Fourier Transform Infrared Emission Spectroscopy of the $[6.7]^2\Sigma^+$ – $X^2\Sigma^+$ System of HfN R. S. Ram and P. F. Bernath¹ Department of Chemistry, University of Arizona, Tucson, Arizona 85721 Received March 11, 1997; in revised form May 20, 1997 The electronic emission spectrum of HfN has been observed in the near infrared using a Fourier transform spectrometer. HfN molecules were excited in a hafnium hollow cathode lamp operated with neon gas and a trace of nitrogen. The bands located near 5746, 5802, 6668, and 6715 cm⁻¹ have been assigned as the 0–1, 1–2, 0–0, and 1–1 bands of the $[6.7]^2\Sigma^+ - X^2\Sigma^+$ transition. The rotational analysis of these bands has been performed and the equilibrium molecular constants for the lower electronic state of ¹⁸⁰HfN are $\omega_e = 932.7164(15)$ cm⁻¹, $\omega_e x_e = 4.41299(65)$ cm⁻¹, $B_e = 0.436217(18)$ cm⁻¹, $\alpha_e = 0.002659(11)$ cm⁻¹, and $r_e = 1.724678(36)$ Å. We believe that the lower state of this transition is the ground electronic state but more experimental and theoretical work is necessary to prove this. Our work represents the first experimental observation of an electronic transition of HfN. © 1997 Academic Press ### INTRODUCTION Transition-metal-containing molecules are of theoretical (1-4) and chemical (5-7) importance and their study provides important information needed for the characterization of catalytic processes (6, 7). The spectroscopic study of these molecules also provides insight into chemical bonding in simple metal-containing systems. Transition metal nitrides may also be of astrophysical importance since many transition metal elements have been detected in atomic and molecular form (oxides and hydrides) in the atmospheres of cool M- and S-type stars (8-13). The study of simple transition metal nitrides might give information on the abundance of nitrogen in the atmospheres of cool stars. Experimental data on transition metal nitrides are also necessary to test ab initio calculations and to encourage theoreticians to carry out new calculations. Only a very limited number of ab initio calculations are available for transition metal nitrides. In recent years considerable progress has been made in the experimental and theoretical studies of transition metal nitrides and several new nitride molecules such as ScN (14), YN (15), WN (16), ReN (17), RhN (18), PtN (19, 20), IrN (21), and CrN (22) have been discovered. Theoretical calculations for ScN (23), YN (24), TiN (25–27), VN (27, 28), and CrN (27) have also been reported. In the IVB transition metal nitride family, the electronic spectra of TiN (29–36) and ZrN (37–40) are known but no reliable information is available for HfN. TiN and ZrN have $^2\Sigma^+$ ground states in agreement with theoretical calculations (for TiN). The infrared spectra of TiN, ZrN, and HfN have been stud- ied by DeVore *et al.* (41) but their results for TiN and ZrN have proved to be erroneous and the HfN results are also in doubt. In general, the electronic spectra of transition metal nitrides, particularly in the visible region, are expected to be very complex because of a high density of states complicated by high spin multiplicities and large spin—orbit intervals. These problems are the result of the large number of unpaired d electrons. Many of the electronic states and spin components interact with each other causing extensive perturbations. The infrared electronic transitions of transition metal nitrides are expected to be relatively simple because of the smaller density of states at lower energies. In the present paper we report on the discovery of an infrared transition of HfN recorded by high-resolution Fourier transform emission spectroscopy. As expected, this ${}^2\Sigma^+ - {}^2\Sigma^+$ transition is free from local perturbations. The lower state of this transition is most probably the ground state of HfN, although more experimental data or some theoretical calculations are needed to make a definite assignment. The excited ${}^2\Sigma^+$ state probably arises from a lowlying configuration and is analogous to the low-lying $A^1\Sigma^+$ state in ScN (14). The $A^1\Sigma^+ - X^1\Sigma^+$ transition of ScN near 5820 cm⁻¹ thus corresponds to the $[6.7]^2\Sigma^+ - X^2\Sigma^+$ transition of HfN. ### **EXPERIMENTAL** HfN was made in a hafnium hollow cathode lamp which was prepared by inserting a 1-mm-thick cylindrical foil of hafnium metal into a $\frac{1}{4}$ " hole in a copper block. The foil was tightly pressed against the inner wall to provide a close and uniform contact between the hafnium metal and the copper ¹ Also at Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1. **FIG. 1.** A compressed portion of the 0-0 and 1-1 bands of HfN. block. The emission from the lamp was observed with the 1-m Fourier transform spectrometer associated with the McMath-Pierce Solar Telescope of the National Solar Observatory. Initially we planned to record the HfN transitions in the 10 000-26 000 cm⁻¹ interval corresponding to the $A^2\Pi$ - $X^2\Sigma^+$ and $B^2\Sigma^+ - X^2\Sigma^+$ transitions of TiN and ZrN. A mixture of 2.5 Torr of Ne and about 6 mTorr of N2 was discharged with a current at 600 mA at 350 V. Several new bands were observed in the 17 000-26 000 cm⁻¹ region with a line spacing appropriate for HfO or HfN. To identify the carrier of these bands, a trace of O2 was added instead of N₂. The new bands disappeared entirely and the wellknown bands of HfO (42) were seen instead. This experiment suggested that the new bands were due to HfN. Next the 3000-9500 cm⁻¹ region was examined and a group of HfN bands appeared in between 5500 and 6800 cm⁻¹. Again the carrier of these bands was confirmed by replacing N₂ with O_2 and noting the appearance of the $b^3\Pi - a^3\Delta$ transition of HfO (43) in the 6900-8000 cm⁻¹ region. A partial pressure of about 4 to 6 mTorr of N₂ gave the most suitable HfN spectra since higher pressures of N₂ result in strong N₂ emission. The spectra from 3500 to 26 000 cm⁻¹ were recorded in three parts. The 3500–9200 cm⁻¹ spectral region was recorded using InSb detectors and silicon filters with 10 scans co-added in about 70 min of integration. The 10 000–19 000 cm⁻¹ region was recorded with red pass filters and silicon diode detectors while the 17 000–26 000 cm⁻¹ region was recorded with CuSO₄ filters and silicon diode detectors. The spectrometer resolution was set at 0.02 cm⁻¹ in all experiments. The bands in the 17 000–26 000 cm⁻¹ region are very complex because of overlapping lines and extensive perturbations. Improved spectra will be recorded in the near future and in this paper we will report only on the infrared bands. **FIG. 2.** An expanded portion of the 0-0 band of HfN near the R heads. In addition to the HfN bands, the observed spectra also contained Hf and Ne atomic lines as well as N_2 molecular lines. The spectra were calibrated using the measurements of Ne atomic lines made by Palmer and Engleman (44). The absolute accuracy of the wavenumber scale is expected to be better than ± 0.002 cm⁻¹. The strong lines of HfN appear with a typical signal to noise ratio of 15:1 and have a typical linewidth of about 0.04 cm⁻¹. The precision of measurements of strong and unblended HfN lines is expected to be better than ± 0.003 cm⁻¹. ### OBSERVATION AND ANALYSIS The spectral line positions were extracted from the observed spectra using a data reduction program called PC-DECOMP developed by J. Brault. The peak positions were determined by fitting a Voigt lineshape function to each spectral feature. The branches in the different sub-bands were sorted using a color Loomis—Wood program running on a PC computer. The new infrared bands of HfN are located in the 5500- **FIG. 3.** A portion of the 0-0 band of HfN with some high JP lines of 178 HfN and 180 HfN marked. TABLE 1 Observed Wavenumbers (in cm $^{-1}$) of the [6.7] $^2\Sigma^+$ – $X^2\Sigma^+$ System of ^{178}HfN | | | | | 0-0 I | Band | | | | 1-1 Band | | | | | | | | |--------------|----------------------|----------|----------------------|----------|----------------------|------------|----------------------|------------|----------------------|----------|----------------------|----------|----------------------|---------|----------------------|----------| | J | Ree | о-с | Pee | о-с | Rff | о-с | Pff | о-с | Ree | о-с | Pee | о-с | Rff | о-с | Pff | о-с | | 1.5 | | | | | 6656.871 | 7 | | | | | | | | | | | | 2.5 | 6657.597 | 5 | 6653.249 | 3 | 6657.482 | -1 | | | | | | | | | | | | 3.5 | 6658.437 | 3 | 6652.427 | 10 | 6658.072 | 6 | 6650.717 | 2 | 6704.237 | -14 | | | | | 6696.281 | 4 | | 4.5 | 6659.239 | -3 | | _ | 6658.621 | 7 | 6649.603 | 11 | 6705.078 | -10 | 6697.386 | 8 | | | 6695.120 | -1 | | 5.5 | 6660.006 | -8 | 6650.663 | 8 | 6659.127 | 0 | 6648.448 | 12 | 6705.889 | 0 | 6696.515
6695.626 | -5
-1 | | | 6693.929
6692.686 | 1
-13 | | 6.5
7.5 | 6660.756
6661.468 | 4
14 | 6649.731
6648.760 | 8
6 | 6659.609
6660.046 | 4
-2 | | | 6707.382 | -3 | 6694.695 | -3 | | | 6691.452 | | | 8.5 | 6662.123 | 2 | 6647.759 | 8 | 6660.475 | 19 | 6644.765 | 12 | 6708.073 | -8 | 6693.732 | -2 | 6705.642 | -10 | 6690.141 | 3 | | 9.5 | 6662.754 | 1 | 6646.722 | 9 | 6660.830 | 1 | | | 6708.735 | -4 | 6692.736 | 1 | 6705.968 | -7 | 6688.806 | 4 | | 10.5 | 6663.353 | 3 | 6645.652 | 13 | 6661.176 | 9 | | | 6709.370 | 6 | 6691.698 | -2 | 6706.258 | -5 | 6687.436 | 4 | | 11.5 | 6663.915 | 2 | 6644.540 | 9 | 6661.468 | -1 | 6640.766 | 10 | 6709.949 | -4 | 6690.632 | 1 | 6706.509 | -5 | 6686.039 | 13 | | 12.5 | 6664.441 | 1 | 6643.401 | 12 | 6661.741 | 5 | | | 6710.499 | -8 | 6689.529 | 4 | 6706.725 | -5 | 6684.590 | 6 | | 13.5 | 6664.934 | 1 | | | 6661.972 | 3 | 6637.928 | 11 | 6711.020 | -4 | 6688.390 | 5 | 6706.905 | -4 | 6683.117 | 10 | | 14.5 | 6665.393 | 3 | 6641.008 | 8 | 6662.166 | -1 | 6636.442 | -4 | 6711.506 | -1 | 6687.216 | 6 | 6707.050 | -3 |
6681.616 | 22 | | 15.5 | 6665.815 | 2 | CC20 4C4 | | 6662.328 | -1 | 6634.929 | -11 | 6711.948 | -6 | 6686.002 | 3 | 6707.154 | -7 | 6679 472 | 12 | | 16.5 | 6666.202
6666.555 | 0
0 | 6638.464 | -8 | | | 6633.392 | - 6 | 6712.359
6712.736 | -7
-7 | 6684.761
6683.476 | 8 | 6707.227
6707.268 | -5
0 | 6678.473
6676.864 | 23 | | 17.5
18.5 | 6666.872 | -2 | 6635.813 | 7 | 6662.618 | 12 | 6630.209 | -3 | 6713.080 | -5 | 0003.470 | 3 | 6707.268 | 0 | 6675.200 | 14 | | 19.5 | 6667.157 | 0 | 6634.417 | -3 | 0002.010 | 12 | 6628.571 | 5 | 6713.386 | -4 | 6680.814 | 7 | 6707.227 | -4 | 0075.200 | | | 20.5 | 6667.406 | 0 | 6632.995 | -6 | | | 6626.882 | -4 | 6713.655 | -6 | | | 6707.154 | -5 | | | | 21.5 | 6667.619 | -1 | 6631.541 | -7 | 6662.558 | -11 | 6625.167 | -5 | 6713.894 | -4 | 6678.007 | 6 | 6707.050 | -1 | 6670.030 | 25 | | 22.5 | 6667.798 | -2 | 6630.054 | -5 | 6662.482 | -4 | 6623.418 | -4 | 6714.093 | -5 | 6676.553 | 8 | 6706.905 | -1 | 6668.226 | 19 | | 23.5 | 6667.944 | -1 | 6628.527 | -10 | 6662.371 | 2 | 6621.635 | -4 | 6714.261 | -2 | 6675.067 | 11 | 6706.725 | 0 | 6666.368 | -5 | | 24.5 | 6668.047 | -9 | 6626.972 | -8 | 6662.218 | 1 | 6619.816 | -5 | 6714.389 | -5 | 6673.532 | 1 | 6706.509 | 1 | 6664.494 | -9 | | 25.5 | 6668.135 | 4 | 6625.385 | -5 | 6662.029 | -1 | 6617.968 | -1 | 6714.486 | -3 | 6671.992 | 20 | 6706.258 | 3 | | | | 26.5 | 6668.172 | 0 | 6623.759 | -6
4 | 6661.806 | -3 | 6616.082 | 0 | 6714.549 | -1 | 6670.396 | 19
23 | 6705.968 | 3 | | | | 27.5
28.5 | | | 6622.102
6620.408 | -4
-6 | 6661.554
6661.261 | 2
0 | 6614.155
6612.201 | -5
-4 | 6714.566 | 1 | 6668.771
6667.097 | 12 | 6705.642
6705.281 | 3 | | | | 29.5 | 6668.085 | -6 | 6618.682 | -5 | 6660.934 | -1 | 6610.214 | -2 | 6714.516 | -4 | 6665.393 | 6 | 6704.884 | 5 | 6654.605 | -14 | | 30.5 | 6667.995 | 0 | 6616.917 | -9 | 6660.575 | 0 | 6608.190 | -2 | 6714.433 | -7 | 6663.656 | 1 | 6704.448 | 3 | 6652.538 | 3 | | 31.5 | 6667.862 | -2 | 6615.129 | -3 | 6660.179 | -1 | 6606.129 | -5 | 6714.324 | -1 | 6661.904 | 17 | 6703.975 | 1 | 6650.413 | -3 | | 32.5 | 6667.699 | -2 | 6613.299 | -4 | 6659.747 | -4 | 6604.041 | -1 | 6714.172 | -4 | | | 6703.468 | 2 | 6648.258 | -1 | | 33.5 | 6667.500 | -2 | 6611.439 | -3 | 6659.287 | 0 | 6601.916 | 0 | 6713.988 | -3 | 6658.255 | 4 | 6702.923 | 1 | 6646.063 | -5 | | 34.5 | 6667.267 | -2 | 6609.541 | -5 | 6658.788 | -1 | 6599.757 | 1 | 6713.769 | -3 | 6656.379 | -2 | 6702.337 | -4 | 6643.846 | 5 | | 35.5 | 6667.002 | -1 | | | 6658.255 | 0 | 6597.563 | 0 | 6713.515 | -2 | 6654.476 | -1 | 6701.723 | -1 | 6641.580 | 2 | | 36.5 | 6666.700 | -3 | 6605.653 | -3 | 6657.689 | 1 | 6595.340 | 5 | 6713.225 | -3 | 6652.538 | -1 | 6701.071 | 0 | 6639.292 | 13 | | 37.5
