | 4 | 108 | 3 | 107 | 287.9626 | -26 | | 3 | 35 | 2 | 34 | 280.4579 | -69 | 3 | 91 | 2 | 90 | 288.8815 | 19 | 4 | 109 | 3 | 108 | 288.0262 | -68 | | 3 | 36 | 2 | 35 | 280.6585 | -29 | 3 | 92 | 2 | 91 | 288.9880 | 77 | 4 | 110 | 3 | 109 | 288.0919 | -71 | | 3 | 37 | 2 | 36 | 280.8600 | 38 | 3 | 93 | 2 | 92 | 289.0890 | 96 | 4 | 111 | 3 | 110 | 288.1537 | -92 | | 3 | 38 | 2 | 37 | 281.0541 | 47 | 3 | 95 | 2 | 94 | 289.2828 | 108 | 4 | 112 | 3 | 111 | 288.2108 | -141 | | 3 | 40 | 2 | 39 | 281.4394 | 85 | 3 | 96 | 2 | 95 | 289.3681 | 25 | 4 | 113 | 3 | 112 | 288.2783 | -66 | | 3 | 41 | 2 | 40 | 281.6297 | 105 | 3 | 97 | 2 | 96 | 289.4684 | 110 | 4 | 114 | 3 | 113 | 288.3355 | -75 | | 3 | 42 | 2 | 41 | 281.8075 | 16 | 3 | 98 | 2 | 97 | 289.5467 | -8 | 4 | 115 | 3 | 114 | 288.3959 | -31 | | 3 | 43 | 2 | 42 | 281.9980 | 71 | 3 | 99 | 2 | 98 | 289,6381 | 25 | 4 | 116 | 3 | 115 | 288.4509 | -21 | | 3 | 44 | 2 | 43 | 282.1877 | 133 | - 3 | 100 | 2 | 99 | 289.7224 | 4 | 4 | 117 | 3 | 116 | 288.5071 | 20 | | 3 | 45 | 2 | 44 | 282.3615 | 54 | 3 | 101 | 2 | 100 | 289.8066 | -0 | 4 | 118 | 3 . | 117 | 288.5547 | -5 | | 3 | 46 | 2 | 45 | 282.5342 | -19 | 3 | 102 | 2 | 101 | 289.8899 | 6 | 4 | 119 | 3 | 118 | 288.6004 | -29 | | 3 | 47 | 2 | 46 | 282.7192 | 47 | 3 | 103 | 2 | 102 | 289.9727 | 24 | 4 | 120 | 3 | 119 | 288.6469 | -24 | | 3 | 48 | 2 | 47 | 282.8936 | 23 | 3 | 104 | 2 | 103 | 290.0513 | 20 | 4 | 121 | 3 | 120 | 288.6928 | -5 | | 3 | 49 | 2 | 48 | 283.0639 | -24 | 3 | 105 | 2 | 104 | 290.1262 | -4 | 4 | 122 | 3 | 121 | 288.7366 | 13 | | 3 | 50 | 2 | 49 | 283.2410 | 12 | 3 | 106 | 2 | 105 | 290.2033 | 13 | 4 | 123 | 3 | 122 | 288.7840 | 88 | | 3 | 51 | 2 2 | 50 | 283.4113 | -2 | 3 | 107 | 2 | 106 | 290.2767 | 12 | 4 | 124 | 3 | 123 | 288.8239 | 107 | | 3 | 52
53 | 2 | 51 | 283.5816 | 1 | 3 | 108 | 2 2 | 107 | 290.3474 | 1 | 4 | 125 | 3 | 124 | 288.8639 | 149 | | 3 | 53
54 | 2 | 52
53 | 283.7484
283.9123 | -16
-45 | 3 | 109
110 | 2 | 108
109 | 290.4214
290.4844 | 42
-9 | 4 | 126
127 | 3 | 125
126 | 288.8947
288.9220 | 119
75 | | 3 | 55 | 2 | 53
54 | 283.9123 | -43
-109 | 3 | 111 | 2 | 110 | 290.4844 | -9
9 | 4 | 127 | 3 | 126 | 288.9220 | 75
34 | | 3 | 56 | 2 | 55 | 284,2392 | -109
-60 | 3 | 111 | 2 | 111 | 290.5324 | -14 | 4 | 128 | 3 | 127 | 288.9738 | 20 | | 3 | 57 | 2 | 56 | 284.4067 | -00
-1 | 3 | 112 | 2 | 112 | 290,6757 | -14
-27 | 4 | 130 | 3 | 128 | 288.9880 | -93 | | 3 | 58 | 2 | 57 | 284.5637 | -31 | 3 | 115 | 2 | 114 | 290.7961 | -27
-17 | 4 | 131 | 3 | 130 | 289.0032 | -93
-176 | | 3 | 59 | 2 | 58 | 284.7192 | -51
