Far- and Mid-Infrared Emission Spectroscopy of LiH and LiD M. Dulick, * K.-Q. Zhang, † B. Guo, † and P. F. Bernath †, 1 *National Solar Observatory, National Optical Astronomy Observatories, P.O. Box 26732, Tucson, Arizona 85726; and †Centre for Molecular Beams and Laser Chemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada Received May 16, 1997; in revised form August 14, 1997 High-resolution Fourier transform spectra of LiH and LiD were recorded in the far-infrared region, 100-360 cm⁻¹, and the mid-infrared regions, 800-1200 cm⁻¹ and 2000-3000 cm⁻¹. A total of 261 pure rotational lines and 678 rovibrational lines were measured for the isotopomers $^6\text{LiH}(D)$ and $^7\text{LiH}(D)$. Molecular constants for the $X^{\,1}\Sigma^{\,+}$ ground state in the form of mass-dependent Dunham Y_{ij} 's and mass-independent Dunham U_{ij} 's were determined from a data set of 1476 lines, consisting of our measured line positions and previously reported microwave, millimeterwave, and infrared lines. An effective internuclear potential for the ground electronic state where the Born-Oppenheimer part is modeled as a parameterized modified-Morse function was also determined from a fit of the data. © 1998 #### I. INTRODUCTION Lithium hydride, the simplest of the metal-bearing diatomic molecules, has long attracted the interest of spectroscopists and theoreticians alike (1, 2). Ever since the inception of quantum chemistry, LiH has been the subject of numerous *ab initio* calculations, some of which served to validate various approximations used in calculating properties of electronic states of more complex diatomics (3-11). Because LiH is one of the lighter known heteronuclear diatomics, it is also becoming an important candidate in spectroscopic studies investigating the effects of breakdown in the Born-Oppenheimer approximation (12-14). Lithium hydride may also be of prospective interest to astrophysicists as a means of monitoring the evolutionary cycle of the nucleosynthesis of light elements in stars or determining the primordial deuterium to hydrogen cosmic abundance ratio in interstellar clouds (15), an important concern to cosmologists in establishing whether the universe is open or closed. According to Wharton *et al.* (16), LiH has a large dipole moment of 5.882 D. As a result, submillimeter emission should be easy to detect in interstellar space. Furthermore, detecting submillimeter emission would not be hindered by the great quantities of dust and gas that frequently surround galactic cores, which are opaque to the transmission of visible light used to monitor the atomic absorption of lithium (the D lines). However, attempts to de- ¹ Also Department of Chemistry, University of Arizona, Tucson, AZ 85721. tect interstellar LiH(D) submillimeter emission so far have not been successful (17). Prior to 1990, precise information about the properties of the $X^{1}\Sigma^{+}$ ground electronic state was obtained either directly from SCF calculations (18–22) or indirectly from the analysis of electronic spectra (2, 23) $(A^{1}\Sigma^{+} - X^{1}\Sigma^{+})$ and $B^{1}\Pi$ $X^{1}\Sigma^{+}$). Only a handful of spectroscopic studies of limited scope were devoted exclusively to the $X^{1}\Sigma^{+}$ ground state. The combined microwave studies by Pearson and Gordy (24) and Plummer et al. (25, 26) managed to measure only the lowest $J = 0 \rightarrow 1$ and $J = 1 \rightarrow 2$ transitions for the first two vibrational states of the hydride and deuteride isotopomers. The low-resolution absorption infrared study by James et al. (27) established the ratio of the first two terms in the dipole moment expansion, while the diode laser spectra recorded by Yamada and Hirota (28) led to the refinement of the vibrational constants obtained from lower-resolution electronic spectra. Since then, Bellini and co-workers (29, 30) extended the number of hydride and deuteride rotational transitions measured in the millimeter region to higher J and v. In a similar fashion, Maki et al. (31) succeeded in measuring an extensive number of rotational absorption lines in both the far- and mid-infrared spectra with a Fourier transform spectrometer. Maki *et al.* were unable to obtain a satisfactory fit of their infrared data to the Dunham potential. Subsequent treatments by Coxon (13) and Ogilvie (14) attributed the failure to inadequate treatment of J-dependent Born–Oppenheimer breakdown. For instance, using a variable- β Morse function to model the Born–Oppenheimer potential and power series expansions to correct for J-independent and J-dependent Born–Oppenheimer breakdown, Coxon was able to success- $FIG.\ 2.$ An expanded portion of the LiH(D) FTS spectrum in the farinfrared region. fully fit the data directly to the numerical eigenvalues of the radial Schrödinger equation to within experimental errors. Ogilvie followed a different approach, using analytical expressions instead to approximate the eigenvalues of the rovibrational levels (similar to the treatment used by Dunham) where both the Born–Oppenheimer potential and corrections TABLE 1 ⁶LiH Infrared Transitions (cm⁻¹)^a | Line | Observed | δ | |-------|-----------|----|-------|-----------|----|-------|------------|---------------|-------|-----------|------------|-------|--------------|----| | | | | | | | (| 1,0) Band | | | | | | | | | P(20) | 1016.4017 | 5 | P(19) | 1035.8072 | 4 | P(18) | 1055.1624 | 2 | P(17) | 1074.4493 | -13 | P(16) | 1093.6552 | 5 | | P(15) | 1112.7571 | 4 | P(14) | 1131.7380 | 1 | P(13) | 1150.5794 | 0 | P(12) | 1169.2612 | -3 | P(11) | 1187.7641 | 1 | | P(10) | 1206.0670 | 4 | P(9) | 1224.1481 | -1 | P(8) | 1241.9875 | 0 | P(7) | 1259.5632 | 1 | P(6) | 1276.8535 | 5 | | P(5) | 1293.8356 | 1 | P(4) | 1310.4886 | 2 | P(3) | 1326.7896 | -3 | P(2) | 1342.7200 | 23 | P(1) | 1358.2525 | 20 | | R(1) | 1402.2633 | 6 | R(2) | 1416.0017 | -3 | R(3) | 1429.2422 | 1 | R(4) | 1441.9654 | 12 | R(5) | 1454.1497 | 5 | | R(6) | 1465.7796 | -2 | R(7) | 1476.8393 | 4 | R(8) | 1487.3100 | -8 | R(9) | 1497.1797 | - 6 | R(10) | 1506.4344 | 8 | | R(11) | 1515.0586 | 8 | R(12) | 1523.0422 | 12 | R(13) | 1530.3727 | 1 | | | | | | | | | | | | | | (| (2,1) Band | | | | | | | | | P(20) | 980.3118 | 2 | P(19) | 999.2130 | 9 | P(18) | 1018.0630 | 12 | P(17) | 1036.8444 | 2 | P(16) | 1055.5429 | 2 | | , | 1074.1398 | -1 | P(14) | | -1 | • / | 1110.9575 | 3 | | 1129.1401 | 3 | P(11) | | -3 | | ` , | 1164.9541 | -1 | P(9) | 1182.5457 | 1 | P(8) | 1199.8989 | 0 | P(7) | 1216.9940 | 13 | P(6) | 1233.8070 | 9 | | P(5) | 1250.3175 | 3 | P(4) | 1266.5050 | 4 | P(3) | 1282.3482 | 14 | P(2) | 1297.8245 | 24 | P(1) | 1312.9098 | 6 | | R(0) | 1341.8348 | 5 | R(1) | 1355.6380 | 69 | R(2) | 1368.9612 | 41 | R(3) | 1381.7915 | -14 | R(4) | 1394.1196 | -2 | | R(5) | 1405.9201 | 6 | R(6) | 1417.1736 | 10 | R(7) | 1427.8685 | 3 | R(8) | 1437.9849 | -13 | R(9) | 1447.5130 | 6 | | R(10) | 1456.4352 | 18 | R(11) | 1464.7378 | 10 | R(12) | 1472.4199 | 90 | | | | , , | | | | | | | | | | (| (3,2) Band | | | | | | | | | P(17) | 999.9757 | -9 | P(16) | 1018.1855 | -2 | P(15) | 1036.2937 | 0 | P(14) | 1054.2833 | 3 | P(13) | 1072.1346 | -8 | | P(12) | 1089.8307 | | ` , | 1107.3527 | | | 1124.6820 | -5 | P(9) | 1141.7971 | 8 | P(8) | 1158.6758 | 4 | | P(7) | 1175.3021 | 30 | P(6) | 1191.6485 | 19 | , , | 1335.3111 | | R(4) | 1347.2540 | 51 | R(6) | 1369.5471 | | | R(7) | 1379.8869 | 31 | R(8) | 1389.6505 | 11 | | 1407.4222 | | ` ' | | | () | - | | ^a Observed – calculated differences (columns labelled δ) are in units of 0.0001 cm⁻¹. TABLE 2 ⁷LiH Infrared Transitions (cm⁻¹)^a | Line | Observed | δ | |---|---|--|--|--|--|---|--|---|--|---|--|---|---|--| | | | | | | | (| 1,0) Band | | | | | | | | | P(13)
P(8)
P(3)
R(2)
R(7)
R(12)
R(17) | 858.0924
953.0989
1048.2310
1141.6337
1231.0857
1314.0902
1401.5062
1461.2695
1506.8724
1536.7673
1550.0721 | -11
-1
0
-2
-2
3
1
-3
-5
-2
24 | P(12)
P(7)
P(2)
R(3)
R(8)
R(13) | 877.0065
972.1691
1067.1161
1159.9171
1248.2857
1329.6872
1414.4975
1471.5815
1514.1464
1540.7717 | -24
2
1
0
-1
5
1
-3
-3 | P(11)
P(6)
P(1)
R(4)
R(9)
R(14) | 895.9782
991.2319
1085.9165
1178.0236
1265.2071
1344.9005
1426.9869
1481.3108
1520.7805
1544.1049 | -2
2
0
-3
0
6
1
-3
-1 | P(15)
P(10)
P(5)
R(0)
R(5)
R(10)
R(15) | 914.9913
1010.2732
1104.6148
1195.9342
1281.8291
1374.0924
1438.9564
1490.4437
1526.7661
1546.7676 | 2
3
-1
-2
0
1
-1
-4
-5
-4 | P(14)
P(9)
P(4)
R(1)
R(6)
R(11)
R(16) |
934.0354
1029.2782
1123.1935
1213.6284
1298.1306
1388.0321
1450.3894
1498.9683
1532.0969
1548.7574 | 0
3
-1
-2
2
6
-2
-3
-7
13 | | | | | | | | (| (2,1) Band | | | | | | | | | P(12)
P(7)
P(2)
R(3)
R(8) | 844.9214
937.6828
1030.1815
1120.5438
1206.5394
1285.6872
1368.0208
1423.2834
1464.2873 | -16 4 4 1 0 6 4 1 -2 | P(11)
P(6)
P(1)
R(4)
R(9) | 863.4188
956.2581
1048.4916
1138.1688
1222.9990
1300.4678
1380.1266
1432.6784
1470.6429 | 0
7
3
0
2
1
4
-2
-1 | P(10)
P(5)
R(0)
R(5)
R(10) | | 16
7
2
1
3
5
1
1
-3 | P(9)
P(4)
R(1)
R(6)
R(11) | 900.5190
993.3248
1084.7909
1172.8201
1255.0146
1342.3484
1402.7903
1449.7003
1481.4389 | 10
4
2
2
4
4
0
-1
7 | P(13)
P(8)
P(3)
R(2)
R(7)
R(12) | 919.0974
1011.7910
1102.7447
1189.8063
1270.5291
1355.4215
1413.3159
1457.3035
1485.8639 | -8 42 0 1 5 -1 0 -1 | | | | | | | | (| (3,2) Band | | | | | | | | | P(7)
P(2)
R(3)
R(8)
R(13) | 885.7132
976.0472
1081.9626
1165.6450
1242.5865
1322.4835
1375.9434
1415.3881
1439.4452 | 10
2
-3
-2
3
-2
-5
-9
5 | P(6)
P(1)
R(4)
R(9) | 903.8303
993.9671
1099.1191
1181.6531
1256.9437
1334.2108
1385.0062
1421.4648 | 5
2
-3
-1
3
-3
-7
6 | P(15)
P(10)
P(5)
R(0)
R(5)
R(10) | 921.9361
1029.5367
1116.0851
1197.3719
1284.4686
1345.4358
1393.4944
1426.9154 | 4
0
-2
3
21
-10
-1
16 | P(9)
P(4)
R(1)
R(6)
R(11) | 940.0176
1047.1530
1132.8410
1212.7805
1297.5938
1356.1442
1401.3946
1431.7316 | 9 -3 -3 3 4 -2 0 8 | P(8)
P(3)
R(2)
R(7)
R(12) | 958.0594
1064.6340
1149.3678
1227.8586
1310.2715
1366.3176
1408.6956
1435.9093 | 8 -8 -1 1 -4 -8 -5 -1 | | | | | | | | (| (4,3) Band | | | | | | | | | P(11)
P(6)
R(1)
R(6) | 975.7707
1060.7993
1141.0945
1253.6882
1310.3676 | 9
6
3
-3
-2 | P(15)
P(10)
P(5)
R(2)
R(7) | 905.8117
993.0454
1077.3114
1156.3754
1265.9767
1320.1916
1360.9541 | 0
3
-3
-5
-6 | P(14)
P(9)
P(4)
R(3)
R(8)
R(14) | 1093.6163
1171.3510
1277.8076
1329.4780 | 6
2
-9
9 | P(13)
P(8)
P(3)
R(4) | 940.9307
1027.2269
1109.6949
1186.0030
1289.1598
1338.2089 | 3
2
2
5 | P(12)
P(7)
P(2)
R(5) | | $1 \\ -2 \\ -4 \\ 12$ | | P(10)
P(4) | | -1
11 | P(9) | 973.8496
1055.0603
1144.8749 | 14 | P(13)
P(8) | 990.4345
1070.7026 | 17 | P(7) | 1006.8596
1086.1011
1255.3722 | 15 | P(6) | 1101.2382 | 5
23
46 | ^a Observed – calculated differences (columns labelled δ) are in units of 0.0001 cm⁻¹. TABLE 2—Continued | Line | Observed | δ | |---|--|---|--|--|---|--|--|--|---------------------------------------|---|---|--|---|---------------------------------| | | | | | | | (| (2,0) Band | | | | | | | | | P(20)
P(15)
P(10)
P(5)
R(1)
R(6) | 2109.9377
2247.9922
2376.3154
2492.1298
2592.5139
2701.6315
2753.6048
2781.6406 | 2
3
1
-4
3
-2
5
16 | P(19)
P(14)
P(9)
P(4)
R(2)
R(7) | 2138.2042
2274.5202
2400.5720
2513.5362
2610.4797
2713.8577
2761.1768
2784.2492 | 26
-6
7
3
-6
17
-5
-15 | P(18)
P(13)
P(8)
P(3)
R(3)
R(8) | 2166.1591
2300.6397
2424.3048
2534.3008
2627.6887
2725.1816
2767.7762
2785.8439 | -3
-15 | P(17) | 2193.7921
2326.3263
2447.4907
2554.4007
2644.1212
2735.5938
2773.3924 | 20
-4
-1
0
1
14
-22 | P(16)
P(11)
P(6)
P(1)
R(5) | 2221.0754
2351.5602
2470.1075
2573.8120
2659.7504
2745.0718
2778.0168 | 3 | | | | | | | | (| (3,1) Band | | | | | | | | | P(17) | 2116.8887
2246.3759
2364.6329
2468.8607
2556.1873
2634.8299
2675.8474 | 3
-4
8
8
-38 | P(16) | 2143.5597
2271.0130
2386.6924
2487.7677
2571.3789
2644.8946
2681.1995 | | P(15)
P(10)
P(5)
R(0)
R(5) | 2169.8624
2295.1795
2408.1684
2505.9763
2599.3202
2654.0403
2685.5789 | 21 | P(14)
P(9)
P(4)
R(1)
R(6) | 2195.7779
2318.8536
2429.0376
2523.4660
2612.0271
2662.2566
2688.9689 | $ \begin{array}{r} 3 \\ -1 \\ 4 \\ 12 \\ -7 \\ -28 \\ 6 \end{array} $ | | 2221.2904