38.5 | 6666.368
6665.998 | -1
-2 | 6603.659
6601.629 | -1
-2 | 6657.087
6656.467 | 0
15 | 6593.071
6590.777 | -3
-2 | 6712.902
6712.541 | -2
-4 | 6650.562
6648.561 | -4
2 | 6700.382
6699.653 | 2
0 | 6636.945
6634.576 | 0
2 | | 39.5 | 6665.597 | -2 | 6599.567 | -2 | 6655.782 | 13 | 6588.447 | -3 | 6712.150 | -2 | 6646.519 | 1 | 6698.889 | 0 | 6632.159 | -8 | | 40.5 | 6665.161 | -2 | 6597.473 | -1 | 6655.077 | Ô | 6586.088 | 0 | 6711.725 | 1 | 6644.445 | 2 | 6698.094 | 5 | 6629.731 | 5 | | 41.5 | 6664.693 | -1 | 6595.340 | -6 | 6654.340 | 1 | 6583.690 | -3 | 6711.258 | -3 | | | 6697.251 | -1 | 6627.253 | 7 | | 42.5 | 6664.189 | -2 | 6593.182 | -3 | 6653.569 | 2 | | | 6710.760 | -3 | 6640.197 | 5 | 6696.377 | 0 | 6624.731 | -2 | | 43.5 | 6663.656 | 0 | 6590.990 | -1 | 6652.761 | 0 | 6578.799 | -3 | 6710.230 | -2 | 6638.018 | 3 | 6695.468 | 2 | 6622.187 | 5 | | 44.5 | 6663.083 | -3 | 6588.756 | -9 | 6651.923 | 3 | 6576.304 | -2 | 6709.664 | -1 | 6635.813 | 9 | 6694.509 | -9 | 6619.595 | -1 | | 45.5 | 6662.482 | -1 | 6586.506 | 1 | 6651.048 | 1 | 6573.774 | -4 | 6709.064 | 2 | 6633.566 | 6 | 6693.542 | 9 | 6616.968 | | | 46.5 | 6661.847 | -1
-3 | 6584.213 | 0 | 6650.143 | 4 | 6571.211
6568.617 | -5
-5 | 6708.427
6707.756 | 0 | 6631.285
6628.974 | 4
5 | 6692.510
6691.452 | 0 | 6614.301
6611.622 | -13
4 | | 47.5
48.5 | 6661.176
6660.475 | -3
-1 | 6581.884
6579.536 | -5
3 | 6649.203
6648.226 | 5
3 | 6565.990 | -3
-4 | 6707.050 | -1
-1 | 6626.619 | -4 | 6690.358 | 1
4 | 6608.890 | 3 | | 49.5 | 6659.747 | 5 | 6577.144 | 0 | 6647.231 | 17 | 6563.335 | 1 | 6706.309 | -2 | 6624.247 | 3 | 6689.223 | 3 | 6606.129 | 10 | | 50.5 | 6658.975 | 1 | 6574.721 | -2 | 6646.177 | 5 | 6560.639 | -2 | 6705,536 | -1 | 6621.824 | -6 | 6688.055 | 7 | 6603.303 | | | 51.5 | 6658.174 | 1 | 6572.268 | -3 | 6645.105 | 8 | 6557.909 | -7 | 6704.728 | -1 | 6619.390 | 7 | 6686.846 | 7 | | | | 52.5 | 6657.342 | 2 | 6569.786 | 0 | 6643.993 | 5 | 6555.157 | -1 | 6703.883 | -2 | 6616.917 | 15 | 6685.593 | 1 | 6597.617 | 20 | | 53.5 | 6656.467 | -8 | 6567.266 | -3 | 6642.855 | 9 | 6552.363 | -4 | 6703.006 | -1 | 6614.390 | 1 | 6684.318 | 11 | 6594.682 | | | 54.5 | 6655.578 | 2 | 6564.718 | -2 | | | 6549.540 | -4 | 6702.095 | 1 | 6611.829 | -12 | 6682.993 | 8 | 6591.728 | | | 55.5 | 6654.651 | 5 | 6562.139 | -2 | 6640.453 | -10 | 6546.682 | -6
2 | 6701.148 | 0 | 6609.262 | 2 | 6681.616 | -8 | 6588.756 | 8 | | 56.5 | 6653.686 | 3 | 6559.530 | 1 | 6639.213 | -8
10 | 6543.800 | -2 | 6700.167 | 0 | 6606.643 | -3 | 6670 772 | 17 | 6585.723 | 0 | | 57.5
58.5 | 6652.693
6651.664 | 5
3 | 6556.885
6554.216 | -1
3 | 6637.928
6636.623 | -19
-17 | 6540.881
6537.931 | -1
0 | 6699.150
6698.094 | 0
-7 | 6603.994
6601.319 | -3
3 | 6678.773 | -17 | 6582.659 | -4 | | 59.5 | 6650.608 | 3
7 | 6551.505 | -2 | 6635.292 | -17
-9 | 6534.942 | -5 | 6697.012 | -/
-4 | 6598.596 | -5 | 6675.793 | -9 | 6576.433 | 2 | | 60.5 | 6649.517 | 6 | 6548.773 | 2 | 6633.918 | -9 | 6531.930 | -3 | 6695.900 | 4 | 6595.843 | -10 | 6674.250 | 0 | 6573.253 | -7 | | 61.5 | 6648.394 | 5 | 6546.005 | ō | 6632.519 | -4 | 6528.880 | -6 | 6694.743 | 0 | 6593.071 | 0 | 6672.656 | -4 | | | | 62.5 | 6647.231 | -3 | 6543.207 | 0 | 6631.086 | 0 | 6525.797 | -11 | 6693.542 | -13 | 6590.253 | -3 | | | 6566.794 | -10 | | 63.5 | 6646.063 | 15 | 6540.379 | 0 | 6629.616 | 0 | 6522.696 | -2 | 6692.336 | 4 | 6587.403 | -4 | 6669.357 | -7 | | | | 64.5 | 6644.839 | 8 | 6537.523 | 3 | 6628.113 | 0 | 6519.558 | 0 | 6691.074 | -1 | 6584.523 | -2 | | | 6560.201 | 2 | | 65.5 | 6643.591 | 9 | 6534.636 | 5 | 6626.579 | 0 | 6516.391 | 6 | 6689.781 | -2 | | | 6665.905 | -6 | 6556.839 | -1 | Note. O-C are observed minus calculated line positions in units of $10^{-3}~{\rm cm}^{-1}$. TABLE 1—Continued | | 0-0 Band | | | | | | | | | 1-1 Band | | | | | | | |---|--|--|--|---|--|--|--|---|--|---|---|--|--|--|---|--| | J | Ree | о-с | Pee | о-с | Rff | о-с | Pff | о-с | Ree | о-с | Pee | о-с | Rff | о-с | Pff | о-с | | 66.5 | | | 6531.712 | 0 | 6625.011 | -1 | 6513.181 | -1 | 6688.452 | -3 | 6578.661 | 0 | 6664.133 | 8 | 6553.452 | 9 | | 67.5 | 6641.008 | 15 | 6528.760 | -2 | 6623.418 | 4 | 6509.949 | 1 | 6687.101 | 7 | 6575.677 | -2 | | | 6550.006 | -1 | | 68.5 | 6639.664 | 13 | | | 6621.777 | -7 | 6506.680 | -4 | 6685.701 | 2 | 6672.657 | -7 | 6660.435 | 0 | 6546.535 | 0 | | 69.5 | 6638.292 | 13 | 6522.771 | -3 | 6620.118 | -4 | 6503.388 | 0 | 6684.273 | 5 | 6569.612 | -3 | 6658.527 | -3 | 6543.021 | -2 | | 70.5 | 6636.894 | 18 | 6519.735 | -1 | 6618.429 | 1 | 6500.063 | 1 | 6682.809 | 7 | 6566.519 | -14
3 | 6656.584 | -2
5 | 6539.470
6535.885 | -3
0 | | 71.5
72.5 | 6635.465
6634.002 | 22
23 | 6516.668 | 0 | 6616.706
6614.948 | 4 | 6496.703
6493.316 | -3
-2 | 6681.315 | 12 | 6563.420
6560.264 | -4 | 6654.605
6652.581 | 7 | 6532.270 | 12 | | 73.5 | 0034.002 | 23 | 6510.446 | 2 | 6613.161 | 3 | 6489.905 | 4 | 6678.196 | -2 | 6557.082 | -3 | 6650.511 | 3 | 6528.579 | -13 | | 74.5 | | | 6507.288 | 0 | 6611.342 | 4 | 6486.450 | -3 | 6676.604 | 12 | 6553.869 | 0 | 6648.394 | -7 | 6524.874 | -13 | | 75.5 | 6629.402 |
-5 | 6504.102 | -1 | 6609.491 | 4 | 6482.980 | 4 | 6674.970 | 18 | 6550.616 | -3 | 6646.239 | -14 | | | | 76.5 | 6627.820 | -2 | 6500.895 | 5 | 6607.613 | 7 | 6479.468 | -1 | | | 6547.327 | -9 | 6644.049 | -14 | | | | 77.5 | 6626.206 | -3 | 6497.650 | 2 | 6605.703 | 9 | 6475.930 | -2 | 6671.567 | 0 | 6544.023 | 3 | | | | | | 78.5 | 6624.554 | -12 | 6494.382 | 4 | 6603.752 | 2 | 6472.368 | 3 | 6669.823 | 1 | 6540.667 | -2 | | | | | | 79.5 | 6621 104 | -7 | 6491.077 | -2
7 | 6601.775
6599.757 | -1
-15 | 6468.769
6465.150 | -1
6 | 6668.047
6666.202 | 5
-24 | 6537.283
6533.863 | -1
-3 | | | | | | 80.5
81.5 | 6621.184
6619.450 | -10 | 6487.759
6484.399 | 2 | 6597.738 | 0 | 6461.497 | 8 | 6664.389 | 15 | 6530.417 | 3 | | | | | | 82.5 | 6617.707 | 6 | 6481.020 | 5 | 6595.677 | 5 | 6457.811 | 5 | 6662.482 | -4 | 0550.417 | 3 | | | | | | 83.5 | 6615.905 | -7 | 6477.607 | 2 | 6593.583 | 6 | 6454.094 | 0 | 6660.575 | 11 | 6523.409 | 0 | | | | | | 84.5 | 6614.084 | -10 | 6474.171 | 3 | 6591.458 | 6 | 6450.364 | 11 | | | 6519.853 | -2 | | | | | | 85.5 | 6612.251 | 2 | 6470.702 | -1 | 6589.305 | 9 | 6446.582 | -2 | | | 6516.270 | 3 | | | | | | 86.5 | 6610.372 | -3 | | | 6587.117 | 5 | 6442.787 | 2 | | | 6512.637 | -6 | | | | | | 87.5 | 6608.469 | -3 | 6463.691 | -1 | 6584.902 | 5 | 6438.969 | 10 | | | | | | | | | | 88.5 | 6606.539 | -3 | 6460.148 | 1 | 6582.659 | 6 | 6435.105 | 0 | | | (501.5/2 | 7 | | | | | | 89.5
90.5 | 6604.579
6602.599 | -5
0 | 6456.573
6452.965 | -2
-12 | 6580.378
6578.081 | -2
4 | 6431.227 | 5 | | | 6501.563
6497.784 | -7
-25 | | | | | | 91.5 | 0002.333 | U | 6449.343 | -12
-9 | 6575.733 | -13 | 6423.363 | -11 | | | 0497.764 | -23 | | | | | | 92.5 | 6598.542 | -3 | 6445.706 | 4 | 6573.370 | -15 | 6419.413 | 6 | | | | | | | | | | 93.5 | | | 6442.028 | 2 | 6570.995 | -1 | | - | | | | | | | | | | 94.5 | 6594.377 | -5 | 6438.344 | 20 | 6568.573 | -5 | 6411.388 | -6 | | | | | | | | | | 95.5 | 6592.259 | -2 | 6434.595 | -1 | | | | | | | | | | | | | | 96.5 | 6590.103 | -10 | 6430.844 | 0 | | | 6403.263 | -10 | | | | | | | | | | 97.5 | 6587.941 | 3 | 6427.065 | -1 | 6561.143 | -10 | | | | | | | | | | | | 98.5
99.5 | | | 6419.446 | 9 | 6558.615
6556.048 | -7
-15 | 0-1 E | Band | | | | | | | 1-2 E | Band | | - | | | | Ree | O-C | Pee | 0-1 E
0-C | Band
Rff | о-с | Pff | 0-С | Ree | O-C | Pee | 1-2 E | Sand
Rff | 0-С | Pff | O-C | | | Rec | O-C | | | | | Pff | 0-C | Ree | 0-С | | | | о-с | Pff | O-C | | J
3.5
4.5 | Ree | 0-C | | | Rff | O-C | Pff | 0-С | Ree | 0-C | | | | 0-C | Pff | O-C | | 3.5 | Ree | 0-C | | | Rff 5733.843 | -13 | Pff 5724.292 | O-C | Ree | 0-C | Pee | 0-С | | 0- C | Pff | O-C | | 3.5
4.5
5.5
6.5 | 5736.595 | -6 | | | Rff
5733.843
5734.427
5734.968 | -13
-4
-8 | 5724.292
5723.131 | 8 | | | Pee
5781.993
5781.161
5780.316 | O-C | | 0-C | Pff | O-C | | 3.5
4.5
5.5
6.5
7.5 | 5736.595
5737.350 | -6
9 | Pee | 0-C | Rff 5733.843 5734.427 5734.968 5735.975 | -13
-4
-8 | 5724.292
5723.131
5721.938 | 8
1
-7 | 5792.101 | -5 | Pee
5781.993
5781.161
5780.316
5779.412 | -10
-11
6
-6 | Rff | | Pff | 0-С | | 3.5
4.5
5.5
6.5
7.5
8.5 | 5736.595
5737.350
5738.049 | -6
9
-2 | Pee 5723.684 | O-C | Rff
5733.843
5734.427
5734.968 | -13
-4
-8 | 5724.292
5723.131 | 8 | 5792.101
5792.842 | -5
-1 | Pee
5781.993
5781.161
5780.316
5779.412
5778.493 | -10
-11
6
-6
-4 | Rff 5790.465 | 4 | | | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5 | 5736.595
5737.350
5738.049
5738.738 | -6
9
-2
7 | Pee 5723.684 5722.696 | O-C 3 5 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 | -13
-4
-8
-3
-13 | 5724.292
5723.131
5721.938
5720.728 | 8
1
-7
-3 | 5792.101
5792.842
5793.542 | -5
-1
-9 | Pee
5781.993
5781.161
5780.316
5779.412
5778.493
5777.545 | -10
-11
6
-6
-4
-1 | Rff 5790.465 5790.822 | 4
-15 | 5773.670 | 5 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5 | 5736.595
5737.350
5738.049
5738.738
5739.387 | -6
9
-2
7
4 | Pee 5723.684 5722.696 5721.671 | 3
5
0 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 | -13
-4
-8
-3
-13 | 5724.292
5723.131
5721.938
5720.728
5718.211 | 8
1
-7
-3 | 5792.101
5792.842
5793.542
5794.225 | -5
-1
-9
-3 | Pee
5781.993
5781.161
5780.316
5779.412
5778.493
5777.545
5776.564 | -10
-11
6
-6
-4
-1
0 | Rff
5790.465
5790.822
5791.188 | 4
-15
5 | 5773.670
5772.342 | 5
-10 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025 | -6
9
-2
7
4
21 | Pee
5723.684
5722.696
5721.671
5720.622 | 3
5
0 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 | -13
-4
-8
-3
-13 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913 | 8
1
-7
-3
-2
3 | 5792.101
5792.842
5793.542
5794.225
5794.878 | -5
-1
-9
-3
3 | 5781.993
5781.161
5780.316
5779.412
5778.493
5777.545
5776.564
5775.555 | -10
-11
6
-6
-4
-1
0
3 | Rff 5790.465 5790.822 5791.188 5791.496 | 4
-15
5
-2 | 5773.670
5772.342
5771.007 | 5
-10
-3 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5 | 5736.595
5737.350
5738.049
5738.738
5739.387 | -6
9
-2
7
4 | Pee 5723.684 5722.696 5721.671 | 3
5
0 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 | -13
-4
-8
-3
-13 | 5724.292
5723.131
5721.938
5720.728
5718.211 | 8
1
-7
-3 | 5792.101
5792.842
5793.542
5794.225 | -5
-1
-9
-3 | Pee
5781.993
5781.161
5780.316
5779.412
5778.493
5777.545
5776.564 | -10
-11
6
-6
-4
-1
0 | Rff
5790.465
5790.822
5791.188 | 4
-15
5 | 5773.670
5772.342 | 5
-10 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591 | -6
9
-2
7
4
21
-4 | Pee 5723.684 5722.696 5721.671 5720.622 5719.516 | 3
5
0
0
-28 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 | -13
-4
-8
-3
-13
-14
-2
-17 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580 | 8
1
-7
-3
-2
3
2 | 5792.101
5792.842
5793.542
5794.225
5794.878 | -5
-1
-9
-3
3 | 5781.993
5781.161
5780.316
5779.412
57778.493
5777.545
5776.564
5775.555
5774.510 | -10
-11
6
-6
-4
-1
0
3
-1 | Rff 5790.465 5790.822 5791.188 5791.496 5791.786 | 4
-15
5
-2
4 | 5773.670
5772.342
5771.007
5769.638 | 5
-10
-3
1 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591
5741.143
5741.692
5742.192 | -6
9
-2
7
4
21
-4
-15
1 | Fee 5723.684 5722.696 5721.671 5720.622 5719.516 5718.431 5717.300 5716.131 | 3
5
0
0
-28
-5
1
-2 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.539 5738.539 5738.790 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400 | 8
1
-7
-3
-2
3
2
-11
1
-4 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160 | -5
-1
-9
-3
3
12
-10
-2 | 781.993
5781.161
5780.316
5779.412
5778.493
5777.545
5776.564
5775.555
5774.510
5773.436 | -10
-11
6
-6
-4
-1
0
3
-1
-4 | 5790.465
5790.822
5791.496
5791.786
5792.044
5792.265
5792.454 | 4
-15
5
-2
4
8
6
3 | 5773.670
5772.342
5771.007
5769.638
5768.238
5766.805
5765.335 | 5
-10
-3
1
4
5
-1 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591
5741.143
5741.692
5742.192
5742.659 | -6
9
-2
7
4
21
-4
-15
1
-2
-9 | Fee 5723.684 5722.696 5721.671 5720.622 5719.516 5718.431 5717.300 5716.131 5714.941 | 3