-59 | 3 | 116 | 2 | 115 | 290.7501 | -46 | 7 | 131 | 5 | 150 | 207.0032 | -1/0 | | 3 | 60 | 2 | 59 | 284.8689 | -127 | 3 | 117 | 2 | 116 | 290.9060 | -38 | | | | | | | | | | | | | | | ••• | | | _,,,,,,,,, | | | | | | | | Note: a marks pure rotational transitions from Ref. 9. and KCl involved coaddition of 100 and 400 scans, respectively. The spectra were measured using the PC-DECOMP, a program developed by J. Brault at the National Solar Observatory. This program determines the position of individual lines by fitting a Voigt lineshape function to each line. The spectra were calibrated using the measurements of H_2O lines (37) which were also present in our spectra as an impurity. The measurements of strong and unblended Na ^{35}Cl lines are expected to have a precision of about $\pm 0.003~\text{cm}^{-1}$. The uncertainty in the measurements of Na ^{37}Cl lines is expected to be somewhat worse because of the weaker intensity and overlapping from the major isotopomer. The lines of KCl are much weaker in intensity than NaCl, and K ^{37}Cl lines could not be identified in our spectra. The K ^{35}Cl lines are expected to be accurate to, at best, $\pm 0.005~\text{cm}^{-1}$. TABLE~4 Rotational Constants (in $cm^{-1})$ of the $X^1\Sigma^+$ State of NaCl | v | T_{v} | \mathbf{B}_{v} | $10^7 \times D_v$ | |---|----------------|------------------------------|--------------------------| | | | Na ³⁵ Cl | | | 0 | 0.0 | 0.217251914(65) ^a | 3.11524(78) ^b | | 1 | 361.15111(18) | 0.215637451(70) | 3.10850(73) | | 2 | 718.80343(26) | 0.214033094(92) | 3.10109(70) | | 3 | 1072.99164(35) | 0.21243904(16) | 3.09352(69) | | 4 | 1423.75018(43) | 0.21085530(20) | 3.08580(69) | | 5 | 1771.11401(51) | 0.20928199(26) | 3.07808(69) | | 6 | 2115.11780(75) | 0.20771859(35) | 3.06983(70) | | 7 | 2455.7949(11) | 0.20616567(75) | 3.0620(12) | | 8 | 2793.1760(18) | 0.2046246(13) | 3.0560(21) | | | | Na ³⁷ Cl | | | 0 | 0.0 | 0.21260274(44) | 2.9429(78) | | 1 | 357.29437(49) | 0.21104144(22) | 2.9396(72) | | 2 | 711.16501(70) | 0.20948973(52) | 2.9357(70) | | 3 | 1061.6469(15) | 0.2079458(11) | 2.9288(69) | ^aNumbers in parentheses are one standard deviation in last digits. ${}^{b}H_{0}$ =-3.3(15) ×10⁻¹⁵ cm⁻¹. ## RESULTS AND DISCUSSION The vibration–rotation bands of NaCl and KCl are located in the 340-390 and 240-300 cm⁻¹ regions, respectively. The bands form R heads and the rotational structure of bands with high v values is heavily overlapped. Our Loomis–Wood program was very helpful in identifying the connecting R and P lines in each band, particularly in the severely overlapped regions. For KCl essentially all of the lines are blended. The observed spectrum of NaCl consists of eight vibration-rotation bands, 1-0 to 8-7, of Na³⁵Cl spread from 350 to 387 cm⁻¹. The intensity of the higher vibrational bands decreases slowly with increasing vibration and it becomes difficult to identify the bands with v > 8 because of overlapping and the decline in intensity. In contrast to the previous infrared observations of Horiai *et al.* (6) and Uehara *et al.