Infrared and Microwave Spectra and Force Field of DBO: The Coriolis Interaction between the v_1 and $v_2 + v_3$ States Yoshiyuki Kawashima,* Pina Colarusso,† K. Q. Zhang,† Peter Bernath,† and Eizi Hirota‡ *Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0203, Japan; †Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; and ‡The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan Received March 25, 1998 The ν_1 and ν_3 bands of D¹¹BO and the ν_1 band of D¹⁰BO were observed by using an infrared diode laser spectrometer. The DBO molecule was generated by an ac discharge in a mixture of BCl₃, D₂, O₂, and He. As inferred previously, a strong Coriolis interaction was in fact found to take place between the ν_1 and $\nu_2 + \nu_3$ states, and an analysis of the observed ν_1 spectra, which explicitly took into account this Coriolis interaction, predicted the pure rotational transition frequencies of DBO in the ν_1 state. Pure rotational lines were then detected by microwave spectroscopy, confirming the validity of the infrared assignment. In the microwave experiment DBO molecules were generated by a discharge in a mixture of B₂D₆ and O₂. The three fundamental bands and a hot band of D¹¹BO, as well as the ν_1 and ν_3 bands of D¹⁰BO, were subsequently recorded in emission with a Fourier transform infrared spectrometer. DBO molecules were generated by the reaction of D₂ with HBO at temperatures above 800°C in a ceramic tube furnace. All of the observed spectra were simultaneously subjected to a least-squares analysis to obtain molecular parameters in the ground, ν_1 , ν_2 , ν_3 , and $\nu_2 + \nu_3$ states. The results thus obtained improved the force field and molecular structure of the HBO/DBO molecules reported in a previous study (Y. Kawashima, Y. Endo, and E. Hirota, 1989, *J. Mol. Spectrosc.* 133, 116–127). © 1998 Academic Press ## I. INTRODUCTION The transient molecule HBO is linear and isoelectronic with HCN, and it is quite interesting to compare the properties of the two species. HBO and its derivatives, such as XBO, with X denoting a halogen atom, seem to be much more reactive than their sulfur analogues; the parent molecule of the sulfur series HBS was studied by microwave spectroscopy in as early as 1973 (1), whereas the detection of HBO was not possible until 1986. Kawashima et al. succeeded in observing the v_3 band of HBO by using a discharge-modulated infrared diode laser spectrometer (2), and the rotational spectra were measured not only in the ground vibrational state but also in the ν_1 , ν_2 , $2\nu_2$, and v_3 excited states with a millimeter-wave spectrometer (3). They extended the microwave observations to several isotopic species in order to determine the equilibrium molecular structure as well as the harmonic and the third-order anharmonic force constants (4). It should be noted, however, that although the rotational transitions in the ν_1 state were observed clearly for HBO (3), it was not possible to detect them for DBO. Kawashima et al. (4) ascribed this failure to observe the ν_1 satellites for DBO to the Coriolis interaction between the ν_1 and $\nu_2 + \nu_3$ states; the energy difference between the two states was estimated to be about 200 cm⁻¹ for HBO, but to be as small as 10 cm⁻¹ in DBO. In the present study we have extended the infrared observations with a particular focus on the detection of the ν_1 band of DBO. We have supplemented the infrared measurements by observing the ν_1 satellite lines by microwave spectroscopy. Recently the infrared emission spectra of HBO and DBO were recorded in the region from 350 to 3600 cm⁻¹ using a Fourier transform infrared spectrometer at a resolution of 0.01 cm⁻¹ (5). We have completed the simultaneous analysis of all of the observed spectra of DBO by explicitly taking into account the effects of the Coriolis interaction. ## II. EXPERIMENTAL DETAILS The infrared diode laser spectrometer used was the same as that reported earlier (6, 7). The glow discharge cell employed was made of a 1-m-long glass tube 65 mm in inner diameter. The effective path length was chosen to be about 10 m using a White-type multiple reflection configuration. DBO molecules were produced by an ac discharge in a mixture of BCl_3 , D_2 , O_2 , and He. The optimal conditions for the production of DBO were attained when the partial pressures of BCl₃, D₂, and He were 60, 120, and 4000 mTorr, respectively, and when a trace of O₂ was added to this mixture. Source frequency modulation was employed instead of discharge modulation because neither precursors nor products absorbed strongly in the frequency region scanned. The observed wavenumbers were calibrated using the N_2O ν_1 band, the CO_2 ν_3 band, and the CO fundamental band in the 2250 cm $^{-1}$ region (8) and the NH $_3$ ν_4 band in the 1600 cm⁻¹ region (9) as wavelength standards, and a vacuum-spaced étalon was used as an interpolation device. The spectrum of D¹⁰BO was observed in natural abundance. The source-frequency modulation microwave spectrometer employed was described in detail in Refs. (10, 11). The reac- tion of BCl₃ with a mixture of H_2 and O_2 yielded a spectral intensity of HBO approximately one-third as large as the reaction of B_2H_6 with O_2 and thus could not be employed to observe weak rotational transitions in the excited vibrational states lying as high as $2000~\rm cm^{-1}$. Therefore, DBO molecules were generated by an ac discharge in a B_2D_6 and O_2 mixture directly inside a free space absorption cell which was $100~\rm mm$ in diameter and 1 m in length. The observed spectral intensity reached a peak when the partial pressures of B_2D_6 and O_2 were $10~\rm and~20~mTorr$, respectively, and the discharge current was $40-50~\rm mA$. In the Fourier-transform infrared emission experiments