5
0
0
-28
-5
1
-2
4 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.273 5738.273 5738.273 5738.790 5739.023 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4
11 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400
5709.959 | 8
1
-7
-3
-2
3
2
-11
1
-4
6 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160
5797.660 | -5
-1
-9
-3
3
12
-10
-2
1 | 5781.993
5781.161
5780.316
5779.412
5776.564
5776.564
5775.555
5774.510
5773.436
5772.342 | -10
-11
6
-6
-4
-1
0
3
-1
-4
4 | 5790.465
5790.822
5791.188
5791.786
5792.044
5792.265 | 4
-15
5
-2
4
8
6 | 5773.670
5772.342
5771.007
5769.638
5768.238
5766.805
5765.335
5763.844 | 5
-10
-3
1
4
5
-1
2 | |
3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591
5741.143
5741.692
5742.192
5742.192
5742.192 | -6
9
-2
7
4
21
-4
-15
1
-2
-9 | Fee 5723.684 5722.696 5721.671 5720.622 5719.516 5718.431 5717.300 5716.131 5714.941 5713.714 | 3
5
0
0
-28
-5
1
-2
4
1 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.273 5738.273 5738.399 5738.790 5739.023 5739.205 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4
11
4 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400
5709.959
5708.474 | 8
1
-7
-3
-2
3
2
-11
1
-4
6
-1 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160
5797.660
5798.129 | -5
-1
-9
-3
3
12
-10
-2
1
4 | 5781.993 5781.161 5780.316 5779.412 5778.493 5777.545 5776.564 5775.555 5774.510 5773.436 5772.342 5771.204 | -10
-11
6
-6
-4
-1
0
3
-1
-4
4
-3 | 8ff
5790.465
5790.822
5791.188
5791.786
5792.044
5792.265
5792.454
5792.616 | 4
-15
5
-2
4
8
6
3
3 | 5773.670
5772.342
5771.007
5769.638
5768.238
5766.805
5765.335
5765.3844
5762.321 | 5
-10
-3
1
4
5
-1
2
4 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591
5741.143
5741.692
5742.192
5742.659
5743.109
5743.535 | -6
9
-2
7
4
21
-4
-15
1
-2
-9
-3
8 | Fee 5723.684 5722.696 5721.671 5720.622 5719.516 5718.431 5717.300 5716.131 5714.941 5713.714 5712.457 | 3
5
0
0
-28
-5
1
-2
4
1
-2 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.273 5738.273 5738.273 5738.790 5739.023 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4
11 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400
5709.959
5708.474
5706.965 | 8
1
-7
-3
-2
3
2
-11
1
-4
6
-1
0 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160
5797.660
5797.660
5798.129
5798.562 | -5
-1
-9
-3
3
12
-10
-2
1
4
-1 | 5781.993 5781.161 5779.412 5778.493 5777.545 5776.564 5775.555 5774.510 5773.436 5772.342 5771.204 | O-C -10 -11 6 -6 -4 -1 0 3 -1 -4 4 -3 | 5790.465
5790.822
5791.496
5791.786
5792.044
5792.265
5792.454 | 4
-15
5
-2
4
8
6
3 | 5773.670
5772.342
5771.007
5769.638
5768.238
5765.335
5765.335
5763.844
5762.321
5760.759 | 5
-10
-3
1
4
5
-1
2
4
-3 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591
5741.143
5741.692
5742.192
5742.659
5743.109
5743.535
5743.900 | -6
9
-2
7
4
21
-4
-15
1
-2
-9
-3
8
-13 | Fee 5723.684 5722.696 5721.671 5720.622 5719.516 5718.431 5717.300 5716.131 5714.941 5712.457 5711.182 | 3
5
0
0
-28
-5
1
-2
4
1
-2
6 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.273 5738.273 5738.399 5738.790 5739.023 5739.205 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4
11
4 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400
5711.400
5709.959
5708.474
5706.965
5705.433 | 8
1
-7
-3
-2
3
2
-11
1
-4
6
-1
0
6 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160
5797.660
5798.129 | -5
-1
-9
-3
3
12
-10
-2
1
4 | 5781.993
5781.161
5780.316
5779.412
5778.493
5777.545
5776.564
5775.555
5774.510
5773.436
5772.342
5771.204 | O-C -10 -11 6 -6 -4 -1 0 3 -1 -4 4 -3 | 5790.465
5790.822
5791.188
5791.786
5792.044
5792.265
5792.454
5792.616 | 4
-15
5
-2
4
8
6
3
3 | 5773.670
5772.342
5771.007
5769.638
5768.238
5766.805
5763.3844
5762.321
5760.759
5759.181 | 5
-10
-3
1
4
5
-1
2
4
-3
4 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5
19.5
20.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591
5741.143
5741.692
5742.192
5742.659
5743.109
5743.535
5743.900
5744.275 | -6
9
-2
7
4
21
-4
-15
1
-2
-9
-3
8
-13
7 | Fee 5723.684 5722.696 5721.671 5710.672 5719.516 5718.431 5717.300 5716.131 5714.941 5712.457 5711.182 5709.859 | 3
5
0
0
-28
-5
1
-2
4
1
-2
6
-5 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.273 5738.273 5738.399 5738.790 5739.023 5739.205 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4
11
4 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400
5709.959
5708.474
5706.965 | 8
1
-7
-3
-2
3
2
-11
1
-4
6
-1
0 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160
5798.129
5798.562
5798.973 | -5
-1
-9
-3
3
12
-10
-2
1
4
-1
4 | 5781.993
5781.161
5780.316
5779.412
5778.493
5777.545
5776.564
5773.436
5772.342
5771.204 | O-C -10 -11 6 -6 -4 -1 0 3 -1 -4 4 -3 | 8ff
5790.465
5790.822
5791.188
5791.786
5792.044
5792.265
5792.454
5792.616 | 4
-15
5
-2
4
8
6
3
3 | 5773.670
5772.342
5771.007
5769.638
5768.238
5765.335
5763.844
5760.759
5759.181
5757.567 | 5
-10
-3
1
4
5
-1
2
4
-3
4
7 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5
19.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591
5741.143
5741.692
5742.192
5742.659
5743.109
5743.535
5743.900 | -6
9
-2
7
4
21
-4
-15
1
-2
-9
-3
8
-13 | Fee 5723.684 5722.696 5721.671 5720.622 5719.516 5718.431 5717.300 5716.131 5714.941 5712.457 5711.182 | 3
5
0
0
-28
-5
1
-2
4
1
-2
6 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.273 5738.273 5738.399 5738.790 5739.023 5739.205 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4
11
4 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400
5711.400
5709.959
5708.474
5706.965
5705.433 | 8
1
-7
-3
-2
3
2
-11
1
-4
6
-1
0
6 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160
5797.660
5797.660
5798.129
5798.562 | -5
-1
-9
-3
3
12
-10
-2
1
4
-1 | 5781.993
5781.161
5780.316
5779.412
5778.493
5777.545
5776.564
5775.555
5774.510
5773.436
5772.342
5771.204 | O-C -10 -11 6 -6 -4 -1 0 3 -1 -4 4 -3 | 5790.465
5790.822
5791.188
5791.786
5792.044
5792.265
5792.454
5792.616 | 4
-15
5
-2
4
8
6
3
3 | 5773.670
5772.342
5771.007
5769.638
5768.238
5766.805
5763.3844
5762.321
5760.759
5759.181 | 5
-10
-3
1
4
5
-1
2
4
-3
4 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5
19.5
20.5
21.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5740.591
5741.143
5741.692
5742.192
5742.659
5743.109
5743.535
5743.900
5744.275
5744.592 | -6 9 -2 7 4 21 -4 -15 1 -2 9 -3 8 -13 7 -4 | 5723.684
5722.696
5721.671
5720.622
5719.516
5718.431
5717.300
5716.131
5714.941
5713.714
5712.457
5712.457
5711.182
5709.859
5708.522 | 3
5
0
0
-28
-5
1
-2
4
1
1
-2
6
-5
0 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.273 5738.273 5738.399 5738.790 5739.023 5739.205 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4
11
4 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400
5709.959
5708.474
5706.965
5705.433
5703.872 | 8
1
-7
-3
-2
3
2
-11
1
-4
6
-1
0
6
12 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160
5798.129
5798.562
5798.973 | -5
-1
-9
-3
3
12
-10
-2
1
4
-1
4 | 5781.993 5781.161 5780.316 5779.412 5778.493 5777.545 5776.564 5773.436 5772.342 5771.204 5767.631 5763.87 5765.101 5763.795 | O-C -10 -11 6 -6 -4 -1 0 3 -1 -4 4 -3 -5 2 -5 -1 | 5790.465
5790.822
5791.188
5791.786
5792.044
5792.265
5792.454
5792.616 | 4
-15
5
-2
4
8
6
3
3 |
5773.670
5772.342
5771.007
5769.638
5768.238
5765.335
5763.344
5762.321
5760.759
57759.181
5757.567
5755.920 | 5
-10
-3
1
4
5
-1
2
4
-3
4
7
5 | | 3.5
4.5
5.5
6.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5
20.5
21.5
22.5 | 5736.595
5737.350
5738.049
5738.738
5739.387
5740.025
5741.143
5741.692
5742.192
5742.659
5743.109
5743.535
5743.900
5744.275
5744.899 | -6 9 -2 7 4 21 -4 -15 1 -2 -9 -3 8 -13 7 -4 -4 | 5723.684
5722.696
5721.671
5720.622
5719.516
5718.431
5713.714
5713.714
5712.457
5711.182
5709.859
5708.522
5707.141 | 3
5
0
0
-28
-5
1
-2
4
1
1
-2
6
-5
0 | Rff 5733.843 5734.427 5734.968 5735.975 5736.421 5737.243 5737.622 5737.943 5738.273 5738.273 5738.399 5738.790 5739.023 5739.205 | -13
-4
-8
-3
-13
-14
-2
-17
5
-6
-4
11
4 | 5724.292
5723.131
5721.938
5720.728
5718.211
5716.913
5715.580
5714.205
5712.826
5711.400
5709.959
5708.474
5706.965
5705.433
5703.872 | 8
1
-7
-3
-2
3
2
-11
1
-4
6
-1
0
6
12 | 5792.101
5792.842
5793.542
5794.225
5794.878
5795.504
5796.625
5797.160
5797.660
5798.129
5798.562
5798.973
5799.694 | -5
-1
-9
-3
3
12
-10
-2
1
4
-1
4 | 5781.993 5781.161 5780.316 5779.412 5778.493 5777.545 5776.564 5775.555 5774.510 5773.436 5772.342 5767.631 5766.387 5765.101 5763.795 5762.460 | O-C -10 -11 6 -6 -4 -1 0 3 -1 -4 4 -3 | 5790.465
5790.822
5791.188
5791.496
5792.044
5792.265
5792.454
5792.616
5792.842
5792.842 | 4
-15
5
-2
4
8
6
3
3 | 5773.670
5772.342
5769.638
5768.238
5766.805
5765.335
5763.844
5762.321
5760.759
5759.181
5757.567
5759.20
5754.243 | 5
-10
-3
1
4
5
-1
2
4
-3
4
7
5
5
5 | TABLE 1—Continued | | | | | 0-1 I | Band | | | | 1-2 Band | | | | | | | | |--------------|----------------------|----------|----------------------|----------|----------------------|-----------|----------------------|----------|----------------------|---------|----------------------|-----------|----------------------|----------|----------------------|----------| | J | Ree | о-с | Pee | о-с | Rff | о-с | Pff | о-с | Ree | O-C | Pee | о-с | Rff | о-с | Pff | о-с | | 26.5 | 5745.795 | 3 | 5701.374 | -10 | 5739.575 | 5 | 5693.846 | 2 | 5800.987 | 6 | 5756.811 | 3 | 5792.518 | -18 | 5747.233 | 5 | | 27.5 | 5745.938 | -6 | 5699.880 | 10 | 5739.479 | 15 | 5692.070 | -2 | | | 5755.324 | 1 | 5792.354 | -5 | 5745.404 | 5 | | 28.5 | 5746.068 | 2 | 5698.324 | -3 | 5739.337 | 8 | 5690.287 | 15 | 5801.284 | -3 | 5753.809 | 2 | 5792.141 | -9 | 5743.535 | -5 | | 29.5 | 5746.160 | -1 | 5696.757 | 1 | 5739.161 | -2 | 5688.457 | 13 | | | 5752.265 | 2 | 5791.909 | -1 | 5741.651 | 1 | | 30.5 | | | 5695.159
5693.528 | 3
0 | 5738.738 | 0 | 5686.586
5684.705 | 0
5 | | | 5750.693
5749.084 | 3
-2 | 5791.639 | 0 | 5739.743
5737.778 | 13
-2 | | 31.5
32.5 | | | 5691.871 | -1 | 5738.491 | -8
-3 | 5682.782 | -3 | | | 5747.457 | 2 | 5791.002 | -2 | 5735.803 | 4 | | 33.5 | | | 5690.182 | -5 | 5738.221 | 9 | 5680.846 | 4 | 5801.542 | 8 | 5745.795 | 1 | 5790.643 | 3 | 5755.005 | ., | | 34.5 | 5746.195 | -3 | 5688.457 | -18 | 5737.896 | -6 | 5678.873 | 3 | 5801.492 | -2 | 5744.100 | -4 | 5790.245 | 0 | 5731.748 | 3 | | 35.5 | 5746.112 | -7 | 5686.733 | -1 | 5737.565 | 3 | 5676.870 | 1 | | | 5742.386 | 1 | 5789.816 | -3 | 5729.671 | -2 | | 36.5 | 5746.016 | 4 | | | 5737.177 | -17 | 5674.842 | 2 | 5801.332 | 5 | 5740.642 | 4 | 5789.362 | 2 | 5727.585 | 16 | | 37.5 | 5745.886 | 10 | 5683.164 | -4 | 5736.798 | 2 | 5672.771 | -12 | 5801.200 | 2 | 5738.868 | 7 | 5788.869 | -3 | 5725.436 | 0 | | 38.5 | 5745.710 | -3 | 5681.344 | 1 | 5736.359 | -10 | 5670.690 | -8 | 5801.039 | -2 | 5737.059 | 4 | 5788.341 | -10 | 5723.265 | -7 | | 39.5
40.5 | 5745.522
5745.302 | 2 | 5679.492
5677.611 | 2
1 | 5735.439 | 8 | 5668.584
5666.438 | 1
-4 | 5800.853
5800.644 | 0
7 | 5735.220
5733.357 | 0 | 5787.794
5787.211 | -5
-4 | 5721.074
5718.846 | -3
-5 | | 41.5 | 5745.055 | 4 | 5675.705 | 3 | 5734.915 | -3 | 5664.270 | -2 | 3600.044 | , | 5731.469 | 4 | 5786.597 | -3 | 5716.593 | -2 | | 42.5 | 5744.776 | 2 | 5673.767 | 0 | 5734.375 | -2 | 3001.270 | - | 5800.115 | -1 | 5729.545 | 1 | 5785.945 | -8 | 5714.310 | 2 | | 43.5 | 5744.460 | -9 | 5671.806 | 1 | 5733.799 | -9 | 5659.844 | -4 | 5799.822 | 10 | 5727.585 | -10 | 5785.269 | -5 | 5711.994 | 4 | | 44.5 | 5744.143 | 7 | 5669.815 | 0 | 5733.210 | 1 | 5657.601 | 6 | 5799.468 | -10 | 5725.620 | 2 | 5784.560 | -5 | 5709.650 | 8 | | 45.5 | 5743.762 | -13 | 5667.795 | -2 | 5732.577 | -6 | 5655.317 | 3 | 5799.119 | 5 | 5723.611 | -1 | 5783.817 | -6 | | | | 46.5 | 5743.388 | 1 | 5665.747 | -6 | 5731.923 | -5 | 5653.007 | 2 | 5798.728 | 6 | 5721.580 | 4 | 5783.048 | -1 | | | | 47.5 | 5742.971 | 0 | 5663.682 | 0 | 5731.238 | -6 | 5650.675 | 7 | 5798.302 | 1 | 5719.516 | 3 | 5782.240 | -4 | £ (00 00 t | _ | | 48.5
49.5 | 5742.524 | -3 | 5661.579 | -4
1 | 5730.533 | 0 | 5648.306 | 2
5 | 5797.852 | 3 | 5717.424 | 3 | 5781.402 | -4 | 5699.934 | -5 | | 50.5 | 5742.056
5741.560 | 1
4 | 5659.457
5657.303 | -1
-3 | 5729.789
5729.022 | -5
-4 | 5645.919
5643.494 | -1 | 5797.370
5796.857 | 2
-3 | 5715.300
5713.158 | -1
5 | 5780.534
5779.629 | -2
-5 | 5697.431
5694.898 | -5
