ACADEMIC PRESS

Fourier transform emission spectroscopy of CoCl in the 500 nm region

T. Hirao, ${ }^{\text {a,* }}$ B. Pinchemel, ${ }^{\text {b }}$ and P.F. Bernath ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Waterloo, Waterloo, Ont., Canada N2L 3G1
${ }^{\mathrm{b}}$ Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Centre d'Etudes et de Recherches Lasers et Applications, Université de Lille I 59655, Villeneuve d'Ascq Cedex, France

Received 23 October 2002

Abstract

Fourier transform emission spectra of CoCl were obtained with a tube furnace-DC discharge source in the $450-500 \mathrm{~nm}$ spectral region. In addition to observing two different band systems, which were assigned as [20.7] ${ }^{3} \Phi_{4}-X^{3} \Phi_{4}$ and $[21.3]^{3} \Phi_{4}-X^{3} \Phi_{4}$ by Adam et al. [J. Mol. Spectrosc. 212 (2002) 111], we obtained data for additional sub-bands and vibrational levels. In contrast to the previous work, intense Q branches are seen in the [21.3]- $X^{3} \Phi_{4}$ bands which indicate that these bands are likely $\Delta \Lambda \neq 0$ transitions. The equilibrium rotational constant B_{e} for the ground $X^{3} \Phi_{4}$ state is $0.1801104(28) \mathrm{cm}^{-1}$, the equilibrium bond length is 2.065122(16) \AA and $\Delta G_{1 / 2}$ is $430.418(5) \mathrm{cm}^{-1}$.

© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Transition metal-containing molecules are known to have dense and complicated electronic band systems, in part because they have relatively small rotational constants. The bands frequently display severe perturbations, due to the numerous electronic states arising from the open d-shell on the metal atom. A detailed understanding of such spectra requires high spectral resolution. Even though the electronic spectra of some transition metal-containing molecules were obtained early in the last century, it has been a difficult task to interpret the spectra. A modern technique such as Fourier transform spectroscopy can reveal the structural properties of transition metal-containing species and generally improves our understanding of transition metal chemistry.

Although electronic transitions of CoCl were already observed in the 1930s [1-2], and numerous bands were

[^0]found in the $420-795 \mathrm{~nm}$ region [3-9], no detailed interpretation of these spectra was available. Very recently, Adam et al. [10] carried out a high resolution laser excitation experiment on CoCl around 483.3 and 470.3 nm , following a low resolution survey between 415 and 700 nm . They applied the technique of laser ablation followed by jet expansion to generate cold CoCl . The spectra were assigned to two different ${ }^{3} \Phi_{4}-X^{3} \Phi_{4}$ transitions ($[20.7]^{3} \Phi_{4}-X^{3} \Phi_{4}$ and $\left.[21.3]^{3} \Phi_{4}-X^{3} \Phi_{4}\right)$. They argued that the ground state of CoCl should be $X^{3} \Phi_{i}$ by analogy with the ground states of CoH and CoF , which are established as $X^{3} \Phi_{i}$ by both theoretical and experimental methods [11-17]. The relative intensities of P and R branches of the observed two transitions were similar, suggesting that these bands have $\Delta \Lambda=0$ despite the presence of Q branches. In the high resolution experiment the hyperfine structure arising from ${ }^{57} \mathrm{Co}$ ($I=7 / 2$) nuclei of CoCl was clearly resolved, suggesting that the electric configuration of the ground state is (core) $(10 \sigma)^{2}(4 \pi)^{4}(1 \delta)^{3}(5 \pi)^{3}(11 \sigma)^{2}$ and that two transitions involve a promotion of a 11σ electron into the 12σ orbital. High vibrational levels of the two upper states (up to $v=5$ and 4 for $[20.7]^{3} \Phi_{4}$ and $[21.3]^{3} \Phi_{4}$, respectively) were seen in the low-resolution spectra, while only the lowest two vibrational levels were obtained for