2342.0116
2449.2748
2540.2090
2623.8738
2669.5320 | 4
-9
-4
6
17
-11 | | | | | | | | (| (4,2) Band | | | | | | | | | ` ' | 2118.4492
2238.6813
2346.1833
2438.1650
2555.9707
2590.7759 | $-7 \\ -2$ | P(13)
P(8)
P(3)
R(5) | 2143.3843
2261.2902
2365.9111
2454.4538
2564.7851
2594.8925 | | P(12)
P(7)
R(1)
R(6) | 2167.8961
2283.3650
2384.9962
2524.1910
2572.6910
2598.0500 | -2
-6
-1
26
26
6 | | 2191.9644
2304.8888
2403.4160
2535.6579
2579.6578 | 1
5
12
9
-34 | ` ' | 2215.5669
2325.8354
2421.1431
2546.2568
2585.6921 | -4 | | | | | | | | (| (5,3) Band | | | | | | | | | P(11)
P(6)
R(6) | | 12
3
-30 | P(10)
P(5)
R(7) | 2137.3020
2244.9634
2337.8537
2491.3843
2511.6122 | 10
18
20
-7
3 | P(9)
P(4)
R(8) | 2159.8820
2264.8102
2354.4119
2497.1262 | $\begin{array}{c} 12 \\ -47 \end{array}$ | P(13)
P(8)
P(2)
R(9) | 2181.9613
2284.0471
2385.3674
2501.9384 | -15
35
59
56 | P(7)
R(5) | 2203.5182
2302.6411
2477.1366
2505.7907 | 18 | | | | | | | | (| (6,4) Band | | | | | | | | | , , | 2145.4022
2255.9117 | -70
0 | P(10) | 2165.3501 | -92 | P(9) | 2184.7219 | -28 | P(8) | 2203.4809 | -31 | P(6) | 2239.0929 | -59 | to the breakdown in the Born–Oppenheimer approximation are represented by series expansions involving the expansion variable $z = 2(R - R_e)/(R + R_e)$. The purpose of this paper is to report new measurements of $^6\text{LiH}(D)$ and $^7\text{LiH}(D)$ infrared transitions from Fourier transform spectra in the far- and mid-infrared regions that were obtained by detecting emission rather than monitoring absorption. Most of the rotational transitions measured in the far-infrared spectra (278 lines) overlap with those measured by Maki *et al.* In the mid-infrared, $\Delta v = +1$ rovibrational transitions have now been extended up to vibrational levels v=5 for ^7LiH and v=6 for ^7LiD . In addition, we report the first overtone ($\Delta v=+2$) rotational lines of ^7LiH , which were measured successfully for the first time. ### II. EXPERIMENT The source for producing gas-phase lithium hydride consisted of an evacuated 1.2-m-long mullite tube with water- TABLE 3 ⁶LiD Infrared Transitions (cm⁻¹)^a | Line | Observed | δ | |---|-----------|------------|-------|-----------|------------|-------|-----------|------------|-------|-----------|-----|-------|-----------|-----| | *************************************** | 10. | | | | | (| 1,0) Band | | | | | , | | | | P(25) | 791.7279 | 10 | P(24) | 802.8759 | 2 | P(23) | 813.9958 | -9 | P(22) | 825.0837 | -5 | P(21) | 836.1299 | -27 | | P(20) | 847.1357 | -1 | P(19) | 858.0896 | 20 | P(18) | 868.9826 | 7 | P(17) | 879.8114 | -9 | P(16) | 890.5726 | 2 | | P(15) | 901.2551 | -3 | P(14) | 911.8544 | -3 | P(13) | 922.3631 | -3 | P(12) | 932.7751 | 6 | P(11) | 943.0804 | -7 | | P(10) | 953.2761 | 0 | P(9) | 963.3532 | 8 | P(8) | 973.3028 | 1 | P(7) | 983.1204 | 5 | P(6) | 992.7960 | -7 | | P(5) | 1002.3262 | 4 | P(4) | 1011.7011 | 10 | P(3) | 1020.9113 | - 9 | R(3) | 1080.2638 | 9 | R(4) | 1087.9234 | | | R(5) | 1095.3642 | -9 | R(6) | 1102.5760 | 14 | R(7) | 1109.5491 | 7 | R(8) | 1116.2790 | | R(9) | 1122.7652 | -5 | | R(10) | 1128.9963 | -20 | R(11) | 1134.9735 | 1 | R(12) | 1140.6845 | -16 | R(13) | 1146.1292 | -25 | | | | | | | | | | | (| 2,1) Band | | | | | | | | | P(25) | 770.6177 | 124 | P(24) | 781.5340 | 15 | P(23) | 792.4326 | 6 | P(22) | 803.2992 | 11 | P(21) | 814.1247 | -5 | | P(20) | 824.9084 | 10 | P(19) | 835.6388 | -1 | P(18) | 846.3129 | -5 | P(17) | 856.9249 | 2 | P(16) | 867.4657 | -6 | | P(14) | 888.3142 | -5 | P(13) | 898.6084 | 2 | P(12) | 908.8039 | -13 | P(11) | 918.8987 | -6 | P(10) | 928.8828 | -3 | | P(9) | 938.7497 | -1 | P(8) | 948.4928 | 4 | P(7) | 958.1036 | 1 | P(6) | 967.5741 | -20 | P(5) | 976.9050 | 19 | | P(4) | 986.0791 | 17 | P(3) | 995.0884 | -33 | () | | | ` ' | | | ` ' | | | | | | | | | | (| 3,2) Band | | | | | | | | | P(22) | 781.8501 | - 5 | P(21) | 792.4610 | - 5 | P(20) | 803.0271 | -9 | P(19) | 813.5446 | 8 | P(18) | 824.0033 | 1 | | P(17) | 834.4002 | 3 | P(16) | | -3 | P(15) | 854.9784 | | P(14) | | -6 | P(13) | 875.2355 | 23 | | P(12) | 885.2211 | 8 | P(11) | | 6 | P(10) | 904.8816 | | P(9) | 914.5454 | 24 | , , |
924.0831 | 19 | | P(7) | 933.4898 | 1 | P(6) | 942.7598 | | - () | | | - (-) | | | - (-) | | | | | | | | | | | | | | | | | | | a Observed - calculated differences (columns labelled δ) are in units of 0.0001 cm⁻¹. cooled end windows made of either polyethylene for detecting far-infrared emission or KBr for detecting mid-infrared emission. The cell was heated by enclosing the central portion in a CM Rapid Temp tube furnace. Lithium hydride (or deuteride) was produced by reacting molten lithium, maintained at a temperature of 1050°C, with 20 Torr of hydrogen (or deuterium) gas. High-resolution spectra were recorded by detecting LiH(D) emission with a Bruker IFS 120 HR Fourier transform spectrometer that utilized a 3.5um Mylar beamsplitter and liquid helium-cooled bolometer detector in the far-infrared region, 100-360 cm⁻¹, and a KBr beamsplitter and a HgCdTe detector (800-1200 cm⁻¹) or an InSb detector (2000-3000 cm⁻¹) in the mid-infrared region. The resolution of the spectrometer was set to 0.01 cm⁻¹. Spectra were obtained by transforming interferograms constructed from 100 coadded scans for the far-infrared and 50 coadded scans for the mid-infrared. Two far-infrared spectra are displayed in Figs. 1 and 2. Rotational line positions were measured using Brault's computer program PC-DECOMP and calibrated to absolute wavenumbers by impurity H_2O absorption lines present in all three spectra. Complete lists of measured $^6LiH(D)$ and ⁷LiH(D) lines are given in Tables 1–5. The precision for the sharpest and most intense rotational lines listed in these tables (approximately 65%) is estimated to be 0.0005 cm⁻¹. In Table 5, pure rotational lines in the wavenumber range 100–130 cm⁻¹ were measured to a precision no better than 0.005 cm⁻¹. A problem with the phase correction in transforming the one-sided interferogram in this wavenumber range reduced the precision of the measured line positions. ## III. ANALYSIS To determine the most precise empirical molecular constants for the $X^{1}\Sigma^{+}$ ground state required supplementing our set of infrared measurements with the Plummer *et al.