carried out at the University of Waterloo, DBO was generated in a high-temperature reaction of HBO with D_2 gas. The parent molecule HBO was produced by heating boron in a ceramic tube furnace; the chemistry of the HBO formation is described in more detail in a separate report (12). Two tantalum boats containing 10 g of amorphous boron were placed near the middle of a mullite $(3Al_2O_3 \cdot 2SiO_2)$ tube. The tube was sealed with KRS-5 windows at both ends and evacuated through a pumping port. The central 50-cm portion of the tube was housed in a high-temperature furnace (CM Rapid-Temp) and was heated at a rate of 5°C/min up to 1200°C. A Ge-coated KBr beam splitter was used for all the runs. To reduce the contamination from atmospheric water and carbon dioxide, the region between the tube and the spectrometer was purged with dry nitrogen. Once the infrared emission from HBO was observed (starting at 830–850°C), deuterium was introduced into the tube furnace through a gas inlet. A slow pumping speed was maintained throughout the experiment. DBO spectra were recorded at a resolution of 0.01 cm⁻¹ from 350 to 700 cm⁻¹ with a liquid-helium-cooled Si:B detector and from 1400 to 2600 cm⁻¹ with a liquid-nitrogen-cooled HgCdTe (MCT) detector. The wavenumber range measured by the detectors was narrowed with appropriate bandpass and redpass filters. Each spectrum corresponds to a Fourier transform of 40 coadded interferograms. The spectra were calibrated using vibrational–rotational (*13*) and pure rotational lines (*14*) of HCl, which was present as an impurity. Details of the DBO emission spectra are given in Figs. 1–3 for the ν_1 , ν_2 , and ν_3 bands, respectively. Both of the naturally abundant boron isotopomers (^{11}B 80.1% and ^{10}B 19.9%) were detected. All three fundamental bands as well as several hot bands were assigned for the major isotopomer D ^{11}BO , and two of the three fundamental bands were observed for the minor D ^{10}BO species. # III. SPECTRAL ANALYSIS AND RESULTS Lory and Porter (15) reported the ν_1 fundamental band of D¹¹BO in a low-temperature matrix to be at 2259 cm⁻¹. By referring to this value, the region from 2220 to 2300 cm⁻¹ was scanned by using the infrared diode laser spectrometer, and 13 lines were observed. Although these lines exhibited a pattern **FIG. 1.** A detail of the Fourier transform infrared emission spectrum of DBO in the fundamental bending region. A portion of the Q branch is labeled for the (01^10) –(000) transition of the $D^{11}BO$ isotopomer. The spectrum was recorded with a liquid-helium-cooled Si:B detector at a resolution of 0.01 cm⁻¹ close to a parallel band of a linear molecule, they did not fit the predicted pattern exactly. This observation indicated that the ν_1 state is perturbed by another vibrational state, possibly by the $\nu_2 + \nu_3$ state, as presumed in a previous study (4), and as suggested by the energy diagram of DBO shown in Fig. 4. Therefore, the observed spectra were analyzed by including effective Coriolis interaction Hamiltonian matrix elements of the following form, $$\langle v_s + 1, v_t - 1, l, J | \mathbf{H}_{cor} | v_s, v_t, l \pm 1, J \rangle$$ = $B_e \zeta_{st}^{eff} [(\omega_t / \omega_s)^{1/2} + (\omega_s / \omega_t)^{1/2}] [(v_s + 1)$ $\times (v_t \pm l + 1)]^{1/2} [(J \mp l)(J \pm l + 1)]^{1/2} / 2,$ where B_e denotes the equilibrium rotational constant, $\zeta_{st}^{\rm eff}$ the effective Coriolis coupling constant between the nondegenerate s (ν_1) and degenerate t ($\nu_2 + \nu_3$) states, and ω_s and ω_t represent the vibrational energies of the two states, respectively. We employed this general expression by setting $v_s = 0$, $v_t = 1$, and l = 0, namely the matrix element equal to $$\langle \mathbf{v}_s = 1, \mathbf{v}_t = 0, l = 0, J | \mathbf{H}_{cor} | \mathbf{v}_s = 0, \mathbf{v}_t = 1, l = \pm 1, J \rangle$$ = $B_e
\zeta_{st}^{\text{eff}} [(\omega_t/\omega_s)^{1/2} + (\omega_s/\omega_t)^{1/2}] [J(J+1)/2]^{1/2}.$ The adjusted parameters were chosen to be the band origin ν_1 , the rotational constant B_1 of the ν_1 state, the effective Coriolis coupling constant, and the energy difference between the ν_1 and $\nu_2 + \nu_3$ states. The ground state parameters and rotational and centrifugal distortion constants were fixed to the previously reported values (4), and rotational and centrifugal distortion and l-type doubling constants of the $\nu_2 + \nu_3$ state were estimated from the constants of the ν_2 and ν_3 fundamental states. We then checked the assignment of the infrared spectra by observing rotational transitions. The infrared results predicted 154 KAWASHIMA ET AL. **FIG. 2.** A detail of the Fourier transform infrared emission spectrum of DBO. *P*-branch lines arising from the (001)–(000) fundamental transition are shown for both $D^{11}BO$ and $D^{10}BO$. *P*-branch lines for the (01^11) – (01^10) vibrational band of $D^{11}BO$ are also indicated. The spectrum was recorded with a liquid-nitrogen-cooled HgCdTe detector at a resolution of 0.01 cm⁻¹. the $J=6 \leftarrow 5$ and $J=3 \leftarrow 2$ transitions of D¹¹BO in the ν_1 state to appear at 372 865 and 186 423 MHz, respectively, and they were in fact observed at 372 865.852 and 186 422.644 MHz, respectively. The observed lines are listed in Table 1 with their assignments. A number of absorption lines remained in the region from 2220 to 2300 cm⁻¹ and most of them were assigned to the ν_1 band of D¹⁰BO. We again found for this species that five *P*-branch transitions could not be fitted unless we took into account the Coriolis interaction of ν_1 with $\nu_2 + \nu_3$. The infrared diode laser observations were extended to the region **FIG. 3.