-4 | | 51.5 | 5741.032 | 1 | 5655.130 | 2 | 5728.231 | 0 | 5641.049 | 0 | 5796.324 | 4 | 5710.977 | 1 | 5778.697 | -3 | 5692.332 | -4 | | 52.5 | 5740.468 | -9 | 5652.922 | -1 | 5727.403 | -4 | 5638.570 | -6 | 5795.749 | -4 | 5708.774 | 3 | 5777.732 | -2 | 5689.738 | -3 | | 53.5 | | | 5650.675 | -16 | 5726.555 | 0 | 5636.077 | 1 | 5795.146 | -10 | 5706.536 | -1 | 5776.734 | -1 | 5687.107 | -6 | | 54.5 | | | 5648.434 | 0 | 5725.672 | -4 | 5633.548 | -1 | 5794.529 | 0 | 5704.271 | -5 | 5775.697 | -7 | 5684.451 | -2 | | 55.5 | 5738.647 | -8 | 5646.148 | -2 | 5724.767 | -2 | 5630.997 | 2 | 5793.871 | -2 | 5701.985 | 0 | 5774.632 | -8 | 5681.762 | -1 | | 56.5 | 5737.995 | 1 | 5643.844 | 4 | 5723.846 | 12 | 5628.419 | 4 | 5793.197 | 8 | 5699.671 | 3 | 5773.540 | -4 | 5679.041 | 0 | | 57.5 | 5737.301 | -5 | 5641.501 | -3 | 5722.873 | 0 | 5625.806 | -2 | | | 5697.318 | -3 | 5772.417 | 3 | 5676.290 | 2 | | 58.5
59.5 | 5736.595
5735.858 | 4
8 | 5639.137 | -6 | 5721.885
5720.861 | 2 | 5623.178 | 3 | 5791.735
5790.954 | 4 | 5694.949 | 2 | 5771.252 | 0 | 5673.503 | 1 | | 60.5 | 5735.083 | 0 | | | 5719.821 | -6
-2 | 5617.828 | 0 | 3790.934 | -6 | 5692.544
5690.115 | -1
1 | 5770.053
5768.838 | -4
9 | 5670.690
5667.841 | 4
4 | | 61.5 | 5734.285 | -3 | 5631.905 | 1 | 5718.755 | 3 | 5615.114 | -2 | | | 5687.657 | 2 | 5767.565 | -1 | 5664.953 | -3 | | 62.5 | 5733.462 | -6 | 5629.442 | 1 | 5717.648 | -6 | 5612.381 | 4 | | | | _ | 5766.269 | -3 | 000 11700 | | | 63.5 | 5732.625 | 3 | 5626.955 | 3 | 5716.527 | -2 | 5609.615 | 3 | 5787.574 | -4 | 5682.652 | -2 | 5764.944 | 2 | 5659.101 | 2 | | 64.5 | 5731.748 | -1 | 5624.444 | 6 | 5715.377 | 0 | 5606.813 | -9 | 5786.657 | -3 | 5680.111 | -1 | 5763.587 | 7 | 5656.126 | 3 | | 65.5 | 5730.859 | 7 | 5621.902 | 2 | 5714.205 | 7 | 5604.004 | -1 | 5785.711 | -2 | 5677.546 | 6 | 5762.185 | 2 | | | | 66.5 | 5729.947 | 20 | 5619.340 | 3 | 5712.993 | 0 | 5601.169 | 6 | 5784.736 | 0 | 5674.941 | -1 | 5760.759 | 6 | | | | 67.5
68.5 | 5728.981
5727.999 | 2
-5 | 5616.751 | 2
1 | 5711.758 | -3 | 5598.294
5595.406 | -2 | 5783.729
5782.696 | -2 | 5672.313 | -2 | 5759.295 | 7 | 5647.010 | 13 | | 69.5 | 5727.011 | -5
7 | 5614.137
5611.487 | -12 | 5710.497 | -6 | 5592.488 | 4
3 | 5781.632 | 1
2 | 5669.650
5666.970 | -10
-7 | 5757.793 | 3 | 5643.894
5640.755 | 5
6 | | 70.5 | 5725.977 | -1 | 5608.837 | -1 | 5707.902 | -5 | 5589.546 | 5 | 5780.534 | -2 | 5664.270 | 4 | 5754.690 | 3 | 5637.588 | 12 | | 71.5 | 5724.937 | 10 | 5606.150 | -3 | 5706.583 | 13 | 5586.568 | -5 | 5779.412 | 0 | 5661.528 | i | 5753.093 | 9 | 5634.379 | 10 | | 72.5 | 5723.846 | -6 | 5603.447 | 4 | 5705.221 | 14 | 5583.583 | 3 | 5778.254 | -6 | 5658.760 | 0 | 5751.448 | 2 | 5631.133 | 4 | | 73.5 | 5722.751 | -1 | 5600.712 | 1 | 5703.834 | 16 | 5580.567 | 6 | | | 5655.966 | 1 | 5749.772 | -1 | 5627.853 | -3 | | 74.5 | 5721.627 | 0 | 5597.955 | 1 | | | 5577.516 | -3 | 5775.863 | -2 | 5653.137 | -5 | 5748.061 | -2 | 5624.547 | -1 | | 75.5 | | | 5595.176 | 2 | 5700.955 | -7 | 5574.448 | -3 | 5774.632 | 9 | 5650.288 | -2 | 5746.310 | -8 | 5621.209 | 2 | | 76.5 | £710.000 | - | 5592.369 | -1 | 5699.500 | 4 | 5571.361 | 2 | 5773.366 | 14 | 5647.418 | 7 | | | 5617.828 | -4 | | 77.5
78.5 | 5718.098 | -7 | 5589.547
5586.699 | 3
5 | 5698.008
5696.489 | 4 | 5568.244 | 1 | 5772.047
5770.723 | -4 | 5644.508 | 6 | | | 5614.415 | -7 | | 79.5 | 5715.630 | -7 | 5583.827 | 5 | 5694.949 | 2
3 | 5565.108
5561.937 | 6
-1 | 3110.123 | 3 | 5641.561 | -6 | | | | | | 80.5 | 5714.365 | -/
-1 | 5580.927 | 0 | 5693.373 | -4 | 5558.746 | -1
-4 | | | 5635.616 | 7 | | | | | | 81.5 | 5713.064 | -9 | | • | 5691.785 | -1 | 5555.535 | -2 | | | 5632.584 | -4 | | | | | | 82.5 | 5711.758 | 4 | | | | - | | • | | | 5629.536 | -2 | | | | | | 83.5 | | | | | | | | | | | 5626.465 | 5 | | | | | | 84.5 | | | | | | | | | | | 5623.347 | -6 | | | | | | 85.5 | | | | | | | | | | | 5620.215 | -2 | | | | | | 86.5 | | | | | | | | | | | 5617.053 | 0 | | | | | | 87.5 | | | | | | | | | | | 5613.856 | -4 | | | | | | 88.5
89.5 | | | | | | | | | | | 5610.637 | 0 | | | | | | 07.3 | | | | | | | | | | | 5607.384 | -2 | | | | | 6800 cm⁻¹ region. The spectrum consists of four
doubleheaded bands with the higher wavenumber heads at 5746, 5802, 6668, and 6715 cm⁻¹. Inspection of these bands at high resolution indicates that each band consists of four branches, two R-type and two P-type. The lines of the bands with high wavenumber heads at 6668 and 6715 cm⁻¹ do not show any additional doubling at low J but the high J lines become broad and are split into two components with increasing J values. In the bands with the high wavenumber heads at 5746 and 5802 cm⁻¹, the splitting is apparent even for the lowest J lines. These four bands have been assigned as 0-0, 1-1, 0-1, and 1-2 bands of a single transition and the observed splitting is attributed to isotope structure. A portion of the compressed spectrum of the 0-0 and 1-1bands is presented in Fig. 1. Figure 2 is an expanded portion of the 0-0 band with some low J lines marked. Hafnium has six naturally occurring isotopes ¹⁷⁴Hf(0.2%), ¹⁷⁶Hf(5.2%), 177 Hf(18.6%), 178 Hf(27.3%), 179 Hf(13.6%), and $^{180}\mathrm{Hf}(35.1\%)$. The two sets of lines for each J value have been assigned as mainly the ¹⁷⁸HfN and ¹⁸⁰HfN isotopomers. The 178Hf and 180Hf nuclei are the most abundant and they have zero nuclear spin. The ¹⁷⁷Hf(18.6%) and ¹⁷⁹Hf(13.6%) isotopes also have significant abundance but they have high nuclear spins of 7/2 and 9/2, respectively. The lines of ¹⁷⁷HfN and ¹⁷⁹HfN are expected to be split into 8 and 10 hyperfine components which would not be seen in our spectra at the present resolution and signal-to-noise ratio. Some of the high J lines of the 0-0 band are presented in Fig. 3 to illustrate the 178HfN and 180HfN isotope splitting. The lines of both ¹⁷⁸HfN and ¹⁸⁰HfN have been measured and used in separate rotational analyses. The assignment of the rotational lines in different bands was made using the traditional method of comparing the combination differences for the common vibrational levels. The fit of the observed lines was obtained utilizing the effective Hamiltonian of Brown et al. (45). The matrix elements for a ${}^{2}\Sigma$ Hamiltonian are listed by Douay et al. (46). The T_v , B_v , D_v , and γ_v molecular constants were determined for the lower $X^2\Sigma^+$ state, while for the excited $[6.7]^2\Sigma^+$ state the T_v , B_v , D_v , H_v , γ_v , γ_{Dv} , and γ_{Hv} constants were required to obtain a satisfactory fit. The constant H_0 was not determined for the excited state. The rotational lines were given suitable weights depending on signal-to-noise ratio and extent of blending. The line positions of 178HfN and ¹⁸⁰HfN are provided in Tables 1 and 2 and the constants obtained for the upper and lower ${}^{2}\Sigma^{+}$ states of ${}^{178}HfN$ and ¹⁸⁰HfN are listed in Tables 3 and 4, respectively. The e/fparity of the rotational levels was chosen to give a negative γ constant in the $X^2\Sigma^+$ state of HfN to be consistent with TiN and ZrN. ## **DISCUSSION** An inspection of the rotational constants of ¹⁷⁸HfN and ¹⁸⁰HfN (Tables 3 and 4) indicates that the spin-rotation parameter γ of the excited state is large compared to that in the lower state. This is a reflection of a strong interaction with a nearby $^2\Pi$ state. The successful determination of higher order spin–rotation constants, γ_D and γ_H , for the excited state can also be attributed to these interactions. No local rotational perturbations have been found in any of the analyzed bands. The rotational constants for the individual vibrational levels of 178HfN (Table 3) and 180HfN (Table 4) have been used to evaluate the equilibrium molecular constants for the two states (Table 5). The ground state equilibrium constants for ¹⁸⁰HfN [$\omega_e = 932.7164(15) \text{ cm}^{-1}$, $B_e = 0.436217(18)$ cm⁻¹] can be used in the isotopic relationships (47), $\omega_{\rm e}^{\rm i}$ = $\rho \omega$ and $B_e^i = \rho^2 B_e$ with $\rho^2 = [\mu/\mu^i]$, to test for consistency. The calculated values for ¹⁷⁸HfN using the equilibrium constants of ¹⁸⁰HfN are $\omega_e = 933.0945 \text{ cm}^{-1}$ and $B_e = 0.436576$ cm⁻¹ which can be compared with the experimental values of $\omega_e = 933.0978(19) \text{ cm}^{-1}$ and $B_e = 0.436585(15) \text{ cm}^{-1}$ for ¹⁷⁸HfN. The excited state equilibrium constants also obey the isotopic relations in a satisfactory manner. The equilibrium rotational constants have been used to evaluate the bond lengths of 1.724678(36) and 1.7600471(57) Å for the lower and upper states of the most abundant ¹⁸⁰HfN isotopomer while the corresponding values for ¹⁷⁸HfN are 1.724652(28) and 1.7600229(80) Å, respectively. The observed lower state $r_{\rm e}$ value is similar in magnitude to that of HfO (48) ($r_e = 1.723071 \text{ Å}$). The equilibrium constants for HfN and HfO have the same pattern as the TiN, TiO and ZrN, ZrO pairs of molecules (48). The possibility that these new bands could arise from HfO was considered, although the experimental and chemical evidence does not support this assignment. The HfO molecule has known electronic states of either singlet or triplet multiplicity. The observation of doubled R and P branches with a large spin splitting evident at low N values does not fit with any of the possible HfO transitions. The observed lines also fit with half integral J values inconsistent with singlet or triplet assignments. The ground states of TiN and ZrN are well established as $^2\Sigma^+$ states by experiment and, for TiN, by theoretical calculations (25–27). By analogy we expect a $^2\Sigma^+$ ground state for HfN. For TiN and ZrN several excited states are also known. TiN has $A'^2\Delta$, $A^2\Pi$, and $B^2\Sigma^+$ states at 7533, 16 238, and 23 576 cm⁻¹ above the ground state while the corresponding $A^2\Pi$ and $B^2\Sigma^+$ states of ZrN are located at 17 401 and 24 670 cm⁻¹. The observation of an excited $^2\Sigma^+$ state at about 6650 cm⁻¹ is not consistent with expectations based on TiN and ZrN. We do not think that the $[6.7]^2\Sigma^+$ $X^2\Sigma^+$ transition of HfN is the $B^2\Sigma^+$ - $X^2\Sigma^+$ transition since the $A^2\Pi$ - $X^2\Sigma^+$ and $B^2\Sigma^+$ - $X^2\Sigma^+$ transitions should be found in the 17 000–26 000 cm⁻¹ region. At this stage, therefore, we are unable to say with certainty that the observed lower state is in fact the ground state of HfN. It is TABLE 2 Observed Wavenumbers (in cm $^{-1}$) of the [6.7] $^2\Sigma^+$ – $X^2\Sigma^+$ System of ^{180}HfN | | 0-0 Band | | | | | | | | | 1-1 Band | | | | | | | |--------------|----------------------|-----|----------------------|-----|----------------------|------------|----------------------|----------|----------------------|----------|----------------------|----------|----------------------|------------|----------------------|----------| | J | Ree | о-с | Pee | о-с | Rff | O-C | Pff | о-с | Ree | о-с | Pee | о-с | Rff | о-с | Pff | о-с | | 2.5 | | | 6653.249 | | | | | | | | | | | | | | | 3.5 | 6658.437 | | 6652.427 | 1 | 6658.073 | 4 | 6650.717 | -9 | 6704.237 | -10 | 6698.217 | | | | 6696.281 | 1 | | 4.5 | 6659.239 | -7 | | _ | 6658.621 | 4 | 6649.603 | -1 | 6705.078 | -5 | 6697.386 | ~ - | | | 6695.120 | -4 | | 5.5 | | _ | 6650.663 | | 6659.125 | -5 | 6648.448 | 0 | 6705.889 | . 5 | 6696.515 | 2.5 | (704 004 | 0 | 6693.929 | -4 | | 6.5 | 6660.755 | | 6649.731 | | 6659.610 | 2 | CC 1C 020 | • | (707.200 | • | 6695.626 | -4
-7 | 6704.884
6705.281 | -9
-7 | 6692.686
6691.452 | -19
9 | | 7.5 | 6661.468 | | 6648.760 | | 6660.046 | -4
10 | 6646.028 | -2 | 6707.382 | 3
-1 | 6694.695 | -7
-7 | 6705.642 | -/
-4 | 6690.141 | -5 | | 8.5 | 6662.123 | | 6647.759 | | 6660.475 | 18
-1 | 6644.765
6643.467 | -3
-5 | 6708.073
6708.735 | -1
2 | 6693.732
6692.736 | -7
-5 | 6705.968 | -1 | 6688.806 | -5 | | 9.5 | 6662.754
6663.353 | | 6646.722
6645.652 | | 6660.830
6661.176 | -1
8 | 0043.407 | -3 | 6709.370 | 13 | 6691.698 | -9 | 6706.258 | 1 | 6687.436 | -7 | | 10.5
11.5 | 6663.915 | | 6644.540 | | 6661.468 | -2 | 6640.766 | -9 | 6709.949 | 4 | 6690.632 | -7