* microwave lines, the Bellini *et al.* millimeter-wave lines, and the Maki *et al.* Fourier transform infrared lines, bringing the total number of lines in the dataset to 1476. Owing to the generally lower precision and redundancy with lines in the infrared Fourier transform spectra, the Yamada and Hirota and the Maki *et al.* lines from diode laser spectra were excluded. The Pearson and Gordy microwave lines were also # TABLE 4 ⁷LiD Infrared Transitions (cm⁻¹)^a | Line | Observed | δ | |----------------|------------------------|---------|--------------|------------------------|------------|--------------|------------------------|-----------|--------------|------------------------|------------|------------------|------------------------|----------| | | | | | | · | (| 1,0) Band | | | | | | | | | P(26) | 771.9909 | 0 | P(25) | 782.7570 | 1 | P(24) | 793.4995 | 1 | P(23) | 804.2179 | 46 | P(22) | 814.8934 | 0 | | 2(21) | 825.5339 | -1 | P(20) | 836.1299 | 2 | P(19) | 846.6747 | 0 | P(18) | 857.1631 | -1 | P(17) | 867.5890 | -1 | | $^{\circ}(16)$ | 877.9462 | -3 | P(15) | 888.2291 | 0 | P(14) | 898.4305 | -1 | P(13) | 908.5446 | -1 | P(12) | 918.5649 | C | | $^{\circ}(11)$ | 928.4847 | 0 | P(10) | 938.2974 | 0 | P(9) | 947.9965 | 1 | P(8) | 957.5752 | 1 | P(7) | 967.0268 | 1 | | (6) | 976.3447 | 2 | P(5) | 985.5217 | 1 | P(4) | 994.5519 | 4 | P(3) | 1003.4277 | 4 | P(2) | 1012.1429 | 4 | | ` ' | 1020.6903 | 0 | R(0) | 1037.2560 | | R(1) | 1045.2649 | 5 | R(2) | 1053.0779 | -2 | R(3) | 1060.6928 | 4 | | ٠, | 1068.1014 | 0 | R(5) | 1075.2994 | 1 | R(6) | 1082.2800 | 0 | R(7) | 1089.0383 | 0 | R(8) | 1095.5687 | 2 | | ` ' | 1101.8628 | | | 1107.9245
1134.4862 | -1 | , , | 1113.7402 | -2
5 | , , | 1119.3091 | 2 | | 1124.6249
1147.2935 | | | | 1129.6858
1151.0228 | 0
6 | | 1154.4757 | $-2 \\ 12$ | | 1139.0241
1157.6483 | | | 1143.2935
1160.5467 | $-5 \\ 22$ | - ' ' | 1163.1581 | _:
_: | | ` ' | 1165.4899 | 8 | 11(20) | 1104.4707 | 12 | 11(21) | 1101.0400 | -10 | 10(22) | 1100.0401 | 22 | 11(20) | 1103.1361 | | | | | | | | | (| (2,1) Band | | | | | | | | | 2(24) | 772.8187 | 1 | P(23) | 783.3228 | 1 | P(22) | 793.7931 | 2 | P(21) | 804.2247 | 6 | P(20) | 814.6108 | 1 | | (19) | 824.9473 | 2 | P(18) | 835.2276 | 2 | P(17) | 845.4460 | 1 | P(16) | 855.5969 | 1 | P(15) | | | | (14) | 875.6703 | -1 | P(13) | 885.5811 | 3 | P(12) | | 0 | P(11) | 905.1174 | 1 | P(10) | | : | | (9) | 924.2312 | 2 | P(8) | 933.6133 | 2 | P(7) | 942.8701 | 4 | P(6) | 951.9946 | 3 | P(5) | 960.9807 | | | (4) | 969.8213 | 5 | P(3) | 978.5098 | 3 | P(2) | 987.0393 | -3 | P(1) | 995.4056 | 9 | R(0) | 1011.6154 | 1 | | (1) | 1019.4454 | 3 | R(2) | 1027.0865 | 6 | R(3) | 1034.5306 | 4 | R(4) | 1041.7725 | 5 | R(5) | 1048.8058 | | | ` ' | 1055.6248 | 2 | R(7) | 1062.2248 | 3 | R(8) | 1068.5998 | 4 | R(9) | 1074.7445 | 1 | . , | 1080.6545 | | | 3 (| 1086.3254 | 5 | 1 1 | 1091.7509 | -1 | | 1096.9291 | 3 | _ ` ′ | 1101.8628 | 87 | _ : : | 1106.5222 | - | | ` ' | 1110.9331
1128.9754 | 8
16 | R(17) | 1115.0781 | -2 | R(18) | 1118.9579 | -2 | R(19) | 1122.5702 | 13 | R(20) | 1125.9096 | 1 | | (21) | 1120.5104 | 10 | | | | | (3,2) Band | | | | | | | | | | | | - () | | | | ` ' | | D (1.5) | | | 5 () = 1 | | | | (21) | 783.2431 | 9 | P(20) | 793.4235 | -8 | P(19) | | 1 | P(18) | | -3 | P(17) | | | | (16) | 833.5968 | -1 | P(15) | 843.4721 | 0 | P(14) | 853.2679 | -2 | P(13) | 862.9784 | -3 | P(12) | | | | 11) | 882.1190 | 1 3 | P(10) | 891.5356 | 0 | P(9) | 900.8423 | $7 \\ -2$ | P(8)
P(3) | 910.0305
953.9859 | 2
1 | P(7) | 919.0961 | | | (6)
(1) | 928.0301
970.5171 | | P(5)
R(0) | 936.8270
986.3746 | -3
6 | P(4)
R(1) | 945.4813
994.0316 | | R(2) | 1001.5013 | | P(2)
R(3) | 962.3329
1008.7784 | _ | | $(1) \\ (4)$ | 1015.8547 | -2 | R(5) | 1022.7259 | 4 | R(6) | 1029.3848 | | R(7) | 1035.8278 | -10 | R(8) | 1042.0485 | _ | | | 1013.0347 | - z | | 1053.8056 | 2 | ` ' . | 1059.3311 | -1 | | 1064.6173 | 12 | | 1069.6554 | | | | 1074.4476 | 12 | | 1078.9832 | | | 1083.2638 | | | 1087.2872 | 1 | - ' ' | 1091.0457 | _ | | • • | 1094.5406 | 8 | . , | 1097.7625 | | () | | | (, | | | () | | | | | | | | | | | (4,3) Band | | | | | | | | | (21) | 762.5662 | 11 | P(20) | 772.5469 | -5 | P(19) | 782.4809 | 8 | P(18) | 792.3571 | -5 | P(17) | 802.1738 | _ | | (16) | 811.9240 | -4 | P(15) | 821.6019 | -1 | P(14) | 831.2010 | -3 | P(13) | 840.7168 | 8 | P(12) | 850.1403 | | | (11) | 859.4670 | -3 | P(10) | 868.6914 | 0 | P(9) | 877.8055 | -5 | P(8) | 886.8049 | 3 | P(7) | 895.6812 | | | (6) | 904.4290 | 5 | P(5) | 913.0415 | 7 | | 921.5122 | 8 | P(3) | 929.8342 | | P(2) | 938.0017 | _ | | (1) | | | | | | | | | | | | | 990.3264 | | | (5) | | | | | | | | | | | | | 1021.7373 | | | | | | | 1032.7319
1055.9975 | | R(12) | 1037.8779 | -4 | R(13) | 1042.7796 | -7 | R(14) | 1047.4345 | -1 | | (13) | 1001.0403 | -20 | 11(10) | 1055.5575 | 13 | | (5 4) D d | | | | | | | | | | | | | | | | (5,4) Band | | | | | | | | | (18) | 771.3772 | | P(17) | 780.9989 | | P(16) | | | P(15) | | | | | _ | | (13) | 818.7679 | | P(12) | | | P(11) | | | P(10) | | | , , | 855.0998 | | | (8) | 863.9126 | 11 | P(7) | 872.5983 | | ` ' | 881.1662 | | P(5) | 889.5968 | | P(4) | 897.8841 | | | (3) | 906.0289 | | ` ' | 914.0180 | | 3 1 | 951.4644 | | - : : | 958.4079