Table 1a
Observed line positions of $\mathrm{Co}^{35} \mathrm{Cl}$ in cm^{-1}

$v^{\prime}-v^{\prime \prime}$	$\underline{[21.3]^{3} \Delta_{3}\left(\text { or }{ }^{3} \Phi_{4}\right)-X^{3} \Phi_{4}{ }^{\text {a }}}$					$\underline{[21.0]^{3} \Delta_{2}\left(\text { or }{ }^{3} \Phi_{3}\right)-X^{3} \Phi_{3}}$		
	0-0			0-1		0-0		
$J^{\prime \prime}$	P	Q	R	Q	R	P	Q	R
17							20970.424	
18							20970.117	
19								
20							20969.449	
21							20969.103	
22							20968.731	
23							20968.335	
24							20967.933	20976.499
25							20967.516	20976.360
26					20830.676		20976.271	
27					20830.605		20966.618	20976.159
28		21250.221					20966.136	20976.023
29		21249.721	21260.005				20965.643	20975.881
30	21238.958	21249.226	21259.787	20819.667	20830.241		20965.144	20975.722
31	21238.107	21248.645	21259.594	20819.189	20830.123		20964.624	20975.527
32	21237.209	21248.071	21259.363	20818.675	20829.977		20964.053	20975.317
33	21236.245	21247.525	21259.145	20818.162	20829.802		20963.513	20975.098
34	21235.335	21246.928	21258.892	20817.664	20829.592		20962.939	20974.862
35	21234.397	21246.324	21258.593	20817.072	20829.385	20950.385	20962.337	20974.608
36	21233.427	21245.689	21258.291	20816.531	20829.161	20949.439	20961.728	20974.330
37	21232.424	21245.034	21257.989	20815.952	20828.920	20948.491	20961.099	20974.058
38	21231.407	21244.360	21257.656	20815.366	20828.682	20947.486	20960.466	20973.745
39	21230.345	21243.692	21257.315	20814.736	20828.362	20946.478	20959.766	20973.426
40	21229.350	21243.004	21256.937	20814.093	20828.128	20945.471	20959.113	20973.086
41	21228.303	21242.273	21256.564	20813.464	20827.788	20944.440	20958.422	20972.723
42	21227.193	21241.535	21256.160	20812.816	20827.479	20943.379	20957.709	20972.365
43	21226.121	21240.771	21255.755	20812.119	20827.164	20942.330	20956.974	20971.963
44	21225.004	21240.001	21255.319	20811.457	20826.799	20941.219	20956.226	20971.550
45	21223.880	21239.205	21254.876	20810.752	20826.405	20940.155	20955.464	
46	21222.750	21238.396	21254.394	20810.035	20826.051	20938.968	20954.681	20970.693
47	21221.575	21237.580	21253.906	20809.298	20825.640	20937.877		20970.223
48	21220.394	21236.726	21253.386	20808.567	20825.274	20936.724	20953.073	20969.768
49	21219.213	21235.886	21252.879	20807.767	20824.810	20935.552	20952.234	20969.248
50	21217.968	21234.974	21252.333	20807.009	20824.340	20934.319	20951.383	20968.731
51	21216.736	21234.094		20806.216	20823.903	20933.152	20950.530	20968.208
52	21215.497	21233.183	21251.216	20805.401	20823.433	20931.962	20949.628	20967.664
53	21214.251	21232.252	21250.632	20804.550	20822.933		20948.730	
54	21212.931	21231.302	21249.997	20803.717	20822.433	20929.441	20947.811	20966.518
55	21211.643	21230.345	21249.367	20802.860	20821.909	20928.171	20946.880	20965.912
56	21210.309	21229.350	21248.713	20801.987	20821.365	20926.867	20945.926	20965.300
57	21208.995	21228.349	21248.071	20801.086	20820.798	20925.570	20944.951	20964.624
58	21207.621	21227.334	21247.384	20800.179	20820.226	20924.241	20943.964	20963.975
59	21206.254	21226.294	21246.684	20799.260	20819.667	20922.896	20942.962	20963.341
60	21204.853	21225.235	21245.958	20798.321	20819.024	20921.534	20941.940	20962.641
61	21203.453	21224.169	21245.214	20797.381	20818.421	20920.165	20940.906	20961.941
62	21202.032	21223.078	21244.469	20796.390	20817.788	20918.786	20939.848	20961.229
63	21200.579	21221.961	21243.692	20795.409	20817.140	20917.378	20938.769	20960.466
64	21199.105	21220.837	21242.935	20794.395	20816.462	20915.924	20937.676	20959.766
65	21197.632	21219.701	21242.094	20793.409	20815.780	20914.500	20936.580	20958.977
66	21196.125	21218.526	21241.272	20792.345	20815.071	20913.020	20935.448	20958.182
67	21194.629	21217.352	21240.424	20791.316	20814.364	20911.566	20934.319	20957.376
68	21193.078	21216.158	21239.551	20790.221	20813.636	20910.059	20933.152	20956.554
69	21191.538	21214.938	21238.666	20789.145	20812.866		20931.962	20955.718
70	21189.997	21213.706	21237.775	20788.034	20812.119	20907.042		20954.846
71	21188.462	21212.454	21236.868	20786.929	20811.338	20905.494	20929.556	
72	21186.787	21211.189	21235.886	20785.820	20810.534	20903.925	20928.342	20953.073
73	21185.187	21209.902	21234.974	20784.653	20809.725	20902.356	20927.095	20952.172
74	21183.541	21208.602	21233.991	20783.490	20808.872	20900.775	20925.827	20951.230
75	21181.868	21207.279	21233.009	20782.315	20808.049	20899.140	20924.545	20950.269
76	21180.182	21205.938	21231.995	20781.120	20807.189	20897.507	20923.251	20949.321