* (7), we have identified a number of *P* lines. The intensity of the Na³⁷Cl isotopomer is about 33% of the intensify of Na³⁵Cl as expected. The rotational lines only in the 1–0, 2–1, and 3–2 bands of Na³⁷Cl were identified and incorporated in the fit. A part of the high-resolution spectrum of the 1–0 band of NaCl near the *R* head is provided in Fig. 1 where some *R* lines of Na³⁵Cl have been marked. The rotational lines belonging to the 1–0, 2–1, 3–2, and 4–3 bands of K³⁵Cl were identified in our high-resolution spectra although band heads up to 12–11 can be clearly seen. A part of the compressed spectrum of KCl showing the band heads is presented in Fig. 2 and a list of observed band heads is provided in Table 1. For technical reasons (the use of a bolometer) the KCl data are relatively poor compared to NaCl and a much less extensive analysis was carried out. As expected for a ${}^{1}\Sigma^{+} - {}^{1}\Sigma^{+}$ transition, each band consists of one R and one P branch. The wavenumbers
of the observed transitions of NaCl and KCl are provided in Tables 2 and 3 respectively. The wavenumbers of NaCl and KCl were fit to the customary energy level expression: $$F_{v}(J) = T_{v} + B_{v}J(J+1) - D_{v}[J(J+1)]^{2} + H_{v}[J(J+1)]^{3}.$$ [1] In the final least-squares fit, approximate weights for the individual rotational lines were chosen on the basis of signal-to-noise ratio as well as freedom from blending. We have also included the previous microwave measurements of Honig *et al.* (5) and Clouser and Gordy (7), with appropriate weights in our final fit. The spectroscopic constants for the $X^{1}\Sigma^{+}$ state of NaCl and KCl obtained from the fit of the combined infrared and microwave data are provided TABLE 5 Rotational Constants (in cm $^{-1}$) of the $X^1\Sigma^+$ State of KCl | v | T_{v} | $\mathbf{B}_{\mathbf{v}}$ | $10^7 \times D_v$ | $10^{14} \times H_v$ | |---|---------------|-----------------------------|-------------------|----------------------| | 0 | 0.0 | 0.12824024(11) ^a | 1.08807(60) | 2.79(22) | | 1 | 277.49756(47) | 0.12745368(11) | 1.08762(57) | 2.41(17) | | 2 | 552.4899(14) | 0.12666947(13) | 1.07926(61) | | | 3 | 825.0724(22) | 0.12590304(50) | 1.08140(66) | | | 4 | 1095.313(21) | 0.1251600(34) | 1.0943(15) | | ^aNumbers in parentheses are one standard deviation in last digits. in Tables 4 and 5, respectively. The molecular constants obtained in this study are in excellent agreement with values reported earlier from infrared studies (5, 7) but are more precise by an order of magnitude because of the inclusion of extensive data with high J and v values along with pure rotational lines. The rotational lines of Na³⁵Cl, Na³⁷Cl, and K³⁵Cl were fit to the Dunham energy level expression (38) $$E(v, J) = \sum Y_{ii}(v + 1/2)^{i}[J(J+1)]^{j}.$$ [2] The Dunham constants (Y_{ij}) for the $X^{1}\Sigma^{+}$ state of NaCl and KCl obtained from these fits are provided in Tables 6 and 7, respectively. In another fit the combined Na³⁵Cl and Na³⁷Cl data sets were fit to the following expression to determine a set of mass-reduced Dunham U_{ij} coefficients and Born-Oppenheimer breakdown constants Δ_{ii} (39, 40): $$E(v, J) = \sum U_{ij} \mu^{-(i+2j)/2} (v + 1/2)^{i} [J(J+1)]^{j} \times \left(1 + \frac{m_{\rm e}}{M_{\rm A}} \Delta_{ij}^{\rm A} + \frac{m_{\rm e}}{M_{\rm B}} \Delta_{ij}^{\rm B}\right).