990.1032 | | H(4) | 965.1638 | 2 | | (5) | 971.7106 | -, | 11(0) | 978.0581 | 23 | ` ' | 984.1873 | 0 | 16(0) | 990.1U32 | -0 | | | | | | | | | | | | (6,5) Band | | | | | _, | | | | (15) | 778.7567 | | P(14) | | | P(13) | 797.1092 | 12 | P(12) | 806.1541 | 4 | P(11) | 815.1059 | 1 | | (10) | 823.9535 | -1 | P(9) | 832.6950 | - 5 | a Observed – calculated differences (columns labelled δ) are in units of 0.0001 cm⁻¹. TABLE 5 Lithium Hydride and Deuteride $J \rightarrow J + 1$ Pure Rotational Transitions (cm⁻¹)^a | J | Observed | δ | |----------|----------------------|-----------------|----------|----------------------|------------|----------|----------------------|-----------|----------|----------------------|------------|----------|----------------------|--------| | | | | _ | | | | ⁶ LiH | | | | | | | | | | | | | | | | v = 0 | | | | | | | | | 7 | 119.1642 | 26 | 8 | 133.5298 | 6 | 9 | 147.7149 | -1 | 10 | 161.7012 | 0 | 11 | 175.4706 | -2 | | 2 | 189.0076 | 1 | 13 | 202.2956 | 1 | 14 | 215.3206 | 2 | 15 | 228.0682 | 1 | 16 | 240.5259 | 3 | | 7 | 252.6812 | 4 | 18 | 264.5231 | 5 | 19 | 276.0412 | 6 | 20 | 287.2258 | 5 | 21 | 298.0684 | 0 | | 22 | 308.5625 | 4 | 23 | 318.6995 | -2 | 24 | 328.4764 | 11 | 25 | 337.8838 | -1 | 26 | 346.9224 | 13 | | | | | | | | | v = 1 | | | | | | | | | 7 | 115.6920 | 22 | 8 | 129.6339 | 5 | 9 | 143.4005 | 18 | 10 | 156.9680 | -3 | 11 | 170.3264 | 10 | | 12 | 183.4535 | -6 | 13 | 196.3392 | 1 | 14 | 208.9664 | 3 | 15 | 221.3219 | 5 | 16 | 233.3930 | 6 | | 17
22 | 245.1671
299.2459 | $-1 \\ -6$ | 18
23 | 256.6349
309.0463 | 0
11 | 19 | 267.7859 | 4 | 20 | 278.6096 | 0 | 21 | 289.0996 | 5 | | | 200.2100 | Ü | 20 | 000.0100 | •• | | | | | | | | | | | | | | | | | | ⁷ LiH | | | | | | | | | | | | | | | | v = 0 | | | | | | | | | 7 | 116.7833 | 78 | 8 | 130.8682 | 24 | 9 | 144.7807 | -9 | 10 | 158.5049 | -7 | 11 | 172.0205 | | | 12 | 185.3120 | | 13 | 198.3652 | -8 | 14 | 211.1649 | -7 | 15 | 223.6949 | | 16 | 235.9572 | 51 | | 17 | 247.9227 | 82
9 | 18
23 | 259.5753 | 2 | 19
24 | 270.9237 | 2 | 20
25 | 281.9515 | 7
6 | 21
26 | 292.6490 | 7 | | 22
27 | 303.0096
349.5495 | 6 | 23
28 | 313.0259
357.7753 | 4
10 | 29 | 322.6930
365.6336 | 5
15 | 23 | 332.0055 | О | 26 | 340.9587 | 5 | | | | | | | | | v = 1 | | | | | | | | | 7 | 113.4128 | 43 | 8 | 127.0889 | 15 | 9 | 140.5959 | 8 | 10 | 153.9144 | -3 | 11 | 167.0296 | -4 | | 12 | 179.9259 |
2 | 13 | 192.5871 | 0 | 14 | 205.0000 | -1 | 15 | 217.1517 | 0 | 16 | 229.0293 | -2 | | 17 | 240.6224 | 3 | 18 | 251.9187 | 1 | 19 | 262.9101 | 7 | 20 | 273.5859 | 3 | 21 | 283.9391 | 2 | | 22 | 293.9623 | 4 | 23 | 303.6483 | 1 | 24 | 312.9919 | -2 | 25 | 321.9883 | - 3 | 26 | 330.6338 | 2 | | 27 | 338.9227 | -8 | 28 | 346.8557 | 1 | 29 | 354.4260 | -17 | | | | | | | | | | | | | | | v=2 | | | | | | | | | 7 | 110.1065 | 53 | 8 | 123.3767 | 7 | 9 | 136.4837 | 10 | 10 | 149.4055 | 6 | 11 | 162.1264 | -3 | | 12 | 174.6331 | -1 | 13 | 186.9081 | | 14 | 198.9426 | -1 | 15 | 210.7196 | 3 | 16 | 222.2278 | 2 | | 17 | 233.4562 | 1 | 18 | 244.3950 | 4 | 19 | 255.0337 | 2 | 20 | 265.3639 | 1 | 21 | 275.3782 | 5 | | 22
27 | 285.0681
328.4677 | $\frac{1}{-20}$ | 23
28 | 294.4277
336.1085 | 7
26 | 24 | 303.4530 | -2 | 25 | 312.1358 | -19 | 26 | 320.4768 | -8 | | - • | 320,3011 | 20 | 20 | 333.1000 | 20 | | v = 3 | | | | | | | | | Ω | 120 4252 | 27 | 10 | 144.0700 | 1 | 11 | | 2 | 10 | 160 4979 | _ | 12 | 101 2001 | 1 | | 9
14 | 132.4353
192.9852 | -31
3 | 10
15 | 144.9702
204.3920 | $-1 \\ -2$ | 11
16 | 157.3048
215.5370 | $-2 \\ 6$ | 12
17 | 169.4278
226.4065 | -5
3 | 13
18 | 181.3261
236.9915 | 1
0 | | 19 | 247.2831 | 2 | 20 | 257.2728 | 10 | 21 | 266.9504 | 0 | 22 | 276.3102 | | 10 | 200.3313 | U | | - ~ | | _ | | | | | | - | | | | | | | ^a Observed – calculated differences (columns labelled δ) are in units of 0.0001 cm⁻¹. excluded, in this case, being superseded by the more accurate measurements of Plummer et al. lines, 65% of the 939 lines measured, were assigned a weighting factor of $0.0005~\rm{cm}^{-1}$. For the remainder of For the least-squares fits discussed below, our best weaker and blended lines, the next two larger classes, # TABLE 5—Continued | J | Observed | δ | |-----------------|------------------------|---------------|----------|----------------------|----------------|----------|----------------------|----------------|----------|----------------------|----------------|---|----------------------|------------| | | | | | | | | ⁶ LiD | | | | | | | | | | | | | | | | v = 0 | | | | | | | | | 12 | 110.3845
149.7567 | 27 | 13
18 | 118.4512
157.3163 | 15
-2 | 14
19 | 126.4278
164.7597 | $^{12}_{\ 2}$ | 15
20 | 134.3082
172.0816 | $\frac{12}{2}$ | 16 | 142.0852
179.2780 | -2 | | $\frac{17}{22}$ | 186.3449 | $-2 \\ -3$ | 23 | 193.2795 | 3 | 24 | 200.0763 | 0 | 25 | 206.7331 | -1^{2} | $\frac{21}{26}$ | 213.2485 | 0
17 | | 27 | 219.6136 | -5 | 28 | 225.8324 | -1 | 29 | 231.8994 | 1 | 30 | 237.8131 | 7 | 31 | 243.5698 | 1 | | 32 | 249.1705 | 11 | 33 | 254.6097 | -1 | 34 | 259.8885 | - 9 | 35 | 265.0090 | 19 | 36 | 269.9602 | -15 | | | | | | | | | v = 1 | | | | | | | | | 13 | 115.8305 | 31 | 14 | 123.6250 | 10 | 15 | 131.3240 | -14 | 16 | 138.9262 | -3 | 17 | 146.4240 | 18 | | 18 | 153.8068 | -9 | 19 | 161.0773 | -10 | 20 | 168.2281 | | 21 | 175.2568 | -8 | 22 | 182.1575 | -6 | | 23 | 188.9285 | 10 | 25 | 202.0596 | 8 | 26 | 208.4152 | 9 | 28 | 220.6924 | 18 | 29 | 226.6062 | -2 | | | | | | | | | ⁷ LiD | | | | | | | | | | | | | | | | v = 0 | | | | | | | | | 13 | 114.3439 | 40 | 14 | 122.0601 | 37 | 15 | 129.6836 | 7 | 16 | 137.2151 | 7 | 17 | 144.6459 | -2 | | 18 | 151.9729 | -4 | 19 | 159.1912 | -3 | 20 | 166.2963 | -3 | 21 | 173.2850 | 4 | 22 | 180.1513 | -1 | | 23 | 186.8910 | | 24 | 193.5077 | 0 | 25 | 199.9902 | -3 | 26 | 206.3388 | -1 | 27 | 212.5493 | -8 | | 28 | 218.6214 | -1 | 29 | 224.5505 | -1 | 30 | 230.3353 | 0 | 31 | 235.9740 | 5 | 32 | 241.4634 | -1 | | 33
38 | 246.8034
271.2094 | $-1 \\ -4$ | 34
39 | 251.9922
275.6260 | 1
1 | 35
40 | 257.0281
279.8853 | 1
0 | 36
41 | 261.9105
283.9868 | 3
-12 | $\begin{array}{c} 37 \\ 42 \end{array}$ | 266.6377
287.9336 | $0 \\ -2$ | | 43 | 291.7221 | -3 | 44 | 295.3554 | 13 | 10 | 210.0000 | Ü | •• | 200.0000 | 12 | 12 | 201.0000 | - | | | | | | | | | v = 1 | | | | | | | | | 13 | 111.8602 | 53 | 14 | 119.4036 | 32 | 15 | 126.8585 | 14 | 16 | 134.2206 | 5 | 17 | 141.4848 | 0 | | 18 | 148.6461 | -4 | 19 | 155.7004 | -5 | 20 | 162.6439 | 0 | 21 | 169.4713 | -1 | 22 | 176.1796 | -1 | | 23 | 182.7652 | 0 | 24 | 189.2245 | 0 | 25 | 195.5549 | 4 | 26 | 201.7525 | 3 | 27 | 207.8147 | 0 | | 28