-7 | 6706.509 | 2 | 6686.039 | 2 | | 12.5 | 6664.441 | | 6643.401 | | 6661.741 | 4 | 6639.378 | 3 | 6710.499 | o | 6689.529 | -5 | 6706.725 | 2 | 6684.590 | -7 | | 13.5 | 6664.934 | | 0045.401 | | 6661.972 | 2 | 0037.370 | J | 6711.020 | 4 | 6688.390 | -5 | 6706.905 | 2 | 6683.117 | -4 | | 14.5 | 6665.393 | | 6641.008 | -10 | 6662.166 | -1 | 6636.472 | 4 | 6711.506 | 8 | 6687.216 | -5 | 6707.050 | 3 | 6681.616 | 7 | | 15.5 | 6665.815 | | 6639.769 | | 6662.328 | -1 | 6634.966 | 3 | 6711.948 | 3 | 6686.002 | -9 | 6707.154 | -1 | | | | 16.5 | 6666.202 | | 6638.495 | | 6662.482 | 26 | 6633.431 | 8 | 6712.359 | 2 | 6684.761 | -6 | 6707.227 | 1 | 6678.473 | -6 | | 17.5 | 6666.555 | | 6637.184 | | 6662.558 | 9 | | _ | 6712.736 | 2 | 6683.476 | -11 | 6707.268 | 6 | 6676.864 | 3 | | 18.5 | 6666.872 | | 6635.813 | | 6662.618 | 12 | 6630.244 | 5 | 6713.080 | 5 | | | 6707.268 | 6 | 6675.200 | -7 | | 19.5 | 6667.157 | | 6634.448 | | | | 6628.602 | 7 | 6713.386 | 5 | 6680.814 | -10 | 6707.227 | 2 | 6673.532 | 15 | | 20.5 | 6667.406 | | | - | | | 6626.925 | 9 | 6713.655 | 3 | | | 6707.154 | 1 | 6671.791 | -1 | | 21.5 | 6667.619 | | 6631.577 | 3 | | | 6625.210 | 7 | 6713.894 | 6 | 6678.007 | -13 | 6707.050 | 5 | 6670.030 | 0 | | 22.5 | 6667.798 | | 6630.093 | | | | 6623.459 | 3 | 6714.093 | 5 | 6676.553 | -13 | 6706.905 | 5 | 6668.226 | -8 | | 23.5 | 6667.944 | | 6628.571 | | 6662.371 | 2 | 6621.680 | 6 | 6714.261 | 7 | 6675.067 | -11 | 6706.725 | 5 | 6666.413 | 12 | | 24.5 | 6668.047 | | 6627.016 | | 6662.218 | 0 | 6619.862 | 5 | 6714.389 | 4 | 6673.532 | -22 | 6706.509 | 7 | 6664.531 | -3 | | 25.5 | | | 6625.428 | 6 | 6662.029 | -1 | 6618.009 | 3 | 6714.486 | 6 | 6671.992 | -5 | 6706.258 | 8 | 6662.618 | -12 | | 26.5 | | | 6623.801 | 3 | 6661.806 | -4 | 6616.124 | 3 | | | 6670.396 | -8 | 6705.968 | 7 | 6660.682 | -9 | | 27.5 | 6668.172 | -4 | 6622.146 | | 6661.554 | 1 | 6614.206 |
5 | | | 6668.771 | -5 | 6705.642 | 7 | 6658.727 | 12 | | 28.5 | 6668.135 | -14 | 6620.458 | 8 | 6661.261 | -1 | 6612.251 | 3 | 6714.566 | 10 | 6667.097 | -18 | 6705.281 | 7 | 6656.709 | 5 | | 29.5 | 6668.085 | -2 | 6618.728 | 4 | 6660.934 | -3 | 6610.263 | 3 | 6714.516 | 5 | 6665.402 | -16 | 6704.884 | 9 | 6654.651 | -7 | | 30.5 | 6667.995 | 3 | 6616.968 | 4 | 6660.575 | -2 | 6608.239 | 2 | 6714.433 | 2 | 6663.697 | 9 | 6704.448 | 6 | 6652.581 | 5 | | 31.5 | 6667.862 | 1 | 6615.174 | 2 | 6660.179 | -3 | 6606.188 | 6 | 6714.324 | 7 | 6661.904 | -18 | 6703.975 | 4 | 6650.459 | 1 | | 32.5 | 6667.699 | 1 | 6613.347 | 1 | 6659.747 | -7 | 6604.090 | -2 | 6714.172 | 5 | 6660.127 | 5 | 6703.468 | 4 | 6648.309 | 5 | | 33.5 | 6667.500 | 0 | 6611.487 | 2 | 6659.287 | -3 | 6601.968 | 1 | 6713.988 | 5 | 6658.303 | 15 | 6702.923 | 2 | 6646.121 | 6 | | 34.5 | 6667.267 | 1 | 6609.593 | 1 | 6658.788 | -4 | 6599.815 | 6 | 6713.769 | 5 | 6656.422 | 2 | 6702.337 | -3 | 6643.893 | 3 | | 35.5 | 6667.002 | 1 | 6607.662 | -2 | 6658.255 | -4 | 6597.617 | 0 | 6713.515 | 5 | 6654.518 | 0 | 6701.723 | -1 | 6641.631 | 2 | | 36.5 | 6666.700 | -1 | 6605.703 | -1 | 6657.689 | -4 | 6595.397 | 5 | 6713.225 | 4 | 6652.581 | 1 | 6701.071 | 0 | 6639.334 | | | 37.5 | 6666.368 | 1 | 6603.710 | 0 | 6657.087 | -5 | 6593.134 | 2 | 6712.902 | 5 | 6650.608 | -1 | 6700.382 | 1 | 6637.000 | 1 | | 38.5 | 6665.998 | 0 | 6601.683 | 0 | 6656.467 | 10 | 6590.840 | 0 | 6712.541 | 3 | 6648.605 | 0 | 6699.653 | -2 | 6634.629 | -1 | | 39.5 | 6665.597 | -1 | 6599.623 | 1 | 6655.782 | -5 | 6588.515 | 2 | 6712.150 | 5 | 6646.567 | 1 | 6698.889 | -2 | 6632.202 | -23 | | 40.5 | 6665.161 | -1 | 6597.527 | | 6655.077 | -7 | 6586.153 | 0 | 6711.725 | 7 | 6644.493 | 1 | 6698.094 | 2 | 6629.784 | -1 | | 41.5 | 6664.693 | | 6595.397 | | 6654.340 | -6 | 6583.760 | 1 | 6711.258 | 3 | | | 6697.251 | -4 | 6627.309 | 1 | | 42.5 | 6664.189 | | 6593.243 | | 6653.569 | -6 | | | 6710.760 | 2 | 6640.243 | -1 | 6696.377 | -4 | 6624.798 | 2 | | 43.5 | 6663.656 | | 6591.050 | | 6652.761 | -8 | 6578.871 | -1 | 6710.230 | 4 | 6638.070 | 1 | 6695.468 | -3 | 6622.245 | -3 | | 44.5 | 6663.083 | | 6588.830 | | 6651.923 | -7 | 6576.379 | 0 | 6709.664 | 4 | 6635.855 | -4 | 6694.509 | -14 | 6619.656 | -7 | | 45.5 | 6662.482 | | 6586.569 | | 6651.048 | -9 | 6573.853 | 0 | 6709.064 | 6 | 6633.617 | 0 | 6693.542 | 3 | 6617.041 | -1 | | 46.5 | 6661.847 | | 6584.279 | | 6650.143 | -7 | 6571.292 | -2 | 6708.427 | 4 | 6631.340 | 0 | 6692.510 | -7 | 6614.390 | 4 | | 47.5 | 6661.176 | | 6581.957 | | 6649.203 | -7 | 6568.702 | 1 | 6707.756 | 3 | 6629.027 | -3 | 6691.452 | -7 | 6611.699 | 6 | | 48.5 | 6660.475 | | 6579.605 | | 6648.226 | -10 | 6566.075 | -1 | 6707.050 | 2 | 6626.686 | 1 | 6690.358 | -5 | 6608.961 | -3 | | 49.5 | 6659.747 | | 6577.217 | | 6647.231 | 3 | 6563.420 | 2 | 6706.309 | 1 | 6624.307 | 0 | 6689.223 | -7 | 6606.188 | | | 50.5 | 6658.975 | | 6574.799 | | 6646.177 | -10 | 6560.726 | 0 | 6705.536 | 2 | 6621.894 | -3 | 6688.055 | -3 | 6603.396 | 0 | | 51.5 | 6658.174 | | 6572.346 | | 6645.105 | -8 | 6558.002 | -1 | 6704.728 | 1 | 6619.450 | -1 | 6686.846 | -5 | | | | 52.5 | 6657.342 | | 6569.863 | | 6643.993 | -11 | 6555.248 | 0 | 6703.883 | -1 | 6616.968 | -4 | 6685.593 | -11 | 6597.685 | 1 | | 53.5 | 6656.467 | | 6567.349 | | 6642.855 | - 9 | 6552.458 | -2 | 6703.006 | 0 | 6614.453 | -7 | 6684.318 | -3 | 6594.775 | 3 | | 54.5 | 6655.578 | | 6564.804 | | 6641.680 | -9 | 6549.637 | -1 | 6702.095 | 1 | 6611.910 | -4 | 6682.993 | - 6 | 6591.826 | 2 | | 55.5 | 6654.651 | | 6562.225 | | 6640.479 | -3 | 6546.784 | -2 | 6701.148 | 0 | 6609.334 | -1 | 6681.656 | 16 | 6588.830 | -10 | | 56.5 | 6653.686 | | 6559.616 | | 6639.244 | 2 | 6543.899 | -2 | 6700.167 | 0 | 6606.724 | 1 | CC70.003 | _ | 6585.815 | | | 57.5 | 6652.693 | | 6556.973 | | 6637.958 | -10 | 6540.982 | -2 | 6699.150 | -2 | 6604.090 | 13 | 6678.803 | -5 | 6582.759 | -2 | | 58.5 | 6651.664 | | 6554.303 | | 6636.659 | -4
2 | 6538.034 | -1 | 6698.094 | -9
- | 6601.393 | -3 | 6677.328 | -6
2 | 6579.665 | | | 59.5 | 6650.608 | | 6551.600 | | 6635.326 | 2 | 6535.053 | -2 | 6697.012 | -6 | 6598.684 | 0 | 6675.824 | 2 | 6576.536 | | | 60.5 | 6649.517 | | 6548.866 | | 6633.958 | 5 | 6532.039 | -3
1 | 6695.900 | 1 | 6595.935 | -2
28 | 6674.280 | 8 | 6573.370 | 6 | | 61.5 | 6648.394 | | 6546.101 | | 6632.552 | 3 | 6528.999 | 1 | 6694.743 | -3
17 | 6593.129 | -28 | 6672.694 | 10 | 6570.166 | | | 62.5 | 6647.231 | | 6543.306 | | 6631.115 | 2 | 6525.910 | -13 | 6693.542 | -17 | 6590.342 | -2 | 6660 200 | , | 6566.920 | 6 | | 63.5 | 6646.063 | | 6540.482 | | 6629.648 | 4 | 6522.815 | -l | 6692.336 | 0 | 6587.495 | -2 | 6669.389 | -l | 6560 216 | • | | 64.5 | 6644.839 | | 6537.625 | | 6628.146 | 3 | 6519.676 | -1 | 6691.074 | -6 | 6584.615 | -2 | 6667.699 | 14 | 6560.316 | | | 65.5 | 6643.591 | -8 | 6534.737 | | 6626.619 | 9 | 6516.507 | 0 | 6689.781 | -8 | (570.747 | 10 | 6665.947 | 7 | 6556.973 | | | 66.5 | | | 6531.821 | . 1 | 6625.049 | 4 | 6513.306 | -1 | 6688.452 | -10 | 6578.747 | -10 | 6664.133 | -23 | 6553.563 | -2 | Note. O-C are observed minus calculated line positions in units of $10^{-3}~{\rm cm}^{-1}$. TABLE 2—Continued | | | | 0-0 Band | | | | | | | | | 1-1 Band | | | | | | | |---|--|---|--|--|---|--|--|---|--|---|--|--|---|---|--|--|--|--| | J | Ree | о-с | Pee | о-с | Rff | о-с | Pff | 0-С | Ree | о-с | Pee | о-с | Rff | о-с | Pff | о-с | | | | 67.5 | 6641.008 | -3 | 6528.880 | 7 | 6623.459 | 11 | 6510.075 | -1 | 6687.101 | -1 | 6575.764 | -13 | 6662.328 | -5 | 6550.145 | 13 | | | | 68.5 | 6639.664 | | 6525.910 | | 6621.824 | 6 | 6506.811 | -3 | 6685.701 | -6 | 6572.764 | 0 | 6660.475 | 5 | 6546.682 | 20 | | | | 69.5 | 6638.292 | | 6522.891 | 2 | 6620.160 | 3 | 6503.522 | 2 | 6684.273 | -4 | 6569.716 | -1 | ((5((22 | 0 | 6543.159 | 5 . | | | | 70.5 | 6636.894 | -3 | 6519.853 | 0 | 6618.469 | 4 | 6500.196 | -1
-2 | 6682.809 | -4
1 | 6566.637 | 0 | 6656.633
6654.651 | 9
9 | 6539.608
6536.022 | . 0 | | | | 71.5
72.5 | | | 6516.788 | 2 | 6616.745
6614.989 | 3 | 6496.841
6493.459 | 1 | 6681.315 | 1 | 6560.376 | -1 | 6652.632 | 13 | 6532.403 | 4 | | | | 73.5 | | | 6510.570 | 2 | 6613.206 | 7 | 6490.042 | -2 | 6678.196 | -15 | 6557.184 | -13 | 6650.562 | 7 | 6528.760 | 24 | | | | 74.5 | | | 6507.417 | | 6611.389 | 8 | 6486.597 | -3 | 6676.604 | -3 | | | 6648.448 | -2 | 6525.015 | -20 | | | | 75.5 | | | | | 6609.541 | 9 | 6483.123 | -2 | 6674.970 | 2 | 6550.740 | 4 | 6646.296 | -8 | | | | | | 76.5 | | | 6501.021 | 0 | | | 6479.622 | 2 | 6673.306 | 11 | 6547.457 | 1 | 6644.108 | -10 | 6517.505 | -8 | | | | 77.5 | | | 6497.784 | 2 | 6605.750 | 8 | 6476.085 | -1 | 6671.608 | 21 | 6544.148 | 6 | 6641.881 | -8 | | | | | | 78.5 | | | 6494.517 | 3 | 6603.802 | 2 | 6472.523 | 0 | 6669.859 | 17 | 6540.794 | 1 | | | 6509.820 | -14 | | | | 79.5 | | | 6491.221 | 3 | 6601.830 | 2 | 6468.927 | -2 | 6668.085 | 22 | 6537.426 | 14 | 6637.318 | 11 | 6505.913 | -21 | | | | 80.5 | 6610 400 | | 6487.894 | | 6599.815 | -9 | 6465.308 | 1 | 6666.252 | 3
-5 | 6534.007
6530.549 | 10
1 | | | | | | | | 81.5 | 6619.499 | | 6484.540
6481.159 | -1
-2 | 6597.802
6595.736 | 10
8 | 6461.654
6457.977 | -1
3 | 6664.395 | -3 | 6527.071 | 6 | | | | | | | | 82.5
83.5 | 6617.739
6615.951 | | 6477.755 | 1 | 6593.638 | 3 | 6454.263 | -2 | | | 6523.563 | 14 | | | | | | | | 84.5 | 0015.551 | 2 | 6474.327 | 8 |
0575.050 | , | 6450.527 | 0 | 6658.622 | -15 | 6520.000 | 2 | | | | | | | | 85.5 | 6612.294 | 6 | 6470.862 | 5 | | | 0.00.002. | | | | | | | | | | | | | 86.5 | 6610.420 | | 6467.369 | 2 | | | 6442.967 | 2 | | | 6512.816 | 21 | | | | | | | | 87.5 | 6608.511 | -4 | 6463.856 | 5 | | | 6439.142 | 1 | | | | | | | | | | | | 88.5 | 6606.586 | | 6460.310 | 2 | 6582.720 | 1 | 6435.294 | 4 | | | | | | | | | | | | 89.5 | 6604.632 | | | | 6580.449 | 1 | 6431.409 | -1 | | | | | | | | | | | | 90.5 | 6602.644 | -1 | 6453.144 | | 6578.152 | 5 | 6427.503 | 0 | | | | | | | | | | | | 91.5 | (500 505 | • | 6449.525 | 4 | 6575.825 | 8 | 6423.558 | -10 | | | | | | | | | | | | 92.5
93.5 | 6598.595
6596.523 | | 6445.878
6442.198 | | 6573.457
6571.078 | -1
8 | 6419.615 | 10 | | | | | | | | | | | | 94.5 | 6594.429 | | 6438.514 | | 6568.647 | -7 | 6411.594 | -3 | | | | | | | | | | | | 95.5 | 6592.306 | | 6434.775 | | 6566.196 | -14 | 6407.548 | -5 | | | | | | | | | | | | 96.5 | 6590.164 | | 6431.025 | -1 | | | | | | | | | | | | | | | | 97.5 | 6587.989 | -5 | 6427.249 | -2 | | | | | | | | | | | | | | | | 98.5 | | | 6423.454 | 3 | | | | | | | | | | | | | | | | 99.5 | | | | | 6556.142 | -6 | | | | | | | | | | | | | | 100.5 | | | | | | _ | | | | | | | | | | | | | | 100.5 | | | | | 6553.563 | 0 | | | | | | | | | | | | | | 100.5 | | | (| 0-1 I | | 0 | | | | | | 1-2 H | Band | | | | | | | J | Ree | 0-С | Pee | 0-1 I | 6553.563 | O-C | Pff | 0-C | Ree | 0-С | Pee | 1-2 I
0-C | Band
Rff | O-C | Pff | 0-С | | | | | Ree | 0-C | | | 6553.563
Band | | Pff | о-с | Ree | 0-С | | | | O-C | Pff | 0-C | | | | J | Ree | 0-С | | | 6553.563
Band | | Pff | 0-C | Ree | 0-С | Pee 5783.952 | O-C | Rff
5787.345
5787.933 | 9 | Pff | 0-C | | | | J
1.5
2.5
3.5 | Ree | 0-C | Pee 5728.562 | 0-C | 6553.563 Band Rff 5734.240 | O-C | | | Ree | O-C | Pee 5783.952 5783.183 | O-C | Rff
5787.345
5787.933
5788.485 | 9
8
2 | | | | | | J
1.5
2.5
3.5
4.5 | Ree | O-C | Pee 5728.562 5727.737 | -6
10 | 6553.563 3and Rff 5734.240 5734.811 | O-C | 5725.797 | 3 | ************************************** | | Pee 5783.952 5783.183 5782.364 | O-C 14 15 -4 | Rff 5787.345 5787.933 5788.485 5789.003 | 9
8
2
-9 | 5780.153 | 15 | | | | J
1.5
2.5
3.5
4.5
5.5 | Ree | 0-С | Pee 5728.562 5727.737 5726.856 | -6
10
0 | 6553.563 Band Rff 5734.240 5734.811 5735.347 | O-C
8
4
-5 | 5725.797
5724.674 | 3 5 | 5790.903 | 4 | Pee
5783.952
5783.183
5782.364
5781.539 | 0-C 14 15 -4 2 | Rff
5787.345
5787.933
5788.485
5789.003
5789.507 | 9
8
2
-9 | 5780.153
5778.988 | 15
9 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5 | Ree | O-C | Pee
5728.562
5727.737
5726.856
5725.977 | -6
10
0
22 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 | O-C 8 4 -5 -9 | 5725.797
5724.674
5723.517 | 3
5
1 | 5790.903
5791.693 | 4 -4 | Pee
5783.952
5783.183
5782.364
5781.539
5780.671 | O-C 14 15 -4 2 -5 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 | 9
8
2
-9
-2 | 5780.153
5778.988
5777.786 | 15
9
-3 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5 | Ree | o-c | Fee 5728.562 5727.737 5726.856 5725.977 5725.018 | -6
10
0
22
-7 | 6553.563 Rff 5734.240 5734.811 5735.347 5735.858 5736.359 | 8
4
-5
-9
7 | 5725.797
5724.674 | 3
5
1 | 5790.903
5791.693
5792.454 | 4 | Pee
5783.952
5783.183