** A portion of the Fourier transform infrared emission spectrum of D 11 BO. *R*-branch lines in the (100)–(000) vibrational band are labeled for both D 11 BO and D 10 BO. The spectrum was obtained with a liquid-nitrogen-cooled HgCdTe detector at a resolution of 0.01 cm $^{-1}$. from 1610 to 1630 cm^{$^{-1}$}, where four lines were observed and assigned to the ν_3 band of D^{11}BO. Subsequently the ν_1 , ν_2 , ν_3 , and $\nu_2 + \nu_3 - \nu_2$ bands of D¹¹BO and the ν_1 band of D¹⁰BO were observed in emission using the Fourier-transform infrared spectrometer (5). The spectral lines thus observed were assigned based upon the infrared diode laser and microwave results. The emission measurements extended the infrared data set to high J, to approximately 400 rotational–vibrational lines. All of the infrared and microwave transitions observed for D¹¹BO are listed in Table 1 with the assignments. We analyzed all of the observed data simultaneously by the least-squares method. The microwave transitions were weighted 10^5-10^6 more than the infrared transitions in accordance with the precision of each measurement. The adjusted parameters included vibrational frequencies, rotational and centrifugal distortion constants, l-type doubling constants of the ground, ν_1 , ν_2 , ν_3 , and $\nu_2 + \nu_3$ states, and the effective Coriolis coupling constant. As shown in Table 2, the present results are in good agreement with the microwave data previously reported in (4), whenever a comparison is possible. Table 3 summarizes the spectroscopic data obtained so far for the less abundant isotopic species $D^{10}BO$. The ν_1 band of this species was analyzed in a way similar to the case for $D^{11}BO$, but because the observed data were limited, only the band origin ν_1 , rotational and centrifugal distortion constants of the ground and ν_1 states, and the effective Coriolis coupling constant were chosen as adjustable parameters. Table 2 shows that the vibrational frequency observed for the $\nu_2 + \nu_3$ state of $D^{11}BO$, 2262.96084 (81) cm⁻¹, is higher by 6.9 cm⁻¹ than the sum of the ν_2 and ν_3 fundamental states, 2256.05232 cm⁻¹. This shift of the vibrational frequency obtained for $D^{11}BO$ was transferred to the $\nu_2 + \nu_3$ state of $D^{10}BO$, where the ν_2 frequency was as- **FIG. 4.** The infrared transitions of DBO that were observed in emission. A Coriolis interaction occurs between the (01¹0) and (100) vibrational energy levels. The analysis presented here includes vibrational–rotational as well as pure rotational transitions. TABLE 1 Rotational–Vibrational and Pure Rotational Line Positions for $\mathbf{D^{11}BO}^{a,b}$ | | J'' | Obs. | O-C | J' | J" | Obs. | O-C | J' | J" | Obs. | 0-C | |---|---|--|--|--|---|---|---|---|--|--
---| | | - | * · | | | | (100)—(000) | | - | - | | | | 521
5049
448
476
444
443
441
409
338
337
336
337
229
227
265
224
232
221
200
18 | 552
510
498
447
446
444
440
338
337
335
333
332
228
227
225
243
2221
220
19 | 2114.8500
2117.8993
2120.9320
2123.9529
2126.9546
2129.9429
2132.9139
2135.8738
2138.8168
2141.7466
2144.6541
2147.5500
2150.4310
2153.2954
2156.1441
2158.9781
2161.7954
2167.3854
2170.1510
2172.9058
2175.6449
2177.8564
2178.3644
2181.0700
2183.7590
2186.4302
2189.0861
2199.5352
2202.1050
2204.6553
2207.1879
2209.7033 | -0.0004 0.0001 -0.0009 0.0014 -0.0003 -0.00021 0.0001 0.0003 -0.0004 0.0003 -0.0004 0.0003 -0.0006 -0.0006 -0.0006 -0.0006 -0.0001 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0005 -0.0006 -0.0005 -0.0001 -0.0001 -0.0001 -0.0003 | 17615413111098776543221 011356678991011121344156178 | 18
17
16
13
11
13
11
11
10
9
8
7
6
5
4
4
3
2
2
4
5
6
7
8
9
9
10
11
11
11
11
11
11
11
11
11
11
11
11 | 2212.1987 2214.6763 2217.1338 2217.1338 2219.5724 2221.9916 2224.3883 2226.7663 2229.1226 2231.4583 2233.7697 2236.0604 2238.3273 2240.5721 2242.7929 2244.9866 2255.5969 2259.6681 2263.6452 2265.5942 2267.5197 2269.4224 2271.3012 2273.1582 2274.9928 2274.9928 2274.9928 2274.9928 2278.5997* 2289.3644 2282.1115 2283.83927* 22883.83927* 22883.83927* 22883.83927* 22883.83927* 22883.83927* | -0.0001
-0.0004
-0.0001
-0.0008
-0.0000
-0.0000
-0.0002
-0.0002
-0.0002
-0.0002
-0.0002
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0001
-0.0001
-0.0005
-0.0005
-0.0005
-0.0001
-0.0005
-0.0001
-0.0005
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001 | 190
211
223
224
225
227
228
230
331
333
340
441
443
445
447
449
551
552 | 189
201
222
224
225
227
229
301
332
3334
442
443
4445
448
449
551 | 2288.8963 2290.5425 2292.1656 2293.7749 2295.3637 2296.4794 2300.0078 2301.5186 2303.0098 2304.4821 2305.9360 2307.3699 2308.7865 2310.1838 2311.5614 2312.9205 2314.2601 2315.5829 2316.8846 2326.6815 2321.9084 2323.1161 2324.3053 2325.4746 2326.6279 2327.7565 2328.8728 2331.0430 2333.10430 | 0.0002
0.0005
-0.0027
0.0001
0.0016
-0.0002
0.0009
-0.0002
0.0000
-0.0001
-0.0002
0.0001
-0.0001
-0.0010
0.0001
-0.0010
0.0004
-0.0011
0.0000
-0.0009
0.0000
-0.0009
0.0000
-0.0001
-0.0000
-0.0001
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0001
-0.0001
-0.0000
-0.0000
-0.0000
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0 | | | | | | | | ¹ 0)—(000), e— | | 0.1 | 00 | 0F1 0F0F | 0.0001 | | 354
333
332
330
2287
2254
221
220
198
17
154
110
110
110
110
110
110
110
110
110
11 | 36
334
332
311
309
228
225
221
209
198
165
113
111
10 | 533.0650
535.0876
537.1114
539.1373
541.1640
543.1996
545.2319
547.2665
549.3080
551.3493
553.3956
555.4408
557.4911
559.5407
561.5943
563.6507
563.6507
564.6362
578.1044
576.0327
578.1048
580.1776
582.2542
584.3327
586.4096 | -0.0003
0.0009
0.0006
0.00025
0.0014
-0.0005
-0.0027
-0.0003
0.0014
0.0002
0.0015
-0.0002
0.0003
0.0002
0.0003
0.0002
0.0003
0.0002
0.0009
-0.0009
-0.0001
0.0001
0.0001 | 87544321233455678901011221341566789020 | 9
86
5
43
2
12
3
4
5
6
7
8
9
10
11
11
11
11
11
11
11
11
11
11
11