$$ [3] $m_{\rm e}$ is electron mass, $M_{\rm A}$ and $M_{\rm B}$ are masses of two atomic centers A and B, respectively, and $\Delta^{\rm A}_{ij}$ and $\Delta^{\rm B}_{ij}$ are Born–Oppenheimer breakdown constants for atoms A and B. It turns out that no Δ parameters were necessary in our fits. Two fits of the combined NaCl data were obtained. In the first fit all U_{ij} parameters were allowed to vary. The constants obtained from this fit are reported in Table 8 under the column heading "unconstrained." These unconstrained U_{ij} and Y_{ij} values of Tables 6 and 7 are thus empirical coefficients of polynomial fits. According to the Dunham model TABLE 6 Dunham Constants (in cm⁻¹) of the $X^1\Sigma^+$ State of NaCl | Const. | Na ³⁵ Cl | Na ³⁷ Cl | |-------------------------|---------------------|---------------------| | Y ₁₀ | 364.684163(391) | 360.75003(145) | | Y_{20} | -1.776085(189) | -1.736564(796) | | $10^3 \times Y_{30}$ | 5.9369(346) | 5.452(135) | | $10^5 \times Y_{40}$ | -1.231(207) | _ | | \mathbf{Y}_{01} | 0.2180630200(760) | 0.213387680(446) | | $10^{3} \times Y_{11}$ | -1.6247876(562) | -1.571552(262) | | $10^6 \times Y_{21}$ | 5.1543(138) | 4.9912(539) | | $10^7 \times Y_{02}$ | -3.119044(755) | -2.95200(633) | | $10^{10} \times Y_{12}$ | 6.397(206) | 4.019(459) | | $10^{12} \times Y_{22}$ | 8.37(110) | _ | | $10^{14} \times Y_{03}$ | 8.96(288) | _ | ^aNumbers in parentheses are one standard deviation in last digits. TABLE 7 Dunham Constants (in cm $^{-1}$) of the $X^1\Sigma^+$ State of KCl | Const. | K ³⁵ Cl | |-------------------------|--------------------| | Y ₁₀ | 280.07639(490) | | \mathbf{Y}_{20} | -1.31330(338) | | $10^2 \times Y_{30}$ | 1.4490(607) | | Y_{01} | 0.128632129(325) | | $10^{4} \times Y_{11}$ | -7.80915(746) | | $10^6 \times Y_{21}$ | -5.545(473) | | $10^6 \times Y_{31}$ | 1.5963(906) | | $10^{7} \times Y_{02}$ | -1.08779(230) | | $10^{10} \times Y_{12}$ | -9.708(660) | | $10^{10} \times Y_{22}$ | 7.514(216) | | $10^{10} \times Y_{32}$ | -1.2400(391) | | $10^{13} \times Y_{03}$ | 1.47(107) | | $10^{14} \times Y_{13}$ | -1.274(301) | ^aNumbers in parentheses are one standard deviation in last digits. all of the parameters for a power series potential are uniquely determined by the U_{i0} and U_{i1} constants (41, 42). This means that U_{ij} 's with $j \ge 2$ can be expressed in terms of U_{i0} 's and U_{i1} 's. In the second fit, therefore, U_{i0} 's and U_{i1} 's were treated as adjustable parameters with the remaining U_{ij} 's fixed to the values satisfying these constraints. The constants obtained from this fit are also reported in Table 8 under the column heading "constrained." There is no doubt that the Dunham constants reproduce the transition wavenumbers over the range of v and J values observed. It is well known, however, that this model is inadequate for extrapolating beyond the range of experimental measurements. The full advantage of high-quality, high-resolution spectra is achieved when the extracted spectroscopic information can