5782.364
5781.539
5780.671
5779.778 | 0-C 14 15 -4 2 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 | 9
8
2
-9 | 5780.153
5778.988 | 15
9 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5 | Ree | O-C | Pee
5728.562
5727.737
5726.856
5725.977 | -6
10
0
22
-7
8 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 | O-C 8 4 -5 -9 | 5725.797
5724.674
5723.517 | 3
5
1 | 5790.903
5791.693 | 4
-4
-9 | Pee
5783.952
5783.183
5782.364
5781.539
5780.671 | O-C 14 15 -4 2 -5 -8 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 | 9
8
2
-9
-2
-1
4 | 5780.153
5778.988
5777.786
5776.564 | 15
9
-3
-5 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5 | Ree
5739.743 | | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073 | -6
10
0
22
-7
8
-3 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.359 5736.798 | 8
4
-5
-9
7
-10 | 5725.797
5724.674
5723.517
5722.321 | 3
5
1
-11 | 5790.903
5791.693
5792.454 | 4
-4
-9 | Pee 5783.952 5783.183 5782.364 5781.539 5780.671 5779.778 5778.857 | O-C 14 15 -4 2 -5 -8 -8 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 | 9
8
2
-9
-2
-1
4
3 | 5780.153
5778.988
5777.786
5776.564
5775.326
5774.039
5772.717 | 15
9
-3
-5
8 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5 | | -12 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5723.073 | -6
10
0
22
-7
8
-3
-5 | 6553.563 3 and Rff 5734.240 5734.811 5735.347 5736.359 5736.359 5736.798 5737.243 | 8
4
-5
-9
7
-10
9 | 5725.797
5724.674
5723.517
5722.321
5719.876 | 3
5
1
-11 | 5790.903
5791.693
5792.454
5793.197 | 4
-4
-9
-3 | Pee 5783.952 5783.183 5782.364 5781.539 5780.671 5779.778 5778.857 | O-C 14 15 -4 2 -5 -8 -8 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 | 9
8
2
-9
-2
-1
4
3 | 5780.153
5778.988
5777.786
5776.564
5775.326
5774.039 | 15
9
-3
-5
8
2 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5 | 5739.743
5740.375
5740.974 | -12
-1
7 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929 | -6
10
0
22
-7
8
-3
-5
2
-4 | 6553.563 Rff 5734.240 5734.811 5735.347 5735.858 5736.359 5736.798 5737.432 5737.622 5737.995 5738.327 | 8
4
-5
-9
7
-10
9
-8
-2
-7 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600 | 3
5
1
-11 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844 | 4
-4
-9
-3
-1
3
-2 | 783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912 | O-C 14 15 -4 2 -5 -8 -8 -2 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2 | 5780.153
5778.988
5777.786
5776.564
5775.326
5774.039
5772.717
5771.388 | 15
9
-3
-5
8
2
-9
4 | | | | J 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 | 5739.743
5740.375
5740.974
5741.515 | -12
-1
7
-14 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5722.053
5721.012
5719.929
5718.846 | -6
10
0
22
-7
8
-3
-5
2
-4
20 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.359 5737.243 5737.622 5737.995 | 8
4
-5
-9
7
-10
9
-8
-2 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974 | 3
5
1
-11
0
-4
-2
3 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439 | 4
-4
-9
-3
-1
3
-2
7 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917 | O-C 14 15 -4 2 -5 -8 -8 -2 -5 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4 | 5780.153
5778.988
5777.786
5776.564
5775.326
5774.039
5772.717
5771.388
5768.617 | 15
9
-3
-5
8
2
-9
4 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
11.5
12.5
13.5
14.5 | 5739.743
5740.375
5740.974
5741.515
5742.056 | -12
-1
7
-14
-5 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929
5718.846
5717.692 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2 | 6553.563 3and Rff 5734.240 5734.811 5735.347 5735.858 5736.359 5736.798 5737.243 5737.622 5737.95 5738.347 5737.624 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218 | 3
5
1
-11
0
-4
-2
3 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989 | 4
-4
-9
-3
-1
3
-2
7 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5773.809
5772.717 | 0-C 14 15 -4 2 -5 -8 -2 -5 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5799.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.616 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0 | 5780.153
5778.988
5777.786
5776.564
5775.326
5774.039
5772.717
5771.388
5768.617
5767.179 | 15
9
-3
-5
8
2
-9
4 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5 | 5739.743
5740.375
5740.974
5741.515
5742.056
5742.564 | -12
-1
7
-14
-5 |
5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5722.053
5721.012
5719.929
5718.846 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2 | 6553.563 3 and Rff 5734.240 5734.811 5735.347 5735.858 5736.359 5736.798 5737.243 5737.622 5737.995 5738.327 5738.647 5739.161 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5711.803 | 3
5
1
-11
0
-4
-2
3 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989
5797.509 | 4
-4
-9
-3
-1
3
-2
7
1
-6 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5773.809
5772.717
5771.579 | 0-C 14 15 -4 2 -5 -8 -8 -2 -5 -2 6 -2 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.616 5792.805 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3 | 5780.153
5778.988
5777.786
5776.564
5775.326
5774.039
5772.717
5771.388
5768.617
5767.179 | 15
9
-3
-5
8
2
-9
4 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5 | 5739.743
5740.375
5740.974
5741.515
5742.056
5742.564
5743.035 | -12
-1
7
-14
-5
0 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5723.073
5722.053
5721.012
5719.929
5718.846
5717.692
5716.527 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.798 5736.798 5737.243 5737.622 5737.995 5738.327 5738.647 5739.161 5739.387 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5711.803
5710.356 | 3
5
1
-11
0
-4
-2
3
-2
3
5 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989
5797.509
5798.008 | 4
-4
-9
-3
-1
3
-2
7
1
-6
-3 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5773.809
5772.717
5771.579
5770.426 | 0-C 14 15 -4 2 -5 -8 -8 -2 -5 -2 6 -2 5 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.397 5792.616 5792.805 5792.956 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3
-13 | 5780.153
5778.988
5777.564
5775.326
5774.039
5772.717
5771.388
5768.617
5767.179
5765.717 | 15
9
-3
-5
8
2
-9
4
6
0
1
3 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
10.5
11.5
12.5
13.5
14.5
14.5
15.5
16.5 | 5739.743
5740.375
5740.974
5741.515
5742.056
5742.564
5743.035
5743.481 | -12
-1
7
-14
-5
0
-3
-1 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929
5718.846
5717.692
5716.527 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.295 5736.798 5737.243 5737.622 5737.995 5738.327 5738.647 5739.387 5739.575 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5711.803 | 3
5
1
-11
0
-4
-2
3 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989
5797.509
5798.008
5798.475 | 4
-4
-9
-3
-1
3
-2
7
1
-6
-3
-3 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5773.809
5772.717
5771.579
5770.426
5769.217 | 0-C 14 15 -4 2 -5 -8 -8 -2 -5 -2 6 -2 | Rff 5787.345 5787.933 5788.485 5789.003 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.616 5792.805 5792.956 5793.102 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3 | 5780.153
5778.988
5777.786
5775.326
5774.039
5772.717
5771.388
5768.617
5765.717
5764.226
5762.702 | 15
9
-3
-5
8
2
-9
4
6
0
1
3
3 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5 | 5739.743
5740.375
5740.974
5741.515
5742.056
5742.564
5743.035 | -12
-1
7
-14
-5
0
-3
-1
3 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929
5718.846
5717.692
5716.527 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2
2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.798 5736.798 5737.243 5737.622 5737.995 5738.327 5738.647 5739.161 5739.387 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5711.803
5710.356 | 3
5
1
-11
0
-4
-2
3
-2
3
5 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989
5797.509
5798.008 | 4
-4
-9
-3
-1
3
-2
7
1
-6
-3 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5773.809
5772.717
5771.579
5770.426 | O-C 14 15 -4 2 -5 -8 -8 -2 -5 -2 6 -2 5 -14 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.397 5792.616 5792.805 5792.956 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3
-13
1 | 5780.153
5778.988
5777.564
5775.326
5774.039
5772.717
5771.388
5768.617
5767.179
5765.717 | 15
9
-3
-5
8
2
-9
4
6
0
1
3 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5 | 5739.743
5740.375
5740.974
5741.515
5742.056
5742.564
5743.035
5743.481
5743.900 | -12
-1
7
-14
-5
0
-3
-1
3
-6 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929
5718.846
5717.692
5716.527
5714.105
5712.851
5711.571 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2
2
2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.295 5736.798 5737.243 5737.622 5737.995 5738.327 5738.647 5739.387 5739.575 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5711.803
5710.356
5708.872 | 3
5
1
-11
0
-4
-2
3
-2
3
5
-1 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989
5797.509
5798.008
5798.475
5798.914 | 4
-4
-9
-3
-1
3
-2
7
1
-6
-3
-3
0 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5773.809
5772.717
5771.579
5770.426
5769.217
5768.008 | O-C 14 15 -4 2 -5 -8 -2 -5 -2 6 -2 5 -14 -4 | Rff 5787.345 5787.933 5788.485 5789.003 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.616 5792.805 5792.956 5793.102 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3
-13
1 | 5780.153
5778.988
5777.786
5775.326
5774.039
5772.717
5771.388
5768.617
5765.717
5765.717
5764.226
5762.702
5761.148 | 15
9
-3
-5
8
2
-9
4
6
0
1
3
3
2 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5
19.5 | 5739.743
5740.375
5740.974
5741.515
5742.564
5743.035
5743.481
5743.900
5744.275 | -12
-1
7
-14
-5
0
-3
-1
3
-6 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929
5718.846
5717.692
5716.527 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2
2
-2
-3
-1
-2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.295 5736.798 5737.243 5737.622 5737.995 5738.327 5738.647 5739.387 5739.575 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5711.803
5710.356
5708.872 | 3
5
1
-11
0
-4
-2
3
-2
3
5
-1 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989
5797.509
5798.008
5798.475
5798.914
5799.333 | 4
-4
-9
-3
-1
3
-2
7
1
-6
-3
-3
0
12 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5773.809
5772.717
5771.579
5770.426
5769.217
5768.008
5766.759 | O-C 14 15 -4 2 -5 -8 -8 -2 -5 -2 6 -2 5 -14 -4 | 787.345
5787.345
5787.933
5788.485
5789.003
5789.507
5789.975
5790.417
5790.822
5791.188
5791.547
5791.858
5792.141
5792.397
5792.616
5792.805
5792.956
5793.102
5793.197 |
9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3
-13
1
-3 | 5780.153
5778.988
5777.786
5776.564
5775.326
5774.039
5772.717
5761.179
5765.717
5765.717
5765.717
5762.702
5761.148
5759.562 | 15
9
-3
-5
8
2
-9
4
6
0
0
1
3
3
2 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
19.5
19.5
20.5 | 5739.743
5740.375
5740.974
5741.515
5742.056
5742.564
5743.431
5743.900
5744.275
5744.638 | -12
-1
7
-14
-5
0
-3
-1
3
-6
0
4 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929
5718.846
5717.692
5716.527
5712.851
5711.571
5710.259 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2
2
-2
-3
-1
-2
2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.295 5736.798 5737.243 5737.622 5737.995 5738.327 5738.647 5739.387 5739.575 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5710.356
5708.872
5705.829
5704.271 | 3
5
1
-111
0
-4
-2
3
5
-1 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989
5797.509
5798.008
5798.475
5798.914
5799.333
5799.694 | 4 -4 -9 -3 -1 3 -2 7 1 -6 -3 -3 0 12 -3 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5771.579
5770.426
5769.217
5768.008
5766.759
5765.478
5764.174
5762.838 | O-C 14 15 -4 2 -5 -8 -8 -2 -5 -2 6 -2 5 -14 -4 -4 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.616 5792.805 5792.956 5793.102 5793.197 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3
-13
1
-3 | 5780.153
5778.988
5777.786
5776.564
5775.326
5774.039
5772.717
5771.388
5768.617
5765.717
5764.226
5762.702
5761.148
5759.562
5757.948 | 15
9
-3
-5
8
2
-9
4
6
0
1
3
3
2
1
1 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
10.5
11.5
12.5
13.5
14.5
17.5
18.5
19.5
20.5
20.5
21.5
22.5
23.5 | 5739.743
5740.375
5740.974
5741.515
5742.056
5742.564
5743.035
5743.481
5743.900
5744.275
5744.638
5744.969 | -12
-1
7
-14
-5
0
-3
-1
3
-6
0
4
-11 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5723.073