Table 1a (continued)

$\begin{aligned} & v^{\prime}-v^{\prime \prime} \\ & J^{\prime \prime} \end{aligned}$	$[21.3]^{3} \Delta_{3}\left(\right.$ or $\left.{ }^{3} \Phi_{4}\right)-X^{3} \Phi_{4}{ }^{\text {a }}$					$\frac{[21.0]^{3} \Delta_{2}\left(\operatorname{or}^{3} \Phi_{3}\right)-X^{3} \Phi_{3}}{0-0}$		
	0-0			0-1				
	P	Q	R	Q	R	P	Q	R
77	21178.530	21204.576	21230.968	20779.914	20806.314	20895.855	20921.933	20948.331
78	21176.794	21203.190		20778.695	20805.401	20894.203	20920.600	20947.335
79	21175.073	21201.789	21228.869	20777.457	20804.510		20919.250	20946.311
80	21173.338	21200.391	21227.790	20776.196	20803.597	20890.820	20917.886	20945.282
81	21171.562	21198.965	21226.667	20774.910	20802.647	20889.098	20916.497	20944.240
82	21169.813	21197.515	21225.582		20801.666	20887.381	20915.103	20943.148
83	21168.004	21196.064	21224.439		20800.711	20885.626	20913.687	20942.079
84	21166.169	21194.574	21223.277		20799.721	20883.858	20912.248	
85	21164.354	21193.078	21222.121		20798.720	20882.059	20910.789	20939.860
86	21162.506	21191.538	21220.916		20797.668	20880.279	20909.317	
87	21160.658	21189.997	21219.701		20796.686	20878.411	20907.834	20937.543
88	21158.758	21188.462	21218.480		20795.570	20876.602	20906.330	20936.352
89		21186.864	21217.249		20794.532	20874.743	20904.808	20935.182
90	21154.917	21185.291	21215.985		20793.409	20872.896		20933.965
91	21152.989	21183.673	21214.701		20792.345	20870.996	20901.706	20932.715
92	21151.029	21182.049	21213.395			20869.123	20900.122	20931.481
93	21149.055	21180.405	21212.081			20867.196	20898.535	20930.207
94	21147.056	21178.736	21210.754				20896.922	20928.903
95		21177.061	21209.380				20895.323	20927.656
96	21143.016	21175.353	21207.999				20893.660	20926.287
97	21140.977	21173.652	21206.652				20892.014	20925.018
98		21171.905	21205.205				20890.309	20923.641
99		21170.153	21203.778				20888.613	
100		21168.374	21202.338				20886.917	20920.865
101		21166.583	21200.884				20885.183	20919.460
102		21164.773	21199.397				20883.439	
103		21162.950	21197.877				20881.675	20916.586
104		21161.094	21196.364				20879.867	20915.100
105		21159.240	21194.818				20878.088	
106		21157.346	21193.265				20876.230	
107		21155.459	21191.691				20874.409	
108		21153.552	21190.085				20872.548	
109		21151.607	21188.466				20870.681	
110		21149.648	21186.860				20868.779	
111		21147.658	21185.187				20866.885	
112			21183.541				20864.936	
113		21143.665	21181.868					
114		21141.634	21180.143					
115		21139.603	21178.424					
116		21137.546						
117		21135.448						
118		21133.324						
119		21131.247						
120		21129.083						
121		21126.966						
122		21124.769						
123		21122.552						
124		21120.342						
125		21118.125						