11 | 588. 4929 590. 5761 594. 7481 596. 83919 601. 0222 603. 1093 611. 5066 613. 6099 615. 7150 617. 8239 619. 9299 622. 0400 624. 1456 626. 2565 628. 3672 630. 4790 632. 5941 634. 7092 636. 8244 638. 9415 641. 0382 643. 1766 645. 2968 647. 4169 649. 5378 | -0.0002
-0.00013
-0.0013
-0.0011
-0.0025
-0.0001
-0.0072
-0.0023
-0.0014
-0.0014
-0.0014
-0.0010
-0.0010
-0.0002
-0.0001
-0.0002
-0.0001
-0.0002
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001 |
21
223
24
25
26
27
28
29
31
32
33
34
35
36
37
38
39
40
41
42
43
44 | 20122345678901223445667890441423 | 651.6587
653.7801
655.9033
658.0263
660.1493
662.2726
664.3965
666.5208
668.6443
670.7690
672.8931
675.0166
677.1405
679.2646
681.3891
683.5122
685.6343
687.7572
689.8805
692.0006
694.1231
696.2448
698.3623
700.4821 | -0.0001
-0.0005
0.0005
0.0005
0.0003
0.0003
0.0004
0.0007
0.0006
0.0005
-0.0004
-0.0006
0.0005
-0.0006
0.0005
-0.0005
-0.0001
0.0005
0.0005 | | | | | | | | ¹ 0)—(000), f— | | | | | | | 1
35
67
89
10
11
12
13
14
15 | 1
3
5
6
7
8
9
10
11
12
13
14
15
16 | 607.3188
607.3812
607.47484
607.6221
607.7137
607.8113
607.9272
608.0486
608.1830
608.3280
608.4831
608.6507
608.8287 | -0.0026
0.0038
-0.0040
0.0030
-0.0016
0.0004
-0.0015
0.0001
0.0004
-0.0006
-0.0002
-0.0003 | 17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 17
18
19
20
21
22
23
24
25
26
27
28
29 | 609.0179 609.2185 609.4297 609.6513 609.8838 610.1267 610.3821 610.6471 610.9223 611.5066 611.8129 612.1319 612.4608 | -0.0002
0.0004
0.0006
0.0003
0.0001
-0.0005
0.0006
0.0003
0.0003
0.0009
-0.0005
0.0004
0.0007 | 31
32
33
34
35
36
37
38
40
41
42
43
44 | 31
32
33
34
35
36
37
38
40
41
42
43
44 | 612.7993 613.1489 613.5087 613.8783 614.2589 614.6490 615.0491 615.4590 615.8815 616.3110 616.7512 617.2012 617.6604 618.1331 | 0.0002
0.0003
0.0003
-0.0001
0.0002
-0.0001
-0.0006
-0.0004
-0.0005
-0.0007
-0.0014
0.0017 | | , | 40 | 1541 0045 | 0.000 | 10 | 11 | (001)—(000) | 0.0000 | 0.4 | 02 | 1694.7873 | 0 0000 | | 45
44
43
42
41
40
39
37
36 | 46
45
44
43
42
41
40
38
37 | 1541.0045
1543.5319
1546.0486
1548.5589
1551.0588
1553.5512
1556.0344
1560.9744
1563.4317 | -0.0005
0.0006
-0.0005
0.0005
-0.0002
0.0003
0.0004
0.0005 | 10
9
8
7
6
4
3
2 | 11
10
9
8
7
5
4
3 | 1624.0467
1626.2471
1628.4375
1630.6155
1632.7857
1637.0972
1639.2396
1641.3651
1643.4846 | 0.0002
0.0001
0.0001
-0.0022
-0.0021
-0.0001
0.0029
-0.0005
0.0003 | 24
25
26
27
28
29
30
31
32 | 23
24
25
26
27
28
29
30
31 | 1694.7873
1696.6107
1698.4222
1700.2221
1702.0115
1703.7878
1705.5519
1707.3056
1709.0471 | -0.0008
-0.0002
-0.0002
-0.0002
0.0010
0.0005
-0.0004
-0.0001 | $\it Note.$ O-C denotes observed - calculated. Unless otherwise indicated, units are in cm $^{-1}$. $^{^{\}it a}$ Rotational-vibrational and pure rotational transitions weighted 1:10000. ^b The observed transition frequencies labeled with asterisks were not included in the least-squares fit. $^{^{}c}$ Units in MHz. TABLE 1—Continued | | J" | Obs. | O-C | J, | J" | Obs. | O-C | J, | J" | Obs. | O-C | |--|--|--|---|--|--|---|---|---|--|--
---| | 35
34
33
32
32
32
22
22
22
21
19
16
16
11
11 | 36
35
34
33
31
31
31
32
31
31
29
22
24
22
21
22
21
21
21
21
21
21
21
21
21
21 | 1565.8787
1568.3168
1570.7474
1573.1687
1575.5795
1577.9821
1580.3758
1582.7597
1585.1341
1587.5002
1589.8565
1592.2030
1594.5398
1596.8677
1599.1866
1601.4956
1606.0843
1608.3635
1610.6336
1612.8936
1615.1443
1617.3849
1619.6152
1621.8360 | 0.0002
-0.0005
0.0002
0.0008
0.0008
0.0003
0.0003
0.0001
-0.0001
-0.0001
-0.0006
-0.0006
0.0003
0.0003
0.0004
-0.0001
-0.0001
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0. | 0
2
3
4
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
20
20
21
21
22
22
22
22
22
22
22
22
22
22
22 | 1
12345667899101121341551671891222 | 1645.8592 1651.8551 1653.9251 1653.9251 1653.9763 1658.0194 1660.0542 1662.0771 1664.0898 1666.0909 1668.0825 1670.0616 1672.0314 1673.9888 1675.9356 1677.8709 1681.7093 1683.6108 1685.5026 1687.3816 1689.2505 1691.1093 | -0.0032 0.0013 0.0022 0.0011 -0.0002 0.0001 0.0002 -0.0001 0.0002 -0.0001 0.0008 0.0003 0.0004 -0.0001 0.0008 -0.0001 0.0008 -0.0001 0.0008 0.0003 0.0001 | 3345
3345
3367
33940
4424
4444
4456
4490
5523
5546
5555
5555
5555
5555 | 32
33
33
33
33
33
33
33
33
33
33
40
41
42
43
44
44
45
47
48
55
55
55
55
55
55
55
55
55
55
55
55
55 | 1710.7772
1712.4948
1714.2014
1715.8957
1717.5784
1719.2491
1720.9077
1722.5541
1724.1894
1725.8111
1727.4230
1730.6068
1732.1793
1733.7418
1735.2913
1736.8309
1738.3522
1741.3667
1742.8543
1744.3274
1744.3274
1747.2396
1750.1058
1751.5134 |
-0.0001
-0.0006
-0.0003
-0.0003
-0.0003
-0.0003
-0.0005
-0.0005
-0.0007
-0.0003
-0.0001
-0.0005
-0.0003
-0.0001
-0.0003
-0.0001
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.000 | | 48
47
46
45 | 49
48
47
46 | 1542.8486
1545.3562
1547.8521
1550.3405 | 0.0002
0.0008
-0.0009
-0.0005 | 15
14
13
12
11 | 16
15
14
13
12 | 1620.3895
1622.5776
1624.7611 | -0.0026
-0.0017
0.0025
0.0000 | 20
21
22
23 | 19
20
21
22
23 | 1695.2757
1697.2151
1699.1424
1701.0608 | 0.0001
0.0000
-0.0010
0.0007 | | 44
43
42
41
40 | 45
44
43
42
41 | 1550.3405
1552.8199
1555.2891
1557.7473
1560.1959 | 0.0006
0.0011
0.0002
-0.0004
0.0010 | 10 | 11
10 | 1626.9302
1629.0940
1631.2515
1633.4005
1635.5447
1639.8156
1641.9433 | -0.0003
0.0002
-0.0010
-0.0006
0.0002 | 24
25
26
27 | 24
25
26 | 1702.9654
1704.8581
1706.7395
1708.6088
1710.4680 | 0.0003
-0.0002
0.0002
0.0004
0.0030 | | 39
38
37
36 | 40
39
38
37
36 | 1562.6367
1565.0666
1567.4839
1569.8945
1572.2958
1574.6844
1577.0632 | 0.0013
-0.0009
-0.0001
0.0015
0.0006 | 9
8
6
5
4
3 | 9
7
6
5
4
2 | 1641.9433
1644.0654
1646.1810
1650.4000 | 0.0011
0.0015
0.0001
-0.0011 | 28
29
30
31
33
34 | 27
28
29
30
32
33 | 1712.3091
1714.1401
1715.9597
1719.5587 | -0.0001
-0.0007
-0.0002
-0.0012
0.0000 | | 34
33
32
31
30 | 35
34
33
32
31 | 1579.4335
1581.7929
1584.1356
1586.4808 | -0.0003
0.0004
0.0003
-0.0064