5722.053
5721.012
5719.929
5716.527
5714.105
5712.851
5711.571
5710.259
5708.923
5707.553
5706.156 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2
2
2
-2
-3
-1
-2
2
2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.739 5737.243 5737.622 5737.995 5738.327 5738.647 5739.161 5739.387 5739.575 5739.743 | 8
4
-5
-9
7
-10
9
-8
-2
-7
6 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5711.803
5710.356
5708.872
5705.829
5704.271
5702.666
5701.045
5699.392 | 3
5
1
-111
0
-4
-2
3
-2
3
5
-1 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5797.509
5798.008
5798.475
5798.914
5799.333
5799.694
5800.046
5800.351
5800.644 | 4 -4 -9 -3 -1 3 -2 7 1 -6 -3 -3 0 12 -3 2 -10 -3 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5777.912
5775.917
5773.809
5772.717
5771.579
5770.426
5769.217
5768.008
5766.759
5765.478
5764.174
5762.838
5761.470 | O-C 14 15 -4 2 -5 -8 -8 -2 -5 -14 -4 -6 -2 -1 -1 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.616 5792.397 5793.102 5793.102 5793.131 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3
-13
1
-3
5 | 5780.153
5778.988
5777.786
5775.326
5774.039
5772.717
5771.388
5768.617
5765.717
5764.226
5762.702
5761.148
5759.562
5757.948 | 15 9 -3 -5 8 2 -9 4 6 0 1 3 3 2 1 1 1 -1 3 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
10.5
11.5
12.5
13.5
14.5
14.5
19.5
20.5
21.5
22.5
23.5
24.5 | 5739.743
5740.375
5740.974
5741.515
5742.564
5742.564
5743.035
5743.481
5743.900
5744.275
5744.638
5744.969
5745.251
5745.522 | -12
-1
7
-14
-5
0
-3
-1
3
-6
0
4
-111
-8 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929
5716.527
5712.851
5711.571
5710.259
5708.923
5707.553 | -6
10
0
22
-7
8
-3
-5
2
-4
20
2
2
2
-2
-3
-1
-2
2
2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.232 5737.243 5737.622 5737.995 5738.327 5738.647 5739.387 5739.743 | O-C 8 4 -5 -9 7 -10 9 -8 -2 -7 6 -5 3 2 11 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5715.974
5713.218
5711.803
5710.356
5708.872
5705.829
5704.271
5702.666
5701.045
5699.392
5697.706 | 3
5
1
-111
0
-4
-2
3
5
-1
0
8
-2
2
3
0 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5796.989
5798.008
5798.475
5798.914
5799.333
5799.694
5800.046
5800.351
5800.644
5800.905 | 4 -4 -9 -3 -1 3 -2 7 1 -6 -3 -3 0 12 -3 0 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5778.857
5777.912
5775.917
5773.809
5772.717
5771.579
5770.426
5769.217
5768.008
5766.759
5765.478
5764.174
5762.838
5761.470
5760.079 | O-C 14 15 -4 2 -5 -8 -8 -2 -5 -14 -4 -4 -6 -2 -1 -1 4 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.616 5792.805 5793.102 5793.197 5793.313 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3
-13
1
-3
5 | 5780.153
5778.988
5777.786
5775.326
5774.039
5772.717
5771.388
5768.617
5765.717
5764.226
5762.702
5761.148
5759.562
5757.948 | 15 9 -3 -5 8 2 -9 4 6 0 1 3 3 2 1 1 1 -1 3 3 | | | | J
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
10.5
11.5
12.5
13.5
14.5
16.5
17.5
18.5
20.5
20.5
22.5
23.5 | 5739.743
5740.375
5740.974
5741.515
5742.056
5742.564
5743.035
5743.481
5744.969
5744.275 | -12
-1
7
-14
-5
0
-3
-1
3
-6
0
4
-11
-8 | 5728.562
5727.737
5726.856
5725.977
5725.018
5724.073
5722.053
5721.012
5719.929
5718.846
5717.692
5716.527
5714.105
5712.851
5711.571
5710.259
5708.923
5707.553
5706.156
5704.714 | -6
10
0
222
-7
8
-3
-5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6553.563 Band Rff 5734.240 5734.811 5735.347 5735.858 5736.739 5737.243 5737.622 5737.995 5738.327 5738.647 5739.161 5739.387 5739.575 5739.743 | 8 4 4 -5 -9 7 -10 9 -8 -2 -7 6 -5 3 2 11 | 5725.797
5724.674
5723.517
5722.321
5719.876
5718.600
5717.300
5715.974
5713.218
5711.803
5710.356
5708.872
5705.829
5704.271
5702.666
5701.045
5699.392 | 3
5
1
-111
0
-4
-2
3
-2
3
5
-1 | 5790.903
5791.693
5792.454
5793.197
5794.582
5795.233
5795.844
5796.439
5797.509
5798.008
5798.475
5798.914
5799.333
5799.694
5800.046
5800.351
5800.644 | 4 -4 -9 -3 -1 3 -2 7 1 -6 -3 -3 0 12 -3 2 -10 -3 | 5783.952
5783.183
5782.364
5781.539
5780.671
5779.778
5777.912
5775.917
5773.809
5772.717
5771.579
5770.426
5769.217
5768.008
5766.759
5765.478
5764.174
5762.838
5761.470 | O-C 14 15 -4 2 -5 -8 -8 -2 -5 -14 -4 -6 -2 -1 -1 | Rff 5787.345 5787.933 5788.485 5789.003 5789.507 5789.975 5790.417 5790.822 5791.188 5791.547 5791.858 5792.141 5792.397 5792.616 5792.397 5793.102 5793.102 5793.131 | 9
8
2
-9
-2
-1
4
3
-7
6
3
2
4
0
-3
-13
1
-3
5 | 5780.153
5778.988
5777.786
5775.326
5774.039
5772.717
5771.388
5768.617
5765.717
5764.226
5762.702
5761.148
5759.562
5757.948 | 15 9 -3 -5 8 2 -9 4 6 0 1 3 3 2 1 1 1 -1 3 | | | TABLE 2—Continued | | 0-1 Band | | | | | | | | | 1-2 Band | | | | | | | |--------------|----------------------|------|----------------------|-----|----------------------|------------|----------------------|------------|----------------------|----------|----------------------|---------|----------------------|----------|----------------------|-----------------| | J | Ree | о-с | Pee | о-с | Rff | о-с | Pff | о-с | Ree | о-с | Pee | O-C | Rff | о-с | Pff | о-с | | 27.5 | 5746.310 | -1 | 5700.275 | -1 | 5739.843 | 7 | 5692.486 | 1 | 5801.492 | -6 | 5755.709 | 0 | 5792.717 | 2 | 5745.795 | 0 | | 28.5 | 5746.434 | | 5698.734 | | 5739.701 | 0 | 5690.687 | 1 | 5801.634 | -2 | 5754.194 | -I | 5792.518 | 11 | 5743.938 | 1 - | | 29.5 | 5746.531 | | 5697.161 | | 5739.529 | -8 | 5688.873 | 14 | | _ | 5752.652 | 0 | 5792.265 | -2 | 5742.056 | 7 | | 30.5 | 5746.576 | | 5695.569
 | 5739.337
5739.115 | -6
-4 | 5687.006 | 2 | 5801.831
5801.883 | 7
10 | 5751.081
5749.475 | 1
-3 | 5791.999
5791.693 | 2
-3 | 5740.130
5738.182 | -1
-1 | | 31.5
32.5 | 5746.624 | -5 | 5693.936
5692.282 | | 5738.868 | -4
1 | 5683.211 | 5 | 3001.003 | 10 | 5747.847 | -1 | 5791.359 | -3 | 3730.102 | -1 | | 33.5 | | | 5690.597 | | 5738.588 | 3 | 5681.253 | -10 | | | 5746.195 | 7 | 5791.002 | 4 | 5734.188 | -5 | | 34.5 | | | 5688.873 | | 5738.273 | -2 | 5679.295 | 2 | | | 5744.504 | 5 | 5790.598 | -5 | 5732.155 | 2 | | 35.5 | 5746.484 | -3 | 5687.153 | 3 | 5737.943 | 7 | 5677.292 | -2 | 5801.759 | -14 | 5742.780 | -2 | 5790.174 | -3 | 5730.083 | 1 | | 36.5 | 5746.380 | | 5685.383 | | 5737.565 | -3 | 5675.267 | 0 | 5801.678 | 3 | 5741.032 | -4 | 5789.721 | 1 | | | | 37.5 | 5746.251 | | 5683.587 | | 5737.177 | 6 | 5673.209 | -2 | 5801.542 | -5 | 5739.259 | -1 | | | 5725.848 | -1 | | 38.5 | 5746.068 | | 5681.762 | | 5736.744 | 0 | 5671.136 | 9 | 5801.386 | -3 | 5737.460 | 4 | 5788.710 | -1 | 5723.684
5721.494 | -3
1 | | 39.5 | 5745.886
5745.665 | | 5679.911
5678.033 | | 5736.292
5735.803 | 2
-3 | 5669.015
5666.873 | 0
-2 | 5801.200
5800.987 | -2
1 | 5735.626
5733.760 | 3
-1 | 5788.160
5787.574 | 1
-1 | 5719.267 | -2 | | 40.5
41.5 | 5745.404 | | 5676.128 | | 5735.294 | 0 | 5664.712 | 5 | 5800.737 | -3 | 5731.872 | 1 | 5786.960 | -1 | 5717.012 | -3 | | 42.5 | 5745.146 | | 5674.193 | | 5734.752 | -1 | 5662.509 | -1 | 5800.463 | -3 | 5729.947 | -4 | 5786.315 | 0 | 5714.733 | 4 | | 43.5 | 5744.840 | | 5672.232 | | 5734.188 | 4 | 5660.284 | -3 | 5800.163 | 2 | 5727.999 | -5 | 5785.638 | 0 | 5712.412 | -2 | | 44.5 | 5744.504 | 0 | 5670.242 | -2 | | | 5658.037 | 2 | 5799.822 | -5 | 5726.040 | 13 | 5784.927 | -1 | 5710.066 | -2 | | 45.5 | 5744,143 | 0 | 5668.231 | . 3 | 5732.956 | -4 | 5655.752 | -3 | 5799.468 | 4 | 5724.023 | 1 | 5784.184 | -3 | 5707.692 | 2 | | 46.5 | 5743.762 | | | | 5732.300 | -5 | 5653.457 | 8 | 5799.070 | -2 | 5721.994 | 5 | 5783.409 | -5 | 5705.278 | -4 | | 47.5 | 5743.339 | | 5664.116 | | 5731.622 | -1 | 5651.127 | 13 | 5798.649 | -1 | 5719.929 | 1 | 5782.607 | -2 | 5702.834 | -9 | | 48.5 | 5742.900 | | 5662.021 | | 5730.912 | 1 | 5648.751 | 0 | 5798.201 | 1
0 | 5717.838 | 1
2 | 5781.770 | -3
-3 | 5700.372
5697.867 | -1
-5 | | 49.5
50.5 | 5742.432
5741.926 | | 5659.894
5657.742 | | 5730.171
5729.405 | -1
0 | 5646.362
5643.944 | 0
-1 | 5797.719
5797.210 | 0 | 5715.720
5713.572 | 0 | 5780.900
5780.000 | -3
-2 | 5695.338 | -3
-2 | | 51.5 | 5741.326 | | 5655.567 | | 5728.609 | -1 | 5641.501 | 1 | 5796.671 | -1 | 5711.400 | 4 | 5779.071 | 1 | 5692.775 | -2 | | 52.5 | 5740.846 | | 5653.363 | | 5727.786 | 0 | 5639.028 | -1 | 5796.101 | -3 | 5709.192 | -1 | 5778.101 | -2 | 5690.182 | -1 | | 53.5 | 5740.263 | | 5651.127 | | 5726.936 | 0 | 5636.531 | 0 | 5795.504 | -3 | 5706.965 | 4 | 5777.105 | -1 | 5687.555 | -2 | | 54.5 | 5739.652 | -6 | 5648.879 | 2 | 5726.040 | -17 | 5634.003 | -3 | 5794.878 | -3 | 5704.714 | 12 | 5776.075 | -1 | 5684.900 | 0 | | 55.5 | 5739.023 | | 5646.597 | | 5725.153 | 3 | 5631.454 | -1 | 5794.225 | -1 | | | 5775.007 | -6 | 5682.212 | 0 | | 56.5 | 5738.366 | | 5644.289 | | 5724.223 | 7 | 5628.872 | -4 | 5793.542 | 0 | 5700.099 | 3 | 5773.916 | -2 | 5679.492 | -1 | | 57.5 | 5737.674 | | 5641.953 | | 5723.265 | 10 | 5626.258 | -12 | 5792.842 | 14 | 5697.752 | 0
4 | 5772.790 | 1
0 | 5676.738
5673.959 | -3
0 | | 58.5
59.5 | 5736.968 | 3 7 | 5639.600
5637.208 | | 5722.266
5721.244 | 0
-6 | 5623.635
5620.981 | -4
0 | 5792.090 | 5 | 5695.384
5692.976 | -3 | 5771.629 | U | 5671.136 | - 9 | | 60.5 | 5735.439 | -14 | 5634.799 | | 5721.244 | -0
-1 | 5618.294 | -2 | 5790.511 | -1 | 5690.553 | 3 | | | 5668.300 | 1 | | 61.5 | 5734.660 | | 5632.361 | | 5720.200 | • | 5615.584 | -1 | 5789.676 | -6 | 5688.096 | 3 | 5767.952 | 6 | 5665.420 | -1 | | 62.5 | 5733.843 | | 5629.893 | | 5718.040 | 1 | 5612.847 | -1 | 5788.821 | -2 | 5685.602 | -6 | 5766.659 | 6 | 5662.509 | -1 ['] | | 63.5 | 5733.001 | 9 | 5627.409 | -1 | 5716.913 | -2 | 5610.084 | -2 | 5787.933 | -2 | 5683.097 | 2 | 5765.335 | 10 | 5659.570 | 2 | | 64.5 | | | 5624.899 | | 5715.765 | 1 | 5607.292 | -6 | 5787.017 | 0 | 5680.551 | -4 | 5763.973 | 9 | 5656.597 | 2 | | 65.5 | 5731.238 | | 5622.361 | | 5714.592 | 7 | 5604.478 | - 6 | 5786.073 | 2 | 5677.986 | 1 | 5762.573 | 4 | 5653.605 | 17 | | 66.5 | 5730.306 | | 5619.795 | | 5713.381 | 0 | 5601.643 | 0 | 5785.093 | -1 | 5675.385 | -4
7 | 5761.148 | 7 | 5650.550 | 1
1 | | 67.5
68.5 | 5729.351
5728.378 | | 5617.213
5614.611 | | 5712.151
5710.892 | 1
0 | 5598.776
5595.886 | -2
-1 | 5784.092
5783.048 | 3
-6 | 5672.771
5670.115 | 4 | 5759.692
5758.182 | 14
2 | 5647.479
5644.377 | | | 69.5 | 3/20.3/0 | . 2 | 5611.961 | | 3710.692 | U | 5592.968 | -3 | 5781.993 | 3 | 5667.431 | 1 | 5756.652 | 3 | 5641.237 | 1 | | 70.5 | 5726.360 | 8 (| 5609.314 | | 5708.298 | -1 | 3372.700 | , | 5780.900 | 4 | 5664.712 | و۔ | 5755.086 | 3 | 00111207 | | | 71.5 | 5725.299 | | 5606.628 | | 5706.965 | 3 | 5587.063 | -1 | 5779.778 | 4 | | | 5753.482 | 1 | 5634.861 | -1 | | 72.5 | 5724.223 | 3 -4 | 5603.917 | 0 | 5705.608 | 8 | 5584.065 | -7 | 5778.630 | 9 | 5659.218 | -1 | 5751.850 | 4 | 5631.630 | 4 | | 73.5 | 5723.131 | 3 | | | 5704.215 | 2 | | | 5777.438 | -1 | 5656.429 | 3 | 5750.172 | -3 | 5628.362 | 6 | | 74.5 | 5721.994 | | 5598.440 | | 5702.791 | -7 | 5578.016 | 0 | 5776.230 | 1 | 5653.605 | 0 | 5748.467 | -1 | 5625.046 | -6 | | 75.5 | 5720.861 | | 5595.657 | | 5701.374 | 15 | 5574.946 | -5 | 5775.007 | 19 | 5650.758 | 2 | 5746.717 | -8 | 5621.714 | 0 | | 76.5 | 5719.683 | | 5592.857
5590.024 | | 5699.880 | -15
7 | 5571.863 | 2
-3 | 5773.718
5772.417 | 1
0 | 5647.871
5644.977 | -7
5 | 5743.109 | -23 | 5618.343
5614.925 | 0
-12 | | 77.5
78.5 | 5718.485
5717.259 | | 5587.180 | | 5698.410
5696.888 | 7
-1 | 5568.745
5565.610 | 0 | 5771.086 | -1 | 5642.044 | 6 | 3743.109 | -23 | 5611.487 | | | 79.5 | 5716.014 | | 5584.311 | | 5695.338 | - 9 | 5562.440 | -9 | 3771.000 | -1 | 5639.080 | 4 | | | 3011.107 | | | 80.5 | 5714.733 | | 5581.413 | | 5693.793 | 12 | | - | 5768.337 | -1 | 5636.077 | -8 | | | | | | 81.5 | 5713.452 | | 5578.503 | | 5692.201 | 10 | | | 5766.916 | -2 | 5633.067 | 1 | | | | | | 82.5 | 5712.151 | | 5575.561 | | | | | | | | 5630.020 | 1 | | | | | | 83.5 | 5710.801 | | 5572.607 | | 5688.941 | 6 | | | 5763.973 | -15 | 5626.955 | 12 | | | | | | 84.5 | 5709.436 | | 5569.619 | -5 | 5687.277 | 6 | | | 5762.460 | -17 | 5623.840 | 1 | | | | | | 85.5 | 5708.056 | | | , ^ | 5685.602 | 20 | | | 5760.929 | -7 | 5620.700 | -5 | | | | | | 86.5 | 5706.639 | -6 | 5563.587 | | 5683.877 | 8 | | | | | 5617.543
5614.352 | 0 | | | | | | 87.5
88.5 | | | 5560.557 | , | 5682.125
5680.372 | -7
2 | | | | | 5611.131 | 0