${ }^{\text {a }}$ This transition was previously attributed to $[21.0]^{3} \Phi_{4}-X^{3} \Phi_{4}$ by Adam et al. [10]. For further details, see text.
the ground state. No other spin components were seen in either the low or the high resolution experiments because the molecules were cooled in the jet expansion.

In this paper, we present our Fourier transform emission spectra that show the bands previously obtained by Adam et al. [10] and also new bands involving the $\Omega=3$ spin component of the ground state. An improved and extended set of molecular constants is also provided.

2. Experimental details

The experimental details were described earlier [18]. A stable DC discharge was generated in a high temperature tube furnace. Commercially available CoCl_{2} powder was placed near the center in a 1.2 m long, 5 cm diameter alumina tube, and heated up to $550^{\circ} \mathrm{C}$ by the furnace. The pressure was kept around 5 Torr by a slow

Table 1b

$\begin{aligned} & v^{\prime}-v^{\prime \prime} \\ & J^{\prime \prime} \end{aligned}$	$\underline{[20.7]^{3} \Phi_{4}-X^{3} \Phi_{4}}$					
	0-0		$\underline{1-0}$		0-1	
	P	R	P	R	P	R
10	20675.976					
11	20675.395					
12	20674.804					
13	20674.199					
14	20673.555					
15	20672.909					
16	20672.187		21073.016			
17	20671.498		21072.261			
18	20670.775		21071.519			
19			21070.725	21083.849		
20	20669.284	20683.140	21069.951	21083.682		
21	20668.499	20683.016	21069.114	21083.553	20238.503	
22	20667.691	20682.874	21068.266	21083.339	20237.733	
23	20666.867	20682.710	21067.379	21083.143	20236.962	
24	20666.019	20682.530	21066.481	21082.913	20236.131	20252.689
25	20665.144	20682.338	21065.561	21082.671	20235.322	20252.515
26		20682.112	21064.623	21082.414	20234.462	20252.351
27	20663.336	20681.869	21063.658	21082.099	20233.598	20252.158
28	20662.387	20681.603	21062.669	21081.773	20232.723	
29	20661.421	20681.315	21061.665			20251.712
30	20660.438	20681.004	21060.615	21081.056	20230.890	20251.458
31	20659.444	20680.677	21059.543	21080.667	20229.961	20251.190
32	20658.416	20680.321	21058.470	21080.252	20228.982	20250.889
33	20657.371	20679.954	21057.370	21079.820	20228.002	20250.589
34	20656.292	20679.558	21056.242	21079.359		20250.250
35	20655.213	20679.146	21055.080	21078.882	20225.978	20249.903
36		20678.705	21053.906	21078.371	20224.942	20249.532
37	20652.971	20678.242	21052.704	21077.838	20223.879	20249.142
38	20651.818	20677.756	21051.491	21077.282	20222.809	20248.737
39	20650.643	20677.248	21050.232	21076.693	20221.702	20248.310
40	20649.451	20676.728		21076.109	20220.584	20247.863
41	20648.237	20676.180		21075.475	20219.450	20247.394
42	20647.005	20675.616	21046.368	21074.824	20218.290	20246.914
43	20645.740	20675.028	21045.043	21074.167	20217.119	20246.407
44	20644.452	20674.412	21043.678	21073.465	20215.922	20245.876
45	20643.159	20673.780	21042.294	21072.752	20214.699	20245.331
46	20641.837	20673.124	21040.890	21072.016	20213.468	20244.762
47		20672.447	21039.448	21071.242	20212.220	20244.175
48	20639.125	20671.752	21037.998	21070.461	20210.944	20243.583
49	20637.736	20671.040	21036.515	21069.642	20209.646	20242.958
50	20636.329	20670.289	21035.020	21068.811	20208.348	20242.309
51	20634.911	20669.533	21033.506	21067.952	20207.001	20241.642
52	20633.448	20668.753	21031.963	21067.071	20205.665	20240.961
53	20631.974	20667.951	21030.395	21066.178	20204.293	20240.251
54	20630.483	20667.127	21028.800	21065.263	20202.905	20239.551
55	20628.969	20666.273		21064.314	20201.487	20238.795
56	20627.432	20665.404	21025.561	21063.332	20200.073	20238.043
57	20625.879	20664.511	21023.904	21062.334	20198.617	20237.252
58	20624.297	20663.602	21022.228	21061.322	20197.147	20236.450
59	20622.704	20662.670	21020.536	21060.295	20195.666	20235.632
60	20621.083	20661.716	21018.817	21059.228	20194.162	20234.796
61	20619.439	20660.743		21058.156	20192.639	20233.937
62	20617.784	20659.743	21015.294	21057.050	20191.094	20233.056
63	20616.095	20658.727	21013.510	21055.927	20189.534	20232.158
64	20614.395	20657.687	21011.706	21054.788	20187.952	20231.246
65	20612.672	20656.620	21009.882	21053.643	20186.362	
66	20610.919	20655.535	21008.026	21052.475	20184.742	20229.352
67	20609.158			21051.242		20228.380
68	20607.368	20653.309			20181.439	20227.381
69	20605.567	20652.174			20179.774	20226.371
70	20603.742	20651.016			20178.087	20225.342