33 | 213.7398
241.2230 | 1
-1 | 29
34 | 219.5245
246.2792 | 0
3 | 30
35 | 225.1672
251.1842 | 0
-3 | 31
36 | 230.6658
255.9387 | $\frac{1}{-2}$ | 32
37 | 236.0182
260.5402 | 0
6 | | 38 | 264.9887 | | 39 | 269.2855 | 3 | 40 | 273.4272 | 7 | 00 | 200.0001 | - | ٠. | 200.0102 | J | | | | | | | | | v = 2 | | | | | | | | | 13 | 109.4081 | 46 | 14 | 116.7810 | 8 | 15 | 124.0714 | 21 | 16 | 131.2671 | 9 | 17 | 138.3659 | -2 | | 18 | 145.3650 | 4 | | 152.2576 | 3 | 20 | 159.0406 | 3 | 21 | 165.7091 | -3 | 22 | 172.2610 | | | 23 | 178.6919 | 0 | | 184.9979 | -4 | 25 | 191.1775 | 0 | | 197.2264 | 3 | 27 | 203.1423 | 4 | | 28
33 | 208.9222
235.7143 | $\frac{2}{0}$ | 29
35 | 214.5643
245.4147 | $\frac{1}{-5}$ | 30
36 | 220.0663
250.0414 | | 31 | 225.4273 | 6 | 32 | 230.6437 | 5 | | - | 200110 | ŭ | 30 | 2 · · · · · | v | 20 | v = 3 | | | | | | | | | 10 | 100.0050 | 20 | 4.4 | 1141005 | 0.0 | | | 0.77 | 10 | 100 0510 | 4.4 | | 105 0050 | | | 13
18 | $106.9879 \\ 142.1242$ | 38
10 | 14
19 | 114.1965
148.8584 | $\frac{23}{2}$ | 15
20 | 121.3207
155.4830 | $\frac{27}{0}$ | 16
21 | 128.3518
161.9953 | 11
-4 | $\frac{17}{22}$ | 135.2878
168.3939 | $-1 \\ 11$ | | 23 | 174.6693 | | 24 | 180.8265 | 5 | 25 | 186.8567 | 9 | 26 | 192.7565 | -4
-8 | 27 | 198.5287 | 10 | | 28 | 204.1644 | | 29 | 209.6649 | -6 | 30 | 215.0276 | | 31 | 220.2512 | -7 | TABLE 6 Mass-Dependent Dunham Constants (cm⁻¹) | | $^6{ m LiH}$ | $^7{ m LiH}$ | $^6{ m LiD}$ | $^7{ m LiD}$ | |------------------|------------------|----------------------------|------------------|-------------------| | Y ₁₀ | 1420.04763(55) | 1405.49805(76) | 1074.30876(76) | 1054.93973(32) | | Y_{20} | | -23.167899(714) | -13.516804(475) | -13.057768(208) | | Y_{30} | 0.1569973(684) | 0.170928(281) | 0.0705152(839) | 0.0754777(497) | | $10^3 Y_{40}$ | , | -1.7168(490) | , , | -1.03907(392) | | $10^4 Y_{50}$ | | -1.1328(312) | | , , | | Y_{01} | 7.67077959(171) | 7.51373151(90) | 4.39017060(206) | 4.23308131(46) | | Y_{11} | -0.22328990(462) | -0.21639109(243) | -0.09662406(489) | -0.091494283(839) | | $10^3 Y_{21}$ | 2.17707(302) | 2.02305(192) | 0.70332(245) | 0.660793(426) | | $10^5 Y_{31}$ | -4.6803(491) | -2.3166(574) | -1.0474(372) | -1.04033(550) | | $10^6 Y_{41}$ | ` ′ | -2.2579(550) | , , | , , | | $10^4 Y_{02}$ | -8.949245(125) | -8.5858332(772) | -2.9312748(568) | -2.7259254(286) | | $10^5 Y_{12}$ | | 1.592615(738) | 0.418407(886) | 0.383400(149) | | $10^7 Y_{22}$ | -2.0688(340) | -1.0308(276) | -0.3326(224) | -0.34763(433) | | $10^8 Y_{32}$ | , , | -1.3581(307) | , , | , , | | $10^7 Y_{03}$ | 1.151294(729) | 1.079035(332) | 0.2126204(899) | 0.193654(123) | | $10^9 Y_{13}$ | | -0.7635(117) | -0.15500(574) | -0.143210(685) | | $10^{11} Y_{23}$ | | -5.963(223) | , , | , , | | $10^{11} Y_{04}$ | | $-1.693\hat{1}1(548)$ | -0.158995(433) | -0.17647(174) | | $10^{13} Y_{14}$ | | $-1.4020(\grave{6}77)^{'}$ | , , | , , | | $10^{15} Y_{05}$ | | 2.2296(296) | | 0.16182(958) | | $10^{21} Y_{06}$ | ` / | , , | | -9.11(182) | which constituted 21 and 11% of the total number of lines measured, were assigned weighting factors of 0.001 and 0.002 cm⁻¹, respectively. As for the Maki et al. data, the far-infrared lines, with the exception of 22 lines, were assigned a weighting factor of 0.0006 cm⁻¹ and 82% of the mid-infrared lines a weighting factor of 0.0008 cm⁻¹. A weighting factor of 0.000003 cm⁻¹ (90 kHz) was assigned for all but two of the microwave lines (three times the estimated uncertainty of 30 kHz quoted in Ref. (25)), with the exceptions being the $^{7}\text{LiD }v=0$ and $^{6}\text{LiD }v=1$ $J = 0 \rightarrow 1$ lines where weights of 0.000006 cm⁻¹ (180 kHz) were used. Quoted uncertainties of the line positions from Ref. (30) for the most part served as weighting factors for the millimeter-wave lines. In the fits each datum was weighted with the square of the reciprocal of the estimated uncertainty. The first set of molecular constants, the mass-dependent Dunham Y_{ij} 's listed in Table 6, were determined by fitting the lines of each individual isotopomer to (32) $$E(v, J) = \sum_{i,j} Y_{ij} \left(v + \frac{1}{2} \right)^i [J(J+1)]^j.$$ [1] The normalized standard deviations were 1.0882 for the ^{6}LiD fit, 0.9762 for the ^{7}LiD fit, 0.8193 for the ^{6}LiH fit, and 0.7520 for the ^{7}LiH fit. The second set of molecular constants, the mass-independent Dunham U_{ij} 's given in Table 7, were determined from a global fit of the data to $$E(v, J) = \sum_{i,j} \mu^{-(i+2j)/2} U_{ij} [1 + (m_e/M_A)\Delta_{ij}^A]$$ $$+ (m_e/M_B)\Delta_{ij}^B] \left(v + \frac{1}{2}\right)^i [J(J+1)]^j,$$ [2] where Δ_{ij} are empirical Ross–Watson parameters that correct for Born–Oppenheimer breakdown on the lithium (A) and hydrogen (B) centers (33–35), μ is the reduced mass, $M_{\rm A}$ and $M_{\rm B}$ are the lithium and hydrogen atomic masses, and $m_{\rm e}$ is the electron mass. Unlike the Dunham Y_{ij} fits, the only adjustable parameters were the U_{i0} 's and U_{i1} 's while the remainder of U_{ij} 's were calculated from analytical relationships (36) that functionally depend on the U_{i0} 's and U_{i1} 's. The normalized standard deviation for this fit was 0.8697. Residuals of our measured line positions are given in Tables 1–5. To save space, TABLE 7 Mass-Independent Dunham Constants (cm⁻¹) | U_{10} U_{20} U_{30} U_{30} U_{30} U_{40} U_{50} U_{60} U_{11} U_{10} U_{10}
U_{11} U_{10} U_{20} U_{30} U_{41} U_{60} U | $\begin{array}{c} 1319.94013(45) \\ -20.427978(318) \\ 0.143602(126) \\ -1.6875(216) \\ -6.264(135) \\ 6.62709992(97) \\ -0.179107163(819) \\ 1.583806(649) \\ -2.0645(173) \\ -1.1900(169) \\ -6.68224015 \\ 1.16154705 \\ -8.91354048 \end{array}$ | $10^{18} U_{25} \ 10^{19} U_{06} \ 10^{20} U_{16} \ 10^{21} U_{26} \ 10^{23} U_{07} \ 10^{24} U_{17}$ | $\begin{array}{c} -1.07328754 \\ -1.91050967 \\ 1.58478889 \\ 1.68257707 \\ 1.81123821 \\ 8.61693074 \\ -2.61449968 \\ -3.43382105 \\ -3.00488869 \\ 1.55676691 \\ 7.02992634 \\ 8.83817944 \end{array}$ | |--|--|---|--| | $10^9 U_{32}$ $10^{10} U_{42}$ $10^8 U_{03}$ $10^{10} U_{13}$ $10^{11} U_{23}$ Δ_{10}^{Li} Δ_{01}^{Li} | -4.07795202