also be applied in predicting the spectra well beyond the range of experimental measurements. The inherent failure of the Dunham model has led to the development of a more sophisticated approach of fitting observed measurements directly to the eigenvalues of the Schrödinger equation containing a parameterized potential energy function (43-46). The Born–Oppenheimer potential $U^{\rm BO}$ is represented by $$U^{\text{BO}} = D_{\text{e}} \{ 1 - \exp[-\beta(R)] \}^{2} / \{ 1 - \exp[-\beta(\infty)] \}^{2},$$ [4] where $$\beta(R) = z \sum \beta_i z^i,$$ [5] $$\beta(\infty) = \sum \beta_i, \tag{6}$$ and $$z = (R - R_e)/(R + R_e).$$ [7] We call this approach to data reduction the parameterized potential model and the method is described in more detail in several previous publications (45, 46). This fit provides a set of β_i parameters which describe (Eq. [4]) the internuclear potential function (45, 46). These parameters for NaCl are provided in Table 9. Only statistically determined parameters are listed in this table along with 1σ uncertainties. Our measurements of NaCl rotational lines are in good agreement with the measurements of Horiai *et al.* (6) and Uehara *et al.* (7) where they overlap. The present set of Dunham constants for Na³⁵Cl and Na³⁷Cl (Table 6) are also in excellent agreement with the previous values (6, TABLE 8 Mass Reduced Dunham Constants (in cm $^{-1}$) for the $X^1\Sigma^+$ State of NaCl | Const. | Unconstrained | Constrained | |-------------------------|-----------------|------------------| | U_{10} | 1358.20379(145) | 1358.20342(153) | | U_{20} | -24.63286(265) | -24.63228(283) | | U_{30} | 0.305575(183) | 0.305157(192) | | $10^3 \times U_{40}$ | -2.162(411) | -2.054(420) | | U_{01} | 3.02468394(106) | 3.024682410(486) | | $10^2 \times U_{11}$ | -8.393156(300) | -8.392648(169) | | $10^4 \times U_{21}$ | 9.8831(280) | 9.8594(107) | | $10^5 \times U_{02}$ | -6.00196(146) | -6.0003 | | $10^{7} \times U_{12}$ | 4.801(152) | 4.8324 | | $10^8 \times U_{22}$ | 2.344(312) | 2.5841 | | $10^{10} \times U_{32}$ | | -2.7211 | | $10^{11} \times U_{03}$ | 11.61(791) | -9.1179 | | $10^{11} \times U_{13}$ | | 2.5565 | | $10^{13} \times U_{23}$ | | -1.5197 | | $10^{15} \times U_{04}$ | | -4.8462 | | $10^{16} \times U_{14}$ | | 5.4755 | | $10^{17} \times U_{24}$ | | 3.4469 | | $10^{20} \times U_{05}$ | | 8.7537 | | $10^{20} \times U_{15}$ | | 1.6829 | | $10^{24} \times U_{06}$ | | 4.0752 | | $10^{24} \times U_{16}$ | | 1.3648 | | $10^{28} \times U_{07}$ | | 2.1918 | | $10^{32} \times U_{08}$ | | 1.1062 | ^aNumbers in parentheses are one standard deviation in last digits. TABLE 9 Internuclear Potential Energy Parameters (in cm $^{-1}$) for the $X^{1}\Sigma^{+}$ State of NaCl | Parameter | Value | Uncertainty | |----------------------------------|-------------|-----------------------| | D _e /cm ⁻¹ | 34120.0ª | _ | | R _e ∕Å | 2.360796042 | 2.15×10^{-7} | | β_{o} | 4.224459 | 1.71×10^{-3} | | β_1 | 0.150329 | 3.86×10 ⁻³ | | $oldsymbol{eta_2}$ | 0.399367 | 4.87×10^{-3} | | β_3 | 7.922000 | 5.91×10 ⁻² | | β_4 | -5.573758 | 5.42×10 ⁻¹ | | M(Na)/u | 22.989768 | | | M(35Cl)/u | 34.968853 | | | M(³⁷ Cl)/u | 36.965903 | | *Fixed to value in Ref. 47. 