Table 1b (continued)

	$[20.7]^{3} \Phi_{4}-X^{3} \Phi_{4}$				
$v^{\prime}-v^{\prime \prime}$	$0-0$	R	$1-0$	R	$0-1$
$J^{\prime \prime}$	P	20649.824		P	20176.362
71	20601.895	20648.615		20174.645	
72	20600.025	20647.395		20172.891	
73	20598.144			20171.140	
74	20596.235		20169.352		
75	20594.314		20167.571		
76	20592.383				
77	20165.779				

Table 1c

$v^{\prime}-v^{\prime \prime}$	$\underline{[20.4]^{3} \Phi_{3}-X^{3} \Phi_{3}}$			
	0-0		0-1	
$J^{\prime \prime}$	P	R	P	R
13	20369.011			
14	20368.389			
15	20367.738		19940.567	
16	20367.045		19939.905	
17	20366.342		19939.242	
18	20365.640		19938.544	
19	20364.889		19937.846	
20	20364.122	20377.931	19937.123	
21	20363.341	20377.822	19936.377	19950.885
22	20362.525	20377.696	19935.599	19950.783
23	20361.705	20377.545	19934.850	19950.688
24	20360.848	20377.364	19934.036	19950.556
25	20359.982	20377.166	19933.225	19950.389
26	20359.082	20376.939	19932.376	19950.226
27	20358.174	20376.704	19931.495	19950.036
28	20357.245	20376.439	19930.644	19949.825
29	20356.287	20376.157	19929.724	19949.609
30	20355.303	20375.855	19928.821	19949.377
31	20354.303	20375.523	19927.878	19949.092
32	20353.290	20375.178	19926.924	19948.818
33	20352.247	20374.812	19925.944	19948.505
34		20374.400	19924.954	19948.185
35	20350.087	20374.001	19923.950	19947.838
36	20348.994	20373.572	19922.915	19947.471
37	20347.868		19921.853	19947.105
38	20346.728		19920.783	19946.691
39	20345.560	20372.143	19919.684	19946.275
40	20344.379	20371.630	19918.592	
41	20343.164	20371.088	19917.456	
42	20341.937	20370.520	19916.315	19944.907
43	20340.676	20369.932	19915.155	19944.403
44	20339.406	20369.343	19913.959	19943.889
45	20338.112	20368.709	19912.754	19943.359
46	20336.796	20368.061	19911.523	19942.814
47	20335.451		19910.306	19942.227
48	20334.102	20366.754	19909.023	19941.678
49	20332.731	20365.972	19907.743	19940.983
50	20331.373	20365.249		19940.364
51	20329.869	20364.497		19939.706
52	20328.452	20363.706		19939.047
53	20326.985	20362.924		19938.359
54	20325.501	20362.113		19937.646
55	20323.996	20361.268		19936.902