-2 | | | | | | 89.5 | | | | | 5678.581 | -4 | | | | | 2011.131 | -2 | | | | | | | | | | | | • | | | | | | | | | | | | TABLE 3 | | | | | | | | | | |--------------|---------------|-----------------|----------------------|--|--|--|--|--|--| | Spectroscopi | Constants (in | cm^{-1}) for | r ¹⁷⁸ HfN | | | | | | | | | | $X^2\Sigma^+$ | | $[6.7]^2\Sigma^+$ | | | | | |-----------------------------|---------------|---------------|-----------------|-------------------|-----------------|--|--|--| | Const. ^a | v=0 | v=1 | v=2 | v=0 | v=1 | | | | | $T_{\mathbf{v}}$ | 0.0 | 924.26295(87) | 1839.69110(116) | 6654.88281(50) | 7624.83890(104) | | | | | $\mathbf{B_v}$ | 0.4352586(31) | 0.4325814(32) | 0.4299346(32) | 0.4177434(31) | 0.4148042(32) | | | | | $10^7 \times \mathbf{D_v}$ | 3.8390(31) | 3.8696(45) | 3.8633(32) | 3.0907(30) | 3.6219(45) | | | | | $10^{12} \times H_v$ | | 0.154(34) | | | -3.355(38) | | | | | $\gamma_{\rm v}$ | -0.05521(28) | -0.05528(28) | -0.05540(28) | 0.16864(28) | 0.24337(28) | | | | | $10^6\times\gamma_{\rm Dv}$ | | | | 1.986(12) | 6.323(24) | | | | | $10^{10}\times\gamma_{Hv}$ | | | | 0.420(11) | 3.548(34) | | | | ^aNumbers in parentheses are one standard deviation in last digit. very unlikely that the $B^2\Sigma^+$ state will be significantly lower in energy in HfN than in TiN and ZrN. An alternate explanation for the new infrared transition may be that the excited state arises from another low-lying configuration. The 'Hf \equiv N molecule has a nominal triple bond with the unpaired electron located in a nonbonding Hf 6s orbital. The valence electronic configuration of the $X^2\Sigma^+$ state is thus $(1\sigma)^2(1\pi)^4(2\sigma)^2(3\sigma)^1$ with nonbonding 1σ molecular orbital having mainly N 2s character. Using the ScN and TiN calculations for guidance we expect that HfN has two strong π bonds due to the 4 electrons in the 1π orbital made up of mainly Hf $5d\pi$ and N $2p\pi$ atomic orbitals. The weak σ bond results from occupation of the 2σ molecular orbital of mainly Hf $5d\sigma$ and N $2p\sigma$ character. The σ bond is easily broken to give a :Hf=N $^{\bullet}$ structure with a $(1\sigma)^2(1\pi)^4(2\sigma)^1(3\sigma)^2$ configuration. It is this configuration which gives rise to the $[6.7]^2\Sigma^+$ state. The $[6.7]^2\Sigma^+$ transition of HfN | | | $X^2\Sigma^+$ | | [6. | $(7)^2\Sigma^+$ | |-----------------------------|---------------|---------------|----------------|----------------|-----------------| | Const. ^a | v=0 | v=1 | v=2 | v=0 | v=1 | | $T_{\mathbf{v}}$ | 0.0 | 923.89041(65) | 1838.95486(93) | 6654.88959(42) | 7624.46527(83) | | $B_{\rm v}$ | 0.4348938(21) | 0.4322172(21) | 0.4295770(22) | 0.4173938(21) | 0.4144591(22) | | $10^7 \times D_{\rm v}$ | 3.8269(22) | 3.8431(22) | 3.8535(23) | 3.0806(21) | 3.6155(34) | | $10^{12} \times H_v$ | | | | | -3.294(28) | | $\gamma_{\rm v}$ | -0.05457(19) | -0.05463(19) | -0.05465(19) | 0.16912(19) |
0.24384(19) | | $10^6\times\gamma_{\rm Dv}$ | | | | 1.9726(98) | 6.316(19) | | $10^{10}\times\gamma_{Hv}$ | | | | 0.4246(92) | 3.484(26) | ^aNumbers in parentheses are one standard deviation in last digit. | | | ¹⁷⁸ HfN | ¹⁸⁰ HfN | | | | | |---------------------------|---------------|-----------------------------|--------------------|------------------------------|--|--|--| | Const. ^a | $X^2\Sigma^+$ | $[6.7]^2\Sigma^+$ | $X^2\Sigma^+$ | $[6.7]^2\Sigma^+$ | | | | | $\omega_{\rm e}$ | 933.0978(19) | [969.9561(12)] ^b | 932.7164(15) | [969.57568(93)] ^b | | | | | $\omega_{e}x_{e}$ | 4.41741(86) | | 4.41299(65) | | | | | | B_{e} | 0.436585(15) | 0.4192130(38) | 0.436217(18) | 0.4188611(26) | | | | | $\alpha_{_{e}}$ | 0.0026621(86) | 0.0029392(45) | 0.002659(11) | 0.0029347(30) | | | | | r _e | 1.724652(28) | 1.7600229(80) | 1.724678(36) | 1.7600471(57) | | | | TABLE 5 Equilibrium Constants (in cm $^{-1}$) for $^{178}{\rm HfN}$ and $^{180}{\rm HfN}$ thus corresponds to the analogous $A^{1}\Sigma^{+} - X^{1}\Sigma^{+}$ infrared electronic transition of ScN (14) and YN (15). The ScN and YN transitions are between configurations that differ from those of HfN by the addition of a single nonbonding s electron on the metal. The $A^2\Pi$ and $B^2\Sigma^+$ states result from the metal-centered promotion of the Hf 6s electron $(3\sigma$ orbital) to the mainly Hf $6p\pi$ and $6p\sigma$ $(2\pi$ and $4\sigma)$ orbitals. The $A^2\Pi$ and $B^2\Sigma^+$ states are a pure precession pair of states with large Λ -doubling in the regular $A^2\Pi$ state and a large negative spin-rotation constant in the $B^2\Sigma^+$ state. Presumably there is also a low-lying $^2\Delta$ state arising from the promotion of the Hf 6s electron to the Hf $5d\delta$ orbital. Additional low-lying states include a $^4\Delta$ state from the $(1\sigma)^2(1\pi)^4(2\sigma)^1(3\sigma)^1(1\delta)^1$ configuration and a $^2\Pi_i$ state from the $(1\sigma)^2(1\pi)^3(2\sigma)^2(3\sigma)^2$ configuration. Some ab initio calculations on the low-lying states of HfN would be most welcome. The large positive γ constant for the $[6.7]^2\Sigma^+$ state suggests a strong interaction with a nearby ${}^2\Pi$ state. If the $[6.7]^2\Sigma^+$ state $[(1\sigma)^2(1\pi)^4(2\sigma)^1(3\sigma)^2]$ is modeled as a hole in a N $2p\sigma$ orbital then there should be an interaction with an inverted ${}^2\Pi$ state $[(1\sigma)^2(1\pi)^3(2\sigma)^2(3\sigma)^2]$ modeled as a hole in the N $2p\pi$ orbital. The pure precession relationship, $$\gamma = 4AB/\Delta E_{\Pi-\Sigma}$$ predicts a ${}^2\Pi_i$ state about 1000 cm⁻¹ below the $[6.7]^2\Sigma^+$ state using a value of -100 cm^{-1} for the spin-orbit constant, A. The existence of a low-lying inverted ${}^2\Pi$ state below the $A^2\Pi_r$ state is also supported by the negative value of γ in the ground states of TiN and ZrN and, presumably, HfN. Fletcher *et al.* (36) suggest that the configuration $(1\sigma)^2(1\pi)^3(2\sigma)^2(3\sigma)^1(1\delta)^1$ would provide a suitable ${}^2\Pi_i$ state for the interaction with the $X^2\Sigma^+$ state in TiN. Clearly more experimental and theoretical work is necessary to locate the missing low-lying states in TiN, ZrN, and HfN. Although we are not completely confident about the assignment of the lower state of the $[6.7]^2\Sigma^+-X^2\Sigma^+$ transition as the ground state of HfN, it is worthwhile to compare the spectroscopic constants with those of TiN and ZrN. The lower state equilibrium constants for ¹⁸⁰HfN are $\omega_e = 932.7164(15)$ cm⁻¹, $B_e = 0.436217(18)$ cm⁻¹, $\alpha_e = 0.002659(11)$ cm⁻¹, and $r_e = 1.724678(36)$ Å compared with the available data for the ground state of TiN (48), $\omega_e = 1049.28$ cm⁻¹, $B_0 = 0.6211$ cm⁻¹, and $R_0 = 1.5825$ Å. The equilibrium vibrational constants for ZrN are not yet available but $B_0 = 0.4838$ cm⁻¹ and $R_0 = 1.6969$ Å (48). The comparison of the lower state molecular constants of HfN with those of HfO, TiN, and ZrN supports our assignments. ## CONCLUSION We have observed a $^2\Sigma^+ - ^2\Sigma^+$ transition of the previously unknown HfN molecule using a Fourier transform spectrometer. The bands observed in the 5500–6800 cm⁻¹ region have been assigned to a $[6.7]^2\Sigma^+ - X^2\Sigma^+$ transition. A rotational analysis of the 0–0, 1–1, 0–1, and 1–2 bands has been carried out and molecular constants have been determined for the most abundant 178 HfN and 180 HfN isotopomers. The lower electronic state of HfN has an equilibrium bond length of 1.724678(36) Å and an equilibrium vibra- ^aNumbers in parentheses are one standard deviation in last digit. $^{^{\}rm b}\Delta G(1/2)$ values. tional frequency of 932.7164(15) cm⁻¹. More theoretical and experimental work on TiN, ZrN, and HfN is desirable to locate the missing low-lying electronic states and confirm our assignments in HfN. ## **ACKNOWLEDGMENTS** We thank J. Wagner, C. Plymate, and P. Hartmann of the National Solar Observatory for assistance in obtaining the spectra. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. The research described here was supported by funding from the Petroleum Research Fund administered by the American Chemical Society and NASA laboratory astrophysics program. Support was also provided by the Natural Sciences and Engineering Research Council of Canada. #### REFERENCES - C. W. Bauschlicher, Jr., S. P. Walch, and S. R. Langhoff, in "Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry" (A. Veillard, Ed.), NATO ASI Ser. C. Reidel, Dordrecht, 1986. - S. R. Langhoff and C. W. Bauschlicher, Jr., Ann. Rev. Phys. Chem. 39, 181–212 (1988). - M. Dolge, U. Wedig, H. Stoll, and H. Preuss, J. Chem. Phys. 86, 2123– 2131 (1987). - 4. P. E. M. Siegbahn, Chem. Phys. Lett. 201, 15-23 (1993). - C. J. Cheetham and R. F. Barrow, Adv. High Temp. Chem. 1, 7–47 (1967) - M. Grunze, in "The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis" (D. A. King and D. P. Woodruff, Eds.), Vol. 4, p. 143. Elsevier, New York, 1982. - F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry. A Comprehensive Text," 5th ed. Wiley, New York, 1988. - H. Machara and Y. Y. Yamashita, Pub. Astron. Soc. Jpn 28, 135–140 (1976) - D. L. Lambert and R. E. S. Clegg, Mon. Not. R. Astron. Soc. 191, 367–389 (1980). - 10. Y. Yerle, Astron. Astrophys. 73, 346-351 (1979). - 11. B. Lindgren and G. Olofsson, Astron. Astrophys. **84**, 300–303 (1980). - D. L. Lambert and E. A. Mallia, Mon. Not. R. Astron. Soc. 151, 437–447 (1971). - O. Engvold, H. Wöhl and J. W. Brault, Astron. Astrophys. Suppl. Ser. 42, 209–213 (1980). - 14. R. S. Ram and P. F. Bernath, J. Chem. Phys. 96, 6344–6347 (1992). - 15. R. S. Ram and P. F. Bernath, J. Mol. Spectrosc. 165, 97–106 (1994). - 16. R. S. Ram and P. F. Bernath, J. Opt. Soc. Am. B 11, 225–230 (1994). - R. S. Ram, P. F. Bernath, W. J. Balfour, J. CaO, C. X. W. Qian, and S. J. Rixon, J. Mol. Spectrosc. 168, 350–362 (1994). - 18. W. J. Balfour, private communication. - E. J. Friedman-Hill and R. W. Field, J. Chem. Phys. 100, 6141-6152 (1994). - K. Y. Jung, T. C. Steimle, D. Dai, and K. Balasubramanian, J. Chem. Phys. 102, 644–652 (1995). - A. J. Marr, M. E. Flores, and T. C. Steimle, *J. Chem. Phys.* 104, 8183–8196 (1996). - W. J. Balfour, C. X. W. Qian, and C. Zhou, J. Chem. Phys., 106, 4383 – 4388 (1997). - K. L. Kunze and J. F. Harrison, J. Am. Chem. Soc. 112, 3812–3625 (1990). - 24. I. Shim and K. A. Gingerich, Int. J. Quant. Chem. 46, 145-157 (1993). - 25. C. W. Bauschlicher, Jr., Chem. Phys. Lett. 100, 515-518 (1983). - 26. S. M. Mattar, Jr., J. Phys. Chem. 97, 3171-3175 (1993). - 27. J. F. Harrison, J. Phys. Chem. 100, 3513-3519 (1996). - S. M. Mattar and B. J. Doleman, Jr., J. Chem. Phys. Lett. 216, 369–374 (1993). - 29. W. H. Parkinson and E. M. Reeves, Can. J. Phys. 41, 702–704 (1963). - T. M. Dunn, L. K. Hanson, and K. A. Rubinson, Can. J. Phys. 48, 1657–1663 (1970). - J. K. Bates, N. L. Ranieri, and T. M. Dunn, Can. J. Phys. 54, 915–916 (1976). - C. Athénour, J.-L. Féménias, and T. M. Dunn, Can. J. Phys. 60, 109– 116 (1982). - 33. A. E. Douglas and P. M. Veillette, *J. Chem. Phys.* **72**, 5378–5380 (1980). - K. Brabaharan, J. A. Coxon, and A. B. Yamashita, Spectrochim. Acta A 41, 847–850 (1985). - 35. K. Brabaharan, J. A. Coxon, and A. B. Yamashita, *Can. J. Phys.* **63**, 997–1004 (1985). - D. A. Fletcher, C. T. Scurlock, K. Y. Jung, and T. C. Steimle, *J. Chem. Phys.* 99, 4288–4299 (1993). - 37. J. K. Bates and T. M. Dunn, Can. J. Phys. **54**, 1216–1223 (1976). - 38. J. K. Bates and D. M. Gruen, High Temp. Sci. 18, 27-243 (1978). - 39. H. Li, C. M.-T. Chan, and A. S.-C. Cheung, *J. Mol. Spectrosc.* 176, 219–221 (1996). - C. M.-T. Chan, H. Li, N. S.-K. Sze, and A. S.-C. Cheung, J. Mol. Spectrosc. 180, 145–149 (1996). - 41. T. C. DeVore and T. N. Gallaher, *J. Chem. Phys.* **70**, 3497–3501 (1979). - 42. G. Edvinsson and Ch. Nylén, Phys. Scr. 3, 261-266 (1971). - 43. R. S. Ram and P. F. Bernath, J. Mol. Spectrosc. 169, 268–285 (1995). - 44. B. A. Palmer and R. Engleman, "Atlas of the Thorium Spectrum." Los Alamos National Laboratory, Los Alamos, 1983. - J. Brown, E. A. Colbourn, J. K. G. Watson, and F. D. Wayne, *J. Mol. Spectrosc.* 74, 294–318 (1979). - M. Douay, S. A. Rogers, and P. F. Bernath, *Mol. Phys.* 64, 425–436 (1988). - G. Herzberg, "Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules." Van Nostrand–Reinhold, New York, 1950. - K. P. Huber and G. Herzberg, "Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules." Van Nostrand–Reinhold, New York, 1979.