7). Because of our more extensive data set including bands up to 8-7, however, the present constants for Na 35 Cl are more precise than the previous values (5, 7). A comparison of present band head positions of KCl with those reported by Uehara et al. (13) indicates that on average their values are about 0.07 cm⁻¹ higher than the present measurements. At this point it is worth mentioning that Uehara et al.'s spectra were recorded at a resolution of 0.1 cm⁻¹ whereas the present spectra were recorded at 0.01 cm⁻¹ resolution. Thus the present molecular constants of KCl in Tables 5 and 7 are much more precise than previous values of Uehara et al. (13). For example, the present values of Y_{10} , Y_{20} , and Y_{01} constants are 280.0764(49), -1.3133(34), and 0.12863213(33) cm⁻¹, respectively, compared to the corresponding values of 279.963(22), -1.2306(83), and 0.128631(52) cm⁻¹, respectively, obtained by Uehara et al. (13). ## CONCLUSION The infrared emission spectra of NaCl and KCl have been observed using a Fourier transform spectrometer. The vibration–rotation spectra of a number of bands of Na³⁵Cl, Na³⁷Cl, and K³⁵Cl have been measured and the line positions fitted to extract molecular constants for individual vibrational levels and Dunham
coefficients. The lines of Na³⁵Cl and Na³⁷Cl were combined in another fit to determine the mass-reduced Dunham parameters U_{ij} . A second set of massreduced constants was also obtained using the same data set but with only the U_{i0} 's and U_{i1} 's treated as variables and the rest of the U_{ij} 's were fixed by constraints imposed by the Dunham model. The lines of NaCl have also been fit with a parameterized potential model to extract a potential energy function. ## ACKNOWLEDGMENTS We thank Combustion Research Facility of the Sandia National Laboratories for financial support. Support was also provided by the NASA laboratory astrophysics program and the Canadian Natural Sciences and Engineering Research Council (NSERC). #### REFERENCES - P. Davidovits and McFadden, "Alkali Halide Vapors," Academic Press, New York, 1979. - H. Levi, Inaugural dissertation, Friedrich-Wilhelms University, Berlin, 1934 - 3. H. Beutlier and H. Levi, Z. Phys. Chem. B 24, 263-281 (1934). - 4. S. A. Rice and W. Klemperer, J. Chem. Phys. 27, 573-579 (1957). - A. Honig, M. Mandel, M. L. Stitch, and C. H. Townes, *Phys. Rev.* 96, 629–642 (1954). - K. Horiai, T. Fujimoto, K. Nakagawa, and H. Uehara, *Chem. Phys. Lett.* 147, 133–136 (1988). - H. Uehara, K. Horiai, K. Nakagawa, and T. Fujimoto, *J. Mol. Spectrosc.* 134, 98–105 (1989). - 8. T. P. Martin and H. Schaber, J. Chem. Phys. 68, 4299-4303 (1978). - 9. P. L. Clouser and W. Gordy, *Phys. Rev.