Table 1c (continued)

$v^{\prime}-v^{\prime \prime}$$J^{\prime \prime}$	$[20.4]^{3} \Phi_{3}-X^{3} \Phi_{3}$			
	0-0		0-1	
	P	R	P	R
56	20322.458	20360.402		19936.156
57	20320.923	20359.524		19935.401
58	20319.360	20358.616		19934.615
59	20317.762	20357.708		19933.811
60		20356.749		19932.996
61	20314.521	20355.770		19932.149
62	20312.874	20354.803		19931.270
63	20311.201	20353.777		19930.380
64	20309.502	20352.747		19929.473
65	20307.787	20351.688		19928.541
66	20306.064	20350.642		19927.621
67	20304.294	20349.523		19926.637
68	20302.524	20348.414		19925.678
69	20300.717	20347.270		19924.679
70		20346.115		19923.667
71	20297.060	20344.917		19922.649
72	20295.206	20343.745		19921.583
73	20293.327	20342.509		19920.503
74	20291.427	20341.273		19919.416
75	20289.506	20340.003		
76	20287.568	20338.742		
77		20337.410		
78		20336.111		
79		20334.740		
80		20333.370		
81		20331.996		
82		20330.575		
83		20329.148		
84		20327.681		
85		20326.229		
86		20324.707		
87		20323.195		

flow of Ar buffer gas. The ends of the cell were sealed with CaF_{2} windows. Two stainless steel sheets were rolled into cylindrical electrodes and placed inside the ends of the ceramic tube. $\mathrm{A} \sim 3 \mathrm{kV}, 300 \mathrm{~mA}$ DC discharge were operated between these electrodes. The light emission was collected by a CaF_{2} lens and sent into the entrance aperture of the spectrometer.

The spectrometer used was a Bruker IFS 120 HR Fourier transform spectrometer at the University of Waterloo. The spectrometer was equipped with a visible quartz beamsplitter and was not evacuated during the measurement. A photomultiplier tube was placed at the "back parallel exit" to reduce the number of mirror reflections and to increase the sensitivity of the spectrometer. Just before the photomultiplier tube, 450 nm red pass and 550 nm blue pass filters were inserted to minimize the influence of strong atomic lines and the internal $\mathrm{He}-\mathrm{Ne}$ laser radiation. In total 130 scans were accumulated at a spectral resolution of $0.05 \mathrm{~cm}^{-1}$. Because the spectrometer was not evacuated, the spectral lines were converted to vacuum wavenumbers as described previously [19]. The calibration factor was ob-
tained as 1.000001167 on the basis of standard Ar atomic lines [20]. The observed line positions were listed in Table 1a-1c.

3. Description of the observed bands

The observed spectra are shown in Fig. 1. As shown in Fig. 1, there are numerous bandheads seen near 480 nm . Considering the spectra previously reported by Adam et al. [10], one can easily identify some bands denoted as $A(1)$ and $B(1)$ in the figure, but our spectra appear different from the high resolution laser excitation spectra. In the previous work, Adam et al. [10] employed the molecular beam method so transitions that do not connect to the ground state are relatively weak, and thus harder to observe. However, in our work the molecules were excited not only in a DC discharge but also by heating in the tube furnace. This allowed us to obtain easily bands involving vibrationally excited states as well as other spin components. We have also seen new emission bands in the $1 \mu \mathrm{~m}$ region and these new tran-

Fig. 1. Overview spectra of CoCl in the 500 nm region.
sitions have even more highly excited vibrational levels than in the bands reported here. The analysis of our $1 \mu \mathrm{~m}$ data is still in progress.