-2.70979204
7.43077249
-4.46297373
-2.29784448
-0.12407(265)
-0.12280(181)
-0.6741(343) | $\begin{array}{c} 10^{26}\ U_{08} \\ 10^{27}\ U_{18} \\ 10^{30}\ U_{09} \\ 10^{34}\ U_{010} \\ \\ \\ \Delta^{\rm H}_{10} \\ \Delta^{\rm H}_{20} \\ \Delta^{\rm H}_{01} \\ \Delta^{\rm H}_{11} \\ \Delta^{\rm H}_{22} \\ \Delta^{\rm H}_{12} \\ \Delta^{\rm H}_{12} \\ \Delta^{\rm H}_{22} \\ \Delta^{\rm H}_{12} \\ \Delta^{\rm H}_{22} \\ \Delta^{\rm H}_{23} \\ \Delta^{\rm H}_{24} H}_{24}$ | -1.52935877
-2.37737547
3.46572223
-8.07774327
-0.723228(286)
-0.51199(419)
-1.564991(154)
-0.83724(550)
-3.9270(109) | | | | | | residuals corresponding to the microwave, millimeter-wave, and Maki *et al.* infrared lines are not listed here. Atomic masses from Ref. (37) were used for all of the computations. In the final stage of the analysis an internuclear potential was determined from a fit of the observed data to the numerical eigenvalues of the radial Schrödinger equation, $$\begin{split} \left\{ \frac{\hbar^2}{2\mu} \frac{d^2}{dR^2} - U^{\text{eff}}(R) + E(v, J) \\ - \frac{\hbar^2}{2\mu} [1 + q(R)] J(J+1)/R^2 \right\} \psi(r; v, J) &= 0, \end{split}$$ using the form $$U^{\rm eff}(R) = U^{\rm BO}(R) + U^{\rm C}(R), \qquad [3]$$ where $$U^{\text{BO}} = D_{\text{e}} \{ 1 - \exp[-\beta(R)] \}^{2} / \{ 1 - \exp[-\beta(\infty)] \}^{2} \quad [4]$$ is the Born-Oppenheimer potential modeled as a modified-Morse function (hereafter referred to as simply MMP), $$\beta(R) = z \sum_{i=0} \beta_i z^i,$$ [5] and $$z = (R - R_e)/(R + R_e).$$ [6] Born-Oppenheimer breakdown on the lithium and hydrogen centers is taken into account by the inclusion of J-independent terms, $$U^{C}(R) = M_{A}^{-1} \sum_{i=1}^{N} u_{i}^{A} (R - R_{e})^{i} + M_{B}^{-1} \sum_{i=1}^{N} u_{i}^{B} (R - R_{e})^{i}, \quad [7]$$ and J-dependent terms, $$q(R) = M_{\rm A}^{-1} \sum_{i=0} q_i^{\rm A} (R - R_{\rm e})^i + M_{\rm B}^{-1} \sum_{i=0} q_i^{\rm B} (R - R_{\rm e})^i.$$ [8] The radial Schrödinger fit gave a normalized standard **FIG. 3.** Comparison of our experimentally determined MMP form of the Born-Oppenheimer potential with the Partridge and Langhoff ICSCF theoretical potential curve. The solid circles denote the theoretical values. deviation of 0.8056. Determined potential parameters along with their uncertainties are displayed in Table 8, where the dissociation energy $D_{\rm e}$ was held fixed to the value used by Coxon (13) and the listed atomic masses were taken from Ref. (37). The Schrödinger equation was numerically integrated in the range $0.5 \le R \le 3.5$ Å, with a grid spacing of 0.001 Å. Reliable information about the radial dependence of the Born-Oppenheimer potential of the $X^{1}\Sigma^{+}$ state has been amassed through numerous theoretical investigations. The comparison in Fig. 3 therefore is intended to show that MMP, a quantum-mechanical potential, is consistent with theoretical calculations. Of the more recent ab initio calculations reported on the $X^{1}\Sigma^{+}$ state of LiH, the Partridge and Langhoff ICSCF potential curve (21) is selected for this purpose because it is one of a few that were extensively tabulated over a wide range of internuclear separation and, moreover, served as a benchmark to gauge the results from more elaborate calculations. Because the ICSCF $^{1}\Sigma^{+}$ potential curve was reported in terms of total energy, to convert it to the energy scale of Fig. 3 required referencing it relative to its minimum at 3.0 au followed by scaling it so that the energy at 40 au coincided with $D_e = 20 \ 286.0 \ \text{cm}^{-1} \ (2.5151)$ eV),
which is slightly more (2%) than the calculated dissociation energy of 19 972 cm⁻¹ reported in Ref. (20). It is clear from Fig. 3 that the shapes of the potential curves are in excellent agreement in the range of the observed spectrum, $1.2 \le R \le 2.5$ Å, and that this agreement is maintained well out to the dissociation limit. Shown in Fig. 4 is the plot of the radial function $U^{\mathbb{C}}(R)$ (Eq. [8]), the correction to breakdown in the Born-Oppenheimer approximation on both atomic centers. Because our model is based on Watson's treatment of an effective di- atomic Hamiltonian for a Σ^+ state (35), $U^{\rm C}(R)$ corrects for both adiabatic and nonadiabatic effects. We have also included in Fig. 4 for comparison the correction functions determined from a variety of different sources: the ab initio calculation by Bishop and Cheung (38), the analysis of optical A-X data by Chan et al. (39), the analysis of microwave and infrared data by Coxon (13), and the most recent analysis reported by Ogilvie (14), which in addition to microwave and infrared data also included the millimeter-wave lines of Bellini et al. (30). The experimentally determined curves agree with each other reasonably well in the range of our data. The most noticeable discrepancies occur past the outer end of the spectral range where our correction function in particular is no longer expected to provide reliable values. Since the theoretical curve furnishes information only on the adiabatic correction term, comparing it directly with the curves determined from experimental data indicates a substantial nonadiabatic contribution over much of the range of internuclear separation, as previously noted by Chan TABLE 8 Derived Parameter Values for MMP | D (-1) | 20204.0 | |--|------------------| | $D_e \text{ (cm}^{-1})$ | 20286.0 | | R_e (Å) | 1.594911495(145) | | eta_0 | 3.59992926(112) | | eta_1 | 3.2502445(294) | | eta_2 | 4.986672(188) | | eta_3 | 8.75569(170) | | eta_4 | 14.4769(135) | | eta_5 | 31.1700(583) | | eta_6 | 72.832(365) | | $u_{1}^{\text{Li}} \text{ (cm}^{-1} \text{ u Å}^{-1})$ | -2.5214(466) | | $u_{2}^{\text{Li}} \text{ (cm}^{-1} \text{ u Å}^{-2})$ | 2.0261(752) | | $u_1^{\rm H} \ ({\rm cm}^{-1} \ {\rm u} \ {\rm A}^{-1})$ | -35.20890(388) | | $u_2^{\rm H}~({ m cm}^{-1}~{ m u}~{ m \AA}^{-2})$ | 43.4740(149) | | u_3^{H} (cm ⁻¹ u Å ⁻³)