-0.0005 | 2
3
4
5
6
8
9 | 1
2
3
4
5
7
8
9 | 1658.7883
1660.8736
1662.9524
1665.0339 | -0.0010
-0.0015
-0.0036
0.0021
0.0013 | 35
36
37
38
40 | 34
35
36
37
39 | 1721.3406
1723.1090
1724.8646
1726.6022
1728.3304
1731.7519 | 0.0005
0.0013
-0.0028
-0.0033
0.0004 | | 35
34
33
32
31
30
29
28
27
26
25
23 | 30
29
28
27
26 | 1588.8111
1591.1318
1593.4383
1595.7382
1598.0273 | 0.0005
0.0021
-0.0005
0.0002
0.0002 | 8
9
10
11
12 | 7
8
9
10
11 | 1660.8736
1662.9524
1665.0339
1667.1033
1671.2247
1673.2755
1675.3190
1677.3565
1679.3841
1681.4054
1683.4155
1685.4180 | 0.0003
0.0000
-0.0006
0.0005
-0.0003 | 42
43
44
46
47 | 41
42
43
45
46 | 1735.1180
1736.7721
1738.4283
1741.6849
1743.2952 | 0.0015
-0.0070
0.0000
-0.0019
-0.0008 | | 21
20
19
17 | 24
23
22
21
20
18 | 1602.5739
1604.8357
1607.0856
1609.3253
1611.5584
1615.9923 | -0.0019
0.0002
0.0000
-0.0008
0.0011
0.0001 | 13
14
15
16
17
18
19 | 12
13
14
15
16
17 | 1681.4054
1683.4155
1685.4180
1687.4083
1689.3903
1691.3624
1693.3257 | 0.0011
0.0001
0.0007
-0.0011
-0.0014
-0.0012 | 48
49
50
51
52 | 47
48
49
50
51 | 1744.8916
1746.4747
1748.0387
1749.6003
1751.1421 | -0.0002
0.0006
-0.0043
0.0020
0.0019 | | 16 | 17 | 1618.1973 | 0.0009 | 19 | - | 1093.3237
11)—(01 ¹ 0), f- | 0.0008
f | | | | | | 47
46
45
44
43
42
40
39
38
37
36
35
34 | 48
47
46
45
44
43
41
40
39
38
37
36
35 | 1542.3783
1544.9242
1547.4673
1550.0007
1552.5257
1555.0440
1560.0507
1562.5397
1565.0220
1567.4963
1569.9622
1572.4184
1574.8678 | 0.0017
-0.0021
-0.0006
-0.0005
-0.0004
0.0014
0.0003
-0.0017
-0.0018
-0.0014
-0.0007
-0.0008
0.0012 | 13
12
11
10
9
8
7
6
5
4
2
1 | 14
13
12
11
10
9
8
7
6
5
3 | 1624.1435
1626.3847
1628.6167
1630.8387
1633.0497
1635.2512
1637.4434
1639.6229
1641.7943
1643.9560
1648.2471
1650.3768 | -0.0003
-0.0005
0.0000
0.0005
0.0000
0.0001
0.0010
-0.0007
-0.0003
0.0007
0.0012 | 22
23
24
25
26
27
28
29
30
31
32
33 | 21
22
23
24
25
26
27
28
29
30
31
32
33 | 1698.2702
1700.1277
1701.9708
1703.8074
1705.6281
1707.4408
1709.2409
1711.0290
1712.8050
1714.5653*
1716.3210
1718.0655 | 0.0006
0.0010
-0.0016
0.0007
-0.0014
0.0001
0.0004
-0.0001
-0.0047
-0.0022
0.0009
-0.0007 | | 33
32
31
30
29
28
27 | 34
33
32 | 1577.3051
1579.7348
1582.1571
1584.5663
1586.9693 | -0.0003
-0.0004
0.0010
-0.0016
-0.0014 | 3
4
5
6
7 | 2
3
4
5
6 | 1660.8736*
1662.9319
1664.9907
1667.0338
1669.0708 | 0.0063
-0.0020
0.0008
-0.0013
0.0012 | 35
36
37
38
39 | 34
35
36
37
38 | 1721.5138
1723.2217 | 0.0015
0.0033
0.0002
0.0070
-0.0007 | | 28
27
26
25
24
23 | 31
30
29
28
27
26
25 | 1589.3654
1591.7483
1594.1246
1596.4899
1598.8470
1601.1953 | 0.0010
-0.0007
0.0004
-0.0004
-0.0001 | 6
7
8
9
10
11
12 | 5
6
7
8
9
10
11 | 1671.0931
1673.1061
1675.1082
1677.0997 | -0.0002
0.0000
0.0001
0.0005
0.0005 | 40
41
42
43
44
45 | 39
40
41
42
43 | 1724.8130
1728.66022*
1728.2650
1729.9247
1731.5690
1733.2045
1734.8278
1736.4405 | 0.0005
-0.0018
-0.0008
0.0000
0.0022 | | 22
21
20
19 | 24
23
22
21
20 | 1603.5330
1605.8610 | 0.0008
0.0004
-0.0001
0.0008
-0.0002 | 13
14
15
16
17 | 12
13
14
15
16 | 1683.0070
1684.9537 | -0.0008
0.0004
0.0002
-0.0006
-0.0017 | 46
47
48
49 | 44
45
46
47
48 | 1736.4405
1738.0368
1739.6239
1741.1964
1742.7606
1744.3101
1747.3742 | 0.0002
0.0010
-0.0005
0.0018
0.0016 | | 18
17
16
15 | 19
18
17
16 | 1610.4896
1612.7886
1615.0822
1617.3606
1619.6315 | -0.0010
0.0022
0.0001
0.0000 | 18
19
20
21 | 17
18
19
20 | 1686.8889
1688.8126
1690.7278
1692.6277
1694.5232
1696.4048 | -0.0001
-0.0026
0.0019
0.0037 | 51
52
53 | 50
51
52 | 1747.3742
1748.8808
1750.3828 | 0.0032
-0.0031
-0.0016 | TABLE 1—Continued | J' | J" | Obs. | O-C | J' | J" | Obs. | 0-C | J' | J" | Obs. | O-C | |----|----|--------------------------|---------|----|-----|---|---------|----|----|-----------------|---------| | | | | | | | (000)—(000) | | | | | | | 4 | 3 | 251535.4160^c | 0.0072 | 5 | 4 | 314410.0100^c | 0.0079 | 6 | 5 | 377278.4360^c | 0.0125 | | | | | | | | (100)(100) | | | | | | | 3 | 2 | 186422.6440^{c} | -0.0745 | 6 | 5 | 372865.8520^{c} | -0.0616 | | | | | | | | | | | | (001)—(001) | | | | | | | 4 | 3 | 250274.7810 ^c | 0.0376 | 5 | 4 | 312834.2250^c | 0.0222 | 6 | 5 | 375387.5730^c | 0.0615 | | | | |
| | (01 | ¹ 1)—(01 ¹ 1), e- | -е | | | | | | 4 | 3 | $251725.7250^{\rm c}$ | 0.0113 | 5 | 4 | 314647.7000^{c} | -0.0164 | 6 | 5 | 377563.3880^c | -0.0478 | | | | | | | (01 | 1 ¹ 1)—(01 ¹ 1), f- | f | | | | | | 4 | 3 | 252878.5750^{c} | -0.0143 | ŏ | 4 | 316088.6020° | 0.0040 | 6 | 5 | 379292.1930^c | 0.0114 | sumed to be 617 cm⁻¹, the matrix value reported by Lory and Porter (15). Table 4 lists the molecular constants thus obtained. ### IV. DISCUSSION The present study provided new data: the band origin of ν_1 , the vibration–rotation constant α_1 for both D¹¹BO and D¹⁰BO, and the band origins of ν_2 and ν_3 of D¹¹BO, which were added to those already available to improve the equilibrium molecular structure and the harmonic and anharmonic force field of Ref. (4). It was found that the ν_1 frequency was poorly reproduced for the H¹¹BO, H¹⁰BO, D¹¹BO, and D¹⁰BO. This observation is ascribed to a large vibrational anharmonic constant x_{11} associated with the H(D)–B stretching mode, ν_1 . In order to make corrections for this anharmonicity, the fundamental frequencies ν_1 of HBO and DBO were multiplied, respectively, by the ratios ω_1/ν_1 of HCN and DCN calculated from the data of Ref. (16) before the values were used for analysis. The input parameters are summarized in Table 5, and the equilibrium structure and force field which are derived are given in Table 6; in both of the tables the data reported in (4) are also included for comparison. The present results agree well with the previous ones, but, as expected, the harmonic and third-order anharmonic potential constants associated with the B–H stretching mode were much improved in precision. As