1. The $[20.7]^{3} \Phi_{4}-X^{3} \Phi_{4}$ transition. The intense band, denoted as $A(1)$ in Fig. 1, was studied by Adam et al. [10], who assigned it as the [20.7] ${ }^{3} \Phi_{4}-X^{3} \Phi_{4}$ transition. The $0-0$ band (the bandhead is located at $20683.6 \mathrm{~cm}^{-1}$), $1-0$ (head at $21084.1 \mathrm{~cm}^{-1}$), and $0-1$ (head at $20253.2 \mathrm{~cm}^{-1}$) bands of this transition have been rotationally analyzed. These bands consist of P and R branches up to $J \sim 80$, but no Q branch is seen. As seen in Fig. 2, all hyperfine components are blended into one rotational line, but the extrapolated line positions for low- J values agree quite well with those deduced from the constants of [10] after removing the hyperfine interaction term. Although a Q branch has been observed at low- J in the previous high resolution study [10], the absence of a Q branch in our spectra is consistent with the assignment as a $\Delta \Omega=0$ transition.
2. The [21.3]- $X^{3} \Phi_{4}$ transition. The band denoted as $B(1)$ in Fig. 1 was labeled [21.3] $]^{3} \Phi_{4}-X^{3} \Phi_{4}$ by Adam et al. [10]. They cite two pieces of evidence for this assignment. Firstly, their low resolution spectra suggest that the intensities of the P and R branches are similar, in-

Fig. 2. A portion of the spectra of the $[20.7]^{3} \Phi_{4}-X^{3} \Phi_{4} 0-0$ band.
dicating a $\Delta \Lambda=0$ transition. This feature is consistent with the result of Suresh Kumar and Srikant [9], who claimed the band around 470 nm region exhibits no Q branch. Secondly, CoCl is similar to CoF and CoH , which both have two close-lying excited ${ }^{3} \Phi$ states arising from the same electronic configuration. The excited state rotational and hyperfine constants support this interpretation [21].

In our study, the $0-0$ and $0-1$ bands of the $B(1)$ band exhibit intense Q branches, as illustrated in Fig. 3. In the case of the $0-0$ band, for example, the Q branch is observed from $J=17$ to $J=112$. At first sight, the presence of a well-developed Q branch suggests that the studied transition has $\Delta \Omega \neq 0$. This conclusion, however, is in contradiction with the interpretation given by Adam et al. [10]. Unfortunately, our experimental line positions do not overlap with those given by Adam et al. [10], and no hyperfine structure has been seen in our spectra. In addition, discrepancies up to $0.2 \mathrm{~cm}^{-1}$ are seen between extrapolated wavenumbers of lines calculated with our constants and those deduced from [10], after removing the hyperfine interaction term.
3. The $[20.4]^{3} \Phi_{3}-X^{3} \Phi_{3}$ transition. As already mentioned, several bands such as those denoted as $A(2)$ and $B(2)$ in Fig. 1 are observed to be stronger in our spectra than in Fig. 1 of [10]. One can expect that these bands are associated with other spin-orbit components of the two already identified transitions. A tentative confirmation can be obtained by comparing the vibrational interval, $\Delta G_{1 / 2}$, of the states involved in the transitions with those of the states marked as $A(1)$ and $B(1)$. For the $A(2)$ band, it is easy to identify a set of two bands at 20378 and $19951 \mathrm{~cm}^{-1}$. These two bands are separated by $427 \mathrm{~cm}^{-1}$, which is close to $430 \mathrm{~cm}^{-1}$, observed for the $X^{3} \Phi_{4}$ ground state. The absence of any Q branch, and the similarity of the vibrational and rotational constants (as listed in Table 2) are convincing evidence that these two bands should be identified as $0-0$ and $0-1$ bands of the $[20.4]^{3} \Phi_{3}-X^{3} \Phi_{3}$ transition. Note that a trace of a bandhead-like feature is observed at $20795 \mathrm{~cm}^{-1}$, near where the $1-0$ band is expected to lie.

Fig. 3. A portion of the spectra of the $[21.3]-X^{3} \Phi_{4} 0-0$ band.

Table 2
Effective molecular constants for $\mathrm{Co}^{35} \mathrm{Cl}^{\text {a }}$

${ }^{\mathrm{a}}$ In cm^{-1} units. All numbers in parentheses denote one standard deviation for the last significant figure.
${ }^{\mathrm{b}}$ The undetermined energy level difference between the $v=0$ levels of $X^{3} \Phi, \Omega=4$ and $\Omega=3$.
${ }^{\mathrm{c}}$ The numbers in square brackets are the values from [10].
${ }^{\mathrm{d}}$ This state was previously assigned as ${ }^{3} \Phi_{i}$, in [10]. See text for more details.