u_4^{H} (cm ⁻¹ u Å ⁻⁴)
u_5^{H} (cm ⁻¹ u Å ⁻⁵) | -47.667(149) | | $u_4^{\rm H}~({\rm cm}^{-1}~{\rm u}~{\rm \AA}^{-4})$ | 57.500(404) | | $u_5^{\rm H}~({\rm cm}^{-1}~{\rm u}~{\rm \AA}^{-5})$ | -59.388(583) | | $u_6^{\rm H}~({\rm cm}^{-1}~{\rm u}~{\rm \AA}^{-6})$ | 29.626(349) | | $q_1^{\text{Li}} \; (\mathrm{u} \; \mathrm{\AA}^{-1})$ | 0.0003447(154) | | q_2^{Li} (u Å ⁻²) | -0.0005119(471) | | q_1^{H} (u Å ⁻¹) | 0.00021722(271) | | $q_2^{\rm H}$ (u Å ⁻²) | 0.00004583(750) | | M (⁶ Li) (u) | 6.0151214 | | $M(^{7}\mathrm{Li})(\mathrm{u})$ | 7.0160030 | | M(H)(u) | 1.007825035 | | M(D)(u) | 2.014101779 | **FIG. 4.** A summary of reported adiabatic + nonadiabatic corrections to the Born-Oppenheimer potential for LiH. Note that the Bishop and Cheung theoretical curve only takes adiabatic corrections into account. The range of observed spectrum corresponds to our data set. et al. (39). In the case of Ogilvie's curve the nonadiabatic contribution is only significant for $R > R_e$. The empirical Ross–Watson delta parameters determined from the Dunham fit provide yet another means of independently confirming the results obtained from the radial Schrödinger fit. Using Watson's inversion formula (Eq. [49] in Ref. (35)) and the parameters in Table 7 gave the radial expansion parameters listed in Table 9. Plots of the correction function for 7 LiH and 7 LiD using the u's in Table 9 are shown in Fig. 5. In comparing these curves with those associated with MMP the agreement is excellent over 75% of the spectral range except at the outer end, starting at R=2 Å, where a much steeper rise is indicated by the correction functions associated with the delta parameters. TABLE 9 Radial Expansion Parameters Derived from the Ross-Watson Delta Parameters | | Lithium
Center | Hydrogen
Center | |--|---------------------------|---| | $u_1 \text{ (cm}^{-1} \text{ u Å}^{-1})$
$u_2 \text{ (cm}^{-1} \text{ u Å}^{-2})$
$u_3 \text{ (cm}^{-1} \text{ u Å}^{-3})$
$u_4 \text{ (cm}^{-1} \text{ u Å}^{-4})$ | -2.598(499)
2.477(973) | -35.200(707)
43.66(245)
-41.40(805)
34.6(102) | | q_1 (u Å ⁻¹)
q_2 (u Å ⁻²)
q_3 (u Å ⁻³) | 0.0002193(523) | 0.000262179(112)
-0.00038442(250)
0.00038113(757) | **FIG. 5.** The adiabatic + nonadiabatic corrections to the Born-Oppenheimer potential obtained from the semiclassical inversion of the Dunham energy levels. For comparison the corrections that correspond to the MMP form of the Born-Oppenheimer potential are also shown. ### ACKNOWLEDGMENTS This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Petroleum Research Fund, administered by the American Chemical Society, and the NASA Laboratory Astrophysics Program. ### REFERENCES - H. Hosoya, S. Yamabe, K. Morokuma, and K. Ohno, J. Mol. Struct. 289, 1–100 (1993). - W. C. Stwalley and W. T. Zemke, J. Phys. Chem. Ref. Data 22, 87– 112 (1993). - 3. A. M. Karo and A. R. Olson, J. Chem. Phys. 30, 1232-1240 (1959). - 4. F. E. Harris, J. Chem. Phys. 32, 3-18 (1960). - 5. W. H. Adams, Phys. Rev. 127, 1650-1658 (1962). - 6. J. C. Browne and F. A. Matsen, *Phys. Rev. A* **135**, 1227–1232 (1964). - 7. W. A. Goddard, III, Phys. Rev. 157, 73-80 (1967). - J. A. Keefer, J. K. Su Fu, and R. L. Belford, J. Chem. Phys. 50, 160– 173 (1969). - P. E. Cade and W. M. Huo, J. Chem. Phys. 47, 614–648, 649–672 (1969). - 10. C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23-30 (1969). - N. G. Mukherjee and R. McWeeny, Int. J. Quantum Chem. 4, 97–107 (1970). - 12. C. R. Vidal and W. C. Stwalley, J. Chem. Phys. 77, 883-898 (1982). - 13. J. A. Coxon, J. Mol. Spectrosc. 152, 274–282 (1992). - 14. J. F. Ogilvie, J. Mol. Spectrosc. 180, 193–195 (1996). - N. Prantzos, E. Vangioni-Flam, and M. Cassé (Eds.), "Origin and Evolution of the Elements," Cambridge Univ. Press, Cambridge, UK, 1993. - L. Wharton, L. P. Gold, and W. Klemperer, J. Chem. Phys. 52, 2804 (1970). - P. de Bernardis, V. Dubrovich, P. Encrenaz, R. Maoli, S. Masi, G. Mastrantonio, B. Melchiorri, F. Melchiorri, M. Signore, and P. E. Tanzilli, *Astron. Astrophys.* 269, 1–6 (1993). - 18. K. K. Docken and J. Hinze, J. Chem. Phys. 57, 4936-4952 (1972). - 19. W. Meyer and P. Rosmus, J. Chem. Phys. 63, 2356-2375 (1975). B. Jönsson, B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, *J. Chem. Phys.* 74, 4566–4575 (1981). - H. Partridge and S. R. Langhoff, J. Chem. Phys. 74, 2361–2371 (1981). - 22. B. O. Roos and A. J. Sadlej, J. Chem. Phys. 76, 5444-5451 (1982). - K. P. Huber and G. Herzberg, "Constants of Diatomic Molecules," Van Nostrand–Reinhold, New York, 1979. - 24. E. F. Pearson and W. Gordy, Phys. Rev. 177, 59-61 (1969). - G. M. Plummer, E. Herbst, and F. C. DeLucia, J. Chem. Phys. 81, 4893–4897 (1984). - G. M. Plummer, E. Herbst, and F. C. DeLucia, Astrophys. J. 282, L113-L114 (1984). - T. C. James, W. G. Norris, and W. Klemperer, J. Chem. Phys. 32, 728-734 (1960). - 28. C. Yamada and E. Hirota, J. Chem. Phys. 88, 6702-6706 (1988). - M. Bellini, P. DeNatale, M. Inguscio, E. Fink, D. Galli, and F. Palla, *Astrophys. J.* 429, 507 (1994). - M. Bellini, P. DeNatale, M. Inguscio, T. D. Varberg, and J. M. Brown, *Phys. Rev. A* 52, 1954–1960 (1995). - A. G. Maki, W. B. Olson, and G. Thompson, J. Mol. Spectrosc. 144, 257–268 (1990). - 32. J. L. Dunham, *Phys. Rev.* 41, 721–731 (1932). - 33. A. H. M. Ross, R. S. Eng, and H. Kildal, Opt. Commun. 12, 433 (1974). - 34. J. K. G. Watson, J. Mol. Spectrosc. 45, 99-113 (1973). - 35. J. K. G. Watson, J. Mol. Spectrosc. 80, 411-421 (1980). - 36. J. Ogilvie, Comput. Phys. Commun. 30, 101–105 (1983); private communication. - I. Mills, T. Cvităs, K. Homann, N. Kallay, and K. Kuchitsu, "Quantities, Units, and Symbols in Physical Chemistry," Blackwell, Oxford, UK. 1988. - 38. D. M. Bishop and L. M. Cheung, J. Chem. Phys. 79, 2945-2950 (1983). - Y. C. Chan, D. R. Harding, and W. C. Stwalley, J. Chem. Phys. 85, 2436–2444 (1986).