noted above, the $\nu_2 + \nu_3$ frequency obtained for D¹¹BO, 2262.96084 (81) cm⁻¹, slightly exceeds the sum of the two fundamental frequencies, ν_2 [608.36225 (53)] + ν_3 [1647.69007 (62)] = 2256.05232 (82) cm⁻¹; the x_{23} constant was calculated to be +6.909 cm⁻¹. It is interesting to note that the x_{23} constant is -3.38 and +2.73 cm⁻¹ for HCN and DCN, respectively (16, 17). In the case of D¹⁰BO, TABLE 2 Molecular Constants of D¹¹BO^{a,b} | Constant | Ground State | $v_I = 1$ | <i>v</i> ₂ = 1 | <i>v</i> ₃ = 1 | <i>v</i> ₂ =1 + <i>v</i> ₃ =1 | |-----------------------|----------------|-----------------|---------------------------|---------------------------|---| | | | | | | | | ν | | 2253,52753 (65) | 608.36225 (53) | 1647.69007 (62) | 2262.96084 (81) | | B_V | 1.0488445 (15) | 1.039564 (18) | 1.0520396 (14) | 1.0435879 (17) | 1.0467379 (89) | | $10^6 D_v$ | 1.7159 (40) | 1.7016 (80) | 1.7666 (41) | 1.7099 (38) | 1.7567 (50) | | $10^{12}H_V$ | 2.2 (13) | 2.3 (18) | 2.7 (14) | 2.1 (12) | 2.5 (14) | | $10^3 q_V$ | | | -4.8082 (18) | | -4.910 (15) | | $10^8 D_{\rm qv}$ | | | -3.94 (13) | | -3.51 (32) | | ζ ^y 1, 2+3 | 0.07 | 766 (23) | | | | ^a Values in parentheses denote three times the standard deviations, which apply to the last digits. ^b Units are cm⁻¹, except $\zeta_{I,2+3}^y$, which is dimensionless. 158 KAWASHIMA ET AL. ${\bf TABLE~3} \\ {\bf Rotational-Vibrational~and~Pure~Rotational~Line~Positions~for~D^{10}BO^{\it a,b}} \\$ | J' | J'' | Obs. | O-C | J' | J'' | Obs. | O-C | J' | J'' | Obs. | O-C | |---|--|--|---|---|--|---|--|--|--|---
--| | | | | | | | (100)—(000) | | | | | | | 44
43
40
338
337
335
331
339
228
225
222
210
118
176 | 45
442
41
40
338
337
335
332
331
229
287
226
224
221
220
19
18 | 2194.5319
2197.2076
2202.5420
2205.2105*
2207.8736*
2210.5164
2213.1652*
2215.7984
2218.4249
2221.0422
2223.6580
2226.2618
2228.8537
2231.4413
2234.0183*
2236.5755
2239.1284
2241.6596*
2244.1975
2246.7160
2254.1961
2256.661
2254.1961
2256.661
2256.91133
2261.5570
2263.9795
2266.3891 | 0.0148
0.0106
0.0006
0.0052
0.0106
0.0022
0.0063
0.0003
0.0004
0.0002
0.0007
-0.0013
0.0023
0.0009
0.0004
0.0010
0.0010
0.0011
0.0015
0.0002
0.0002
0.0002 | 12110 987 654 3210 1234 567 8 9 10 112 314 | 13
12
11
10
98
76
54
32
1
0
11
23
45
67
89
10
11
11
11
11
11
11
11
11
11
11
11
11 | 275.8901
2278.2251
2280.5442
2282.8531
2285.1449
2287.4187
2289.6751
2291.9196
2294.1498
2296.3652*
2298.5591
2300.7281
2300.7281
2302.8846
2307.1623
2309.2608*
2311.3644
2313.4433
2315.503
2317.5503
2319.5741
2321.5867
2323.5831
2325.5591
2327.5198
2329.4670
2331.3966
2331.3966
2331.3966 | 0.0011
-0.0009
-0.0035
-0.0007
-0.0007
-0.0003
-0.0003
-0.0003
-0.003
-0.003
-0.003
-0.003
-0.003
-0.004
-0.0004
-0.0004
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.00 | 17
18
19
20
21
22
22
24
25
26
27
28
29
30
31
32
33
40
41
42
43
44
45 | 16
17
18
19
20
21
22
24
25
27
28
29
30
31
32
33
40
41
42
43
44 | 2338.9500
2340.7984
2342.6335
2344.4502
2346.2546
2348.0394
2349.8130
2351.5728
2355.0459
2356.7598
2356.7598
2356.4618
2361.8270
2363.4921
2363.4921
2363.4921
2363.4921
2363.4921
2374.8084
2377.9458*
2379.4946*
2381.0352*
2382.5690*
2384.0993*
2384.0993*
2384.0993*
2384.0953*
2384.0953*
2384.0953*
2384.0953*
2384.0553* |
0.0000
-0.0005
0.0010
-0.0002
-0.0002
-0.0011
-0.0011
-0.0004
0.0002
-0.0003
-0.0022
-0.0024
-0.0004
0.0017
-0.0008
0.0005
0.0005
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.0008
0.000 | | 15
14 | 16
15 | 2268.7866
2271.1719 | -0.0014
-0.0006
0.0025 | 15
16 | 14
15 | 2335.2065
2337.0842 | 0.0019 | 47
49 | 46
48 | 2388.6265*
2391.6098* | 0.0033
0.0112
0.0142 | | 13 | 14 | 2273.5332 | -0.0035 | 10 | 10 | (001)—(000) | -0.0010 | 73 | 40 | 2031.0030 | 0.0172 | | 4964444324140987653433210987653 | 54765443444439876554433210988765 | 1540.8794
1548.7027
1551.2966
1553.8792
1556.4512
1556.4512
1566.6573
1566.1818*
1571.712.209
1576.7231
1576.7231
1579.2146
1581.6977
1584.1732
1584.1732
1589.0966
1591.5445
1593.9851
1596.4095
1596.4095 | -0.0003
-0.0019
0.0009
0.0010
-0.0007
0.0021
-0.0016
-0.0016
-0.0016
-0.0016
-0.0014
0.0024
0.0024
0.0014
0.0007
-0.0014
0.0007 | 1765144
113211
110987654320
123450 | 18
176
15
14
13
110
9
8
7
6
5
4
3
3
1 | 1620.1571
1622.4775
1624.7887
1627.0887
1629.3796
1631.6601
1633.9302
1636.1979*
1638.4411
1640.6798
1642.9102
1645.1385*
1647.3369
1649.5329
1651.7198
1653.8944
1658.2167 | -0.0002
-0.0005
-0.0007
-0.0002
-0.0001
-0.0002
-0.0001
-0.0012
0.0012
0.0024
0.0009
-0.0008
-0.0009
-0.0045
-0.0021
-0.0021
-0.0001
-0.0002 | 14
15
16
17
18
19
21
22
22
24
25
26
28
29
31
33
33
37
39
40
41 | 13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30
31
32
33
38
39
40
40
40
40
40
40
40
40
40
40
40
40
40 | 1689.2273 1691.2057 1693.1727 1695.1312 1697.0700 1699.0045 1700.89242 1702.8323 1704.7293 1706.6216 1708.4888 1710.3312 1712.2034 1715.8670 1717.6880 1719.4907 1721.2745 1723.0551 1724.8211 1731.7682 1735.1634 1736.8318 1738.5187 | -0.0007
-0.0003
-0.0001
-0.0017
-0.0004
-0.0014
-0.0018
-0.0018
-0.0017
-0.0018
-0.0017
-0.0017
-0.0017
-0.0016
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
-0.000 | | 24
23
22
21
20
19 | 25
24
23
22
21
20
19 | 1603.6350
1606.0247
1608.4033
1610.7760
1613.1352
1615.4862
1617.8257 | -0.0004
-0.0002
-0.0016
0.0010
-0.0002
0.0003
-0.0009 | 6
7
8
9
10
12
13 | 5
6
7
8
9
11
12 | 1672.9883*
1675.0661
1677.1182
1679.1676
1681.2035
1685.2378
1687.2388 | -0.0092
0.0007
-0.0040
-0.0003
0.0012
0.0000
0.0002 | 42
43
45
46
47 | 41
42
44
45
46 | 1740.1740
1741.8191
1745.0680
1746.6762
1748.2634 | 0.0005
0.0017
0.0002
0.0020