* **134**, 863–870 (1978). - P. Davidovits and D. C. Brodhead, J. Chem. Phys. 46, 2968–2973 (1967). - R. C. Oldenborg, J. L. Gole, and R. N. Zare, J. Chem. Phys. 60, 4032–4042 (1974). - K. J. Kaufmann, J. L. Kinsey, H. B. Palmer, and A. Tewarson, J. Chem. Phys. 61, 1865–1867 (1974). - H. Uehara, K. Horiai, T. Konno, and K. Miura, *Chem. Phys. Lett.* 169, 599–602 (1990). - Z. K. Ismail, R. H. Hauge, and J. L. Margrave, J. Mol. Spectrosc. 54, 402–411 (1975). - R. F. Barrow and A. D. Caunt, Proc. R. Soc., Ser. A. 219, 120–140 (1953) - J. A. Silver, D. R. Worsnop, A. Freedman, and C. E. Kolb, J. Chem. Phys. 84, 4378–4384 (1986). - S. E. Novick, P. L. Jones, T. J. Mulloney, and W. C. Lineberger, J. Chem. Phys. 70, 2210–2214 (1979). - 18. E. S. Rittner, J. Chem. Phys. 19, 1030-1035 (1951). - P. Brumer and M. Karplus, J. Chem. Phys. 58, 3903–3918 (1973); J. Chem. Phys. 64, 5165–5178 (1976). - R. L. Matcha and S. C. King, J. Am. Chem. Soc. 98, 3415–3420 (1976); J. Am. Chem. Soc. 98, 3420–3432 (1976). - 21. A. Laaksonen and E. Clementi, Mol. Phys. 56, 495-524 (1985). - 22. F. Spiegelmann and J. P. Malrieu, J. Phys. B. 17, 1259-1279 (1984). - 23. D. G. Bounds and A. Hinchliffe, *Chem. Phys. Lett.* **86,** 1–6 (1982). - 24. Y. von Bergen, R. von Bergen, and B. Linder, *Theoret. Chim. Acta* 63, 317–322 (1983). - 25. L. Adamowicz and R. Bartlett, J. Chem. Phys. 88, 313-316 (1988). - S. C. Leasure, T. P. Martin, and G. G. Balint-Kurti, J. Chem. Phys. 80, 1186–1200 (1984). - S. C. Leasure, T. P. Martin, and G. G. Balint-Kurti, *Chem. Phys. Lett.* 96, 447–452 (1983). - P. K. Swaminathan, A. Laaksonen, G. Corongiu, and E. Clementi, *J. Chem. Phys.* 84, 867–871 (1986). - H. Nakatsuji, M., Hada, and T. Yonezawa, *Chem. Phys. Lett.* 95, 573–578 (1983). - K. B. Hathaway and J. A. Krumhausl, J. Chem. Phys. 63, 4313–4316 (1975). - 31. R. Hoffmann, J. Chem. Phys. 39, 1397-1412 (1963). - D. G. Bounds and A. Hinchliffe, Chem. Phys. Lett. 54, 289–291 (1978). - 33. G. Meyer and J. P. Toennies, J. Chem. Phys. 75, 2753-2761 (1981). - 34. Y. Zeiri and G. G. Balint-Kurti, J. Mol. Spectrosc. 99, 1-24 (1983). - 35. S. L. Davis, B. Pouilly, and M. H. Alexander, *Chem. Phys.* **91**, 81–88 (1984). - 36. J. Cernicharo and M. Guélin, Astron. Astrophys. 183, L10–L12 (1987). - 37. J. W. C. Johns, J. Opt. Soc. Am. B 2, 1340-1354 (1985). - 38. J. L. Dunham, Phys. Rev. 41, 721-731 (1932). - 39. J. K. G. Watson, J. Mol. Spectrosc. 45, 99-113 (1973). - 40. J. K. G. Watson, J. Mol. Spectrosc. 80, 411–421 (1980). - 41. E. Tiemann and J. F. Ogilvie, J. Mol. Spectrosc. 165, 377–392 (1994). - 42. J. F. Ogilvie, J. Mol. Spectrosc. 180, 193-195 (1996). - 43. J. A. Coxon and P. Hajigeorgiou, Can. J. Phys. **70**, 40–54 (1992). - 44. J. A. Coxon and P. Hajigeorgiou, Chem. Phys. 167, 327-340 (1992). - J. M. Campbell, M. Dulick, D. Klapstein, J. B. White, and P. F. Bernath, J. Chem. Phys. 99, 8379–8384 (1993). - J. M. Campbell, D. Klapstein, M. Dulick, P. F. Bernath, and L. Wallace, Astrophys. J. Suppl. 101, 237–254 (1995). - K. P. Huber and G. Herzberg, "Constants of Diatomic Molecules," Van Nostrand, New York, 1979.