-0.0046 | | | | | | | | (000)—(000) | | | | | | | 4 | 3 | 257116.0840 ^c | 0.2120 | 5 | 4 | 321385.4180° | 0.2917 | 6 | 5 | 385648.2040 ^c | 0.2987 | | 4 | 3 | 255823.1980° | -0.1606 | 5 | 4 | (001)— $(001)319769.2650^c$ | -0.2555 | 6 | 5 | 383708.8560° | -0.3750 | | 4 | J | 200020.1900 | -0.1000 | ٥ | 4 | 319109.2030 | -0.2000 | - 0 | | 556705.55000 | -0.0100 | Note. O-C denotes observed - calculated. Unless otherwise indicated, units are in cm⁻¹. where we neglected x_{23} , we obtained an effective Coriolis coupling constant that was about 30% larger than the value listed in Table 4. The Coriolis interaction between the ν_1 and $\nu_2 + \nu_3$ states originates partly from mixing of the two vibrational states with others through anharmonic potential constants. Another source of the interaction arises from the first-order terms in the expansion of the *B* rotational constant in terms of the two stretching normal coordinates, which, when inserted in the two Coriolis interaction Hamiltonians, contribute directly to the interaction matrix element. When we take into account only cubic anharmonic potential ^a Rotational-vibrational and pure rotational transitions weighted 1:10000. ^b The observed transition frequencies labeled with asterisks were not included in the least-squares fit. ^c Units in MHz. | TABLE 4 | |--------------------------------| | Molecular Constants of D10BOa, | | Constant | Ground State | $v_I = 1$ | <i>v</i> ₃ = 1 | v2=1 + v3=1 | |-----------------------|----------------|----------------|---------------------------|----------------| | | | | | | | ν | | 2305.0322 (13) | 1660.3600 (10) | $(2284.3)^{c}$ | | B_V | 1.0721153 (23) | 1.062343
(77) | 1.0667259 (24) | (1.070240)° | | $10^6 D_V$ | 1.8013 (31) | 1.6437 (27) | 1.7946 (32) | (1.801)° | | $10^{12}H_{V}$ | (2.2) ° | $(2.3)^{c}$ | (2.1) ° | (2.5) ° | | $10^3 q_V$ | | | | (-4.93271)° | | ζ ^y 1, 2+3 | 0.08 | 33 (19) | | | ^a Values in parentheses denote three times the standard deviations, which apply to the last digits. terms $k_{ijk}q_iq_jq_k$, we may derive the following expression for the effective Coriolis interaction matrix element, $$\begin{split} & \left[\left\langle 100 | k_{113} | 101 \right\rangle + \left\langle 100 | k_{333} | 101 \right\rangle + \left\langle 100 | k_{223} | 101 \right\rangle \right] \\ & \times \left\langle 101 | C_1 | 011 \right\rangle (-\frac{1}{2}) \left[1/\omega_3 + 1/(\omega_1 - \omega_2) \right] \\ & + \left\langle 100 | k_{223} | 121 \right\rangle \langle 121 | C_1 | 011 \right\rangle (-\frac{1}{2}) \left[1/(2\omega_2 + \omega_3) \right. \\ & + \left. 1/(\omega_1 + \omega_2) \right] + \left\langle 100 | C_1 | 010 \right\rangle \left[\left\langle 010 | k_{113} | 011 \right\rangle \right. \\ & + \left\langle 010 | k_{333} | 011 \right\rangle + \left\langle 010 | k_{223} | 011 \right\rangle \left[\frac{1}{2} \right] \left[1/(\omega_1 - \omega_2) \right. \\ & + \left. 1/\omega_3 \right] + \left\langle 100 | C_1 | 210 \right\rangle \langle 210 | k_{113} | 011 \right\rangle (-\frac{1}{2}) \\ & \times \left[1/(\omega_1 + \omega_2) + 1/(2\omega_1 - \omega_3) \right] + \left\langle 100 | k_{133} | 002 \right\rangle \\ & \times \left\langle 002 | C_3 | 011 \right\rangle (-\frac{1}{2}) \left[1/(2\omega_3 - \omega_1) + 1/(\omega_3 - \omega_2) \right] \\ & + \left\langle 100 | k_{122} | 020 \right\rangle \langle 020 | C_3 | 011 \right\rangle (-\frac{1}{2}) \left[1/(2\omega_2 - \omega_1) \right. \\ & + \left. 1/(\omega_2 - \omega_3) \right] + \left[\left\langle 100 | k_{111} | 000 \right\rangle + \left\langle 100 | k_{133} | 000 \right\rangle \\ & + \left\langle 100 | C_3 | 111 \right\rangle \left[\left\langle 111 | k_{111} | 011 \right\rangle + \left\langle 111 | k_{133} | 011 \right\rangle \\ & + \left\langle 111 | k_{122} | 011 \right\rangle \left[-\frac{1}{2} \right) \left[1/(\omega_2 + \omega_3) + 1/\omega_1 \right], \end{split}$$ where the cubic anharmonic terms $k_{ijk}q_iq_jq_k$ and the two Coriolis interaction terms ν_1/ν_2 and ν_3/ν_2 are symbolically expressed as k_{ijk} and C_i (i=1 and 3), respectively. The effective Coriolis coupling constant from this source is thus equal to $$\zeta_{st}^{\text{eff}} [(\omega_{t}/\omega_{s})^{1/2} + (\omega_{s}/\omega_{t})^{1/2}] (I) = \zeta_{12}/[2(2\omega_{1}\omega_{2})^{1/2}] \times \{(k_{113} - k_{223})[(\omega_{1} + \omega_{2})/\omega_{3} + (\omega_{1} + \omega_{2})/(\omega_{1} - \omega_{2}) - (\omega_{1} - \omega_{2})/(\omega_{1} + \omega_{2})] - k_{113}(\omega_{1} - \omega_{2})/(2\omega_{1} - \omega_{3}) + k_{223}(\omega_{1} - \omega_{2})/(2\omega_{2} + \omega_{3})\} + \zeta_{32}/[2(2\omega_{2}\omega_{3})^{1/2}] \times \{(k_{133} + k_{122})[-(\omega_{3} - \omega_{2})/\omega_{1} - (\omega_{3} - \omega_{2})/(\omega_{3} + \omega_{2}) + (\omega_{3} + \omega_{2})/(\omega_{3} - \omega_{2})] + k_{133}(\omega_{3} + \omega_{2})/(2\omega_{3} - \omega_{1}) + k_{122}(\omega_{2} + \omega_{3})/(\omega_{1} - 2\omega_{2})\}.$$ When the Coriolis resonance is exact, we may insert the relation $\omega_1 = \omega_2 + \omega_3$ in the above formula to simplify the result as follows: $$\begin{split} \zeta_{st}^{\text{eff}} \big[(\omega_t/\omega_s)^{1/2} + (\omega_s/\omega_t)^{1/2} \big] (\mathbf{I}) \\ &= 2(2)^{1/2} \big\{ \zeta_{12} \big[(\omega_1\omega_2)^{1/2}/(\omega_1^2 - \omega_2^2) \big] (k_{113} - k_{223}) \\ &+ \zeta_{32} \big[(\omega_2\omega_3)^{1/2}/(\omega_3^2 - \omega_2^2) \big] (k_{122} + k_{133}) \big\}. \end{split}$$ The second part may be derived in the following way. The *B* rotational constant may be expanded in terms of the two stretching normal coordinates as follows, $$B = B_e - B_e \sum_{s} (2B_e/\omega_s)^{1/2} 2c\zeta_{s2}q_s + \cdots,$$ where s = 1 or 3 and c = +1 and -1 for the two modes, respectively. These first-order terms, when inserted in the ^b Units are cm⁻¹, except $\zeta_{I,2+3}^y$, which is dimensionless. c Assumed 160 KAWASHIMA ET AL. TABLE 5 Input Parameters for the Determination of the Force Field of HBO | parameter ^a | obs | weight | This work
obs - calc | Ref. (4)
obs - calc | |-----------------------------------|-----------|--------|-------------------------|------------------------| | H ¹¹ BO | | | | | | B_0 | 39224.247 | 10000 | -0.015 | -0.085 | | w 1 | 2903.6 | 100 | 0.5 | [2820.76] | | ω2 | 754.4152 | 1000 | -0.2932 | 0.0985 | | ω3 | 1825.5561 | 1000 | -0.2056 | 0.0578 | | α 1 | 269.785 | 200 | -0.755 | 0.758 | | a 2 | -86.255 | 200 | -0.128 | -0.015 | | a 3 | 259.249 | 200 | -0.217 | 0.058 | | q_2 | -181.925 | 100 | -3.458 | -0.714 | | D_{θ} | 80.24 | 20 | -0.45 | -0.36 | | H ¹⁰ BO | | | | | | B_{θ} | 40575.395 | 10000 | -0.241 | -0.121 | | ω1 | 2928.1 | 100 | -0.2 | [2844.47] | | ω2 | 763.6257 | 1000 | -0.4704 | -0.0707 | | ω3 | 1864.1620 | 1000 | 0.2479 | -0.59 | | α_1 | 299.502 | 200 | -0.904 | -0.865 | | a 2 | -98.302 | 200 | -0.184 | -0.142 | | α 3 | 268.671 | 200 | -0.832 | -0.252 | | q_2 | -192.388 | 100 | -3.785 | -0.883 | | D_{θ} | 85.75 | 20 | -0.21 | -0.10 | | D11BO | | | | | | B_{0} | 31443.572 | 10000 | 0.114 | 0.092 | | ω_1 | 2316.1 | 100 | 0.4 | 7.3 ^b | | ω2 | 608.3623 | 1000 | 1.2582 | -0.7 | | ω3 | 1647.6901 | 1000 | -0.2286 | 1.5 | | α_I | 278.234 | 200 | 4.382 | -1.901 | | a 2 | -95.786 | 200 | -0.302 | 0.634 | | α 3 | 157.589 | 200 | 0.492 | 0.449 | | q 2 | -144.147 | 100 | -1.874 | 0.371 | | D_0 | 51.44 | 20 | 0.25 | 0.24 | | $D^{10}BO$ | | | | | | B_{θ} | 32141.214 | 10000 | -0.069 | -0.070 | | w ₁ | 2369.0 | 100 | 0.6 | -1.2 ^b | | ω_2 | 617 | 1 | -1.7 | -1.4 | | ω_{β} | 1660.3600 | 1000 | 0.1094 | 5. I ^b | | a_1 | 292.956 | 200 | -2.688 | 1.983° | | $a \ 2$ | -105.349 | 200 | -0.194 | -0.745 | | a 3 | 161.572 | 200 | 0.435 | -0.353 | | q_2 | -147.879 | 100 | -1.989 | 0.315 | | D_{θ} | 54.00 | 20 | 0.31 | 0.32 | | H ¹¹ B ¹⁸ O | | | | | | B_{θ} | 37529.818 | 10000 | 0.211 | 0.101 | | D_{θ} | 73.89 | 20 | -0.15 | -0.12 | | H ¹⁰ B ¹⁸ O | | | | | | $B_{\mathcal{O}}$ | 38913.622 | 10000 | 0.026 | 0.098 | | $D_{\mathcal{O}}$ | 79.17 | 20 | 0.23 | 0.27 | ^a Units are cm⁻¹ for ω_i , MHz for α_i and q_2 , kHz for D_0 . TABLE 6 Equilibrium Structures and Force Fields of HBO^a | parameter ^b | This study | Ref. (4) | |---|--------------|--------------| | <i>r_e</i> (B-H) / Å | 1.16740 (74) | 1.16667 (41) | | r_e (B=O) /Å | 1,20051 (20) | 1.20068 (10) | | <i>f_{rr} /</i> aJÅ ⁻² | 4.377 (14) | 4.169 (97) | | <i>f_{rR} /</i> aJÅ⁻² | -0.129 (18) | 0.052 (90) | | <i>f_{RR}</i> / aJÅ ⁻² | 14.118 (38) | 13.986 (103) | | <i>f_{a a} /</i> aJ | 0.3256 (12) | 0.3249 (5) | | <i>f_{rrr}∣</i> aJÅ- ³ | -21.02 (29) | -20.92 (125) | | f_{rrR} / ${ m aJ\AA^{-3}}$ | 0.05 (29) | -0.147 (122) | | f_{rRR} / ${ m aJ\AA^{-3}}$ | (0.0) | (0.0) | | f_{RRR} / ${ m aJ\AA^{-3}}$ | -88.97 (91) | -88.39 (93) | | $f_{r_{lpha-lpha}}$ / ${ m aJ\AA^{-1}}$ | -0.05 (16) | -0.046 (52) | | f _{R a a} / аЈÅ-1 | -0.39 (14) | -0.381 (44) | ^a Values in parentheses denote three times the standard deviations, which apply to the last digits. ordinary Coriolis interaction terms C_i in place of B, add the following to the effective Coriolis coupling constant: $$\zeta_{st}^{\text{eff}} [(\omega_t/\omega_s)^{1/2} + (\omega_s/\omega_t)^{1/2}] (\text{II}) = -2B_e^{1/2} [\zeta_{32}^2(\omega_3 - \omega_2) + \zeta_{12}^2(\omega_1 + \omega_2)] / (\omega_1\omega_2\omega_3)^{1/2}.$$ The cubic potential constants and the Coriolis coupling constants ζ_{12} and ζ_{32} were calculated from the force field listed in Table 6 and were inserted, together with the observed fundamental frequencies in place of the harmonic frequencies, in the above expressions to derive the effective Coriolis coupling constants, 0.0891 and 0.0916 for D¹¹BO and D¹⁰BO, respectively, which favorably compare with the observed values 0.07766 (23) and 0.0833 (19), respectively. #### ACKNOWLEDGMENTS We are grateful to Toshinori Suzuki, Kentarou Kawaguchi, and Masaharu Fujitake for help in observing the infrared diode laser and microwave spectra of DBO at the Institute for Molecular Science. The present work was supported ^b Weight is 1 in the least squares analysis. ^c Not included in the least squares fitting. ^b The suffixes *r* and *R* denote the H—B and B—O bonds, respectively. by the Joint Studies Program of the Institute for Molecular Science. Funding was also provided by the Natural Sciences and Engineering Research Council of Canada. ## REFERENCES - E. F. Pearson and R. V. McCormick, J. Chem. Phys. 58, 1619–1621 (1973). - Y. Kawashima, K. Kawaguchi, and E. Hirota, Chem. Phys. Lett. 131, 205–208 (1986). - 3. Y. Kawashima, Y. Endo, K. Kawaguchi, and E. Hirota, *Chem. Phys. Lett.* **135**, 441–445 (1987). - Y. Kawashima, Y. Endo, and E. Hirota, J. Mol. Spectrosc. 133, 116–127 (1989). - P. Colarusso and P. Bernath, 51st International Symposium on Molecular Spectroscopy, Paper MG01, Columbus, OH, 1996. - E. Hirota, in "Chemical and Biochemical Applications of Lasers" (C. B. Moore, Ed.), Vol. V, pp. 39–93, Academic Press, New York, 1980. - E. Hirota, "High-Resolution Spectroscopy of Transient Molecules," Springer, Heidelberg, 1985. - G. Guelachvili and K. Narahari Rao, "Handbook of Infrared Standards," Academic Press, Orlando, 1986. - Frequency table prepared by Y. Hamada and supplied to us by his courtesy. - Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 75, 4379-4384 (1981). - 11. Y. Endo and E. Hirota, J. Chem. Phys. 86, 4319-4326 (1987). - 12. P. Colarusso, K. Q. Zhang, and P. F. Bernath, in preparation. - C. P. Rinsland,
M. A. H. Smith, A. Goldman, V. M. Devi, and D. C. Brenner, J. Mol. Spectrosc. 159, 274–278 (1993). - H. G. Hedderich, K. Walker, and P. F. Bernath, J. Mol. Spectrosc. 149, 314–316 (1991). - 15. E. R. Lory and R. F. Porter, J. Amer. Chem. Soc. 93, 6301-6302 (1971). - 16. G. Strey and I. M. Mills, Mol. Phys. 26, 129-138 (1973). - A. Maki, W. Quapp, S. Klee, G. C. Mellau, and S. Albert, J. Mol. Spectrosc. 180, 323–336 (1996).