Overlapping, however, by the $0-1$ band of the [21.3] $X^{3} \Phi_{4}$ transition prevents us from confirming this assignment by rotational analysis.
4. The [21.0]- $X^{3} \Phi_{3}$ transition. The band labeled as $B(2)$ in Fig. 1 has P, Q, and R branches. One member of the progression is intense and is located at $20977 \mathrm{~cm}^{-1}$, and two weak features appear at 20550 and $21367 \mathrm{~cm}^{-1}$. The spacing between the bandheads at 20977 and $20550 \mathrm{~cm}^{-1}$ is identical to the $\Delta G_{1 / 2}^{\prime \prime}$ value of $427.4 \mathrm{~cm}^{-1}$ for the $X^{3} \Phi_{3}$ state. In addition, the spacing between the two heads at 20977 and $21367 \mathrm{~cm}^{-1}$ is close to the $\Delta G_{1 / 2}^{\prime}$ value of $391 \mathrm{~cm}^{-1}$ of the [21.3] ${ }^{3} \Phi_{4}$ state in [10]. Following a rotational analysis, the rotational constants for the lower levels of these three bands are found to agree well with those of the newly identified $X^{3} \Phi_{3}$ state, and the rotational constants for upper state are found to be similar to those of the upper state of the $A(1)$ band. This suggests that these bands should be the $0-0\left(20977 \mathrm{~cm}^{-1}\right)$, the $0-1\left(20550 \mathrm{~cm}^{-1}\right)$, and the $1-0$ ($21367 \mathrm{~cm}^{-1}$) bands of the [21.0]- $X^{3} \Phi_{3}$ transition.

Note that several weak bandhead features were also seen in our spectra. These features will be identified by dispersed laser-induced fluorescence experiments which are in progress.

4. Analysis and discussion

In the first stage of our analysis we assumed that the energy levels of CoCl can be represented by the usual $J(J+1)$ polynomial formula in order to determine effective molecular constants. After identifying all rotationally resolved bands involving the $X^{3} \Phi_{4}$ state (with bandheads located at $21261,20832,20253,20683$, and $21084 \mathrm{~cm}^{-1}$), these bands have been fitted simultaneously. Similarly the bands at 19951, 20378 , and $20977 \mathrm{~cm}^{-1}$ that connect with the $X^{3} \Phi_{3}$ state were fitted simultaneously. The constants thus determined are listed in Table 2. The effective rotational constants for both $X^{3} \Phi_{4}$ and $[20.4]^{3} \Phi_{4}$ states agree well with the previous values reported in [10]. On the other hand, our rotational constants for the [21.3] state are not in very good agreement with the previous values [10]. In the previous section we mentioned that the discrepancies between the extrapolated line positions and the hyper-fine-free positions for the low- J transitions are up to $0.2 \mathrm{~cm}^{-1}$. However, this is not completely unacceptable because our extrapolated line positions do lie within the hyperfine components corresponding to the appropriate J as reported in [10]. Moreover, in their analysis, Adam

Table 3
Molecular constants for $\mathrm{Co}^{35} \mathrm{Cl}$ from a Hund's case (a) analysis ${ }^{\text {a }}$

	$X^{3} \Phi_{i} v=0$	$X^{3} \Phi_{i} v=1$	$[20.4]^{3} \Phi_{i} v=0$	$[21.0]^{3} \Delta_{i} v=0$
T	0.0	$427.4100(34)$	$20375.3781(22)$	$20973.0327(15)$
A_{SO}	-233^{b}	$-231.9964(13)$	$-131.29410(81)$	$-207.53243(90)^{\mathrm{c}}$
$A_{\mathrm{D}} \times 10^{4}$	$1.091(23)$	$1.212(24)$	$1.037(23)$	$0.449(35)^{\mathrm{c}}$
B	$0.1793172(79)$	$0.1783308(84)$	$0.1686174(79)$	$1.1708456(79)$
$D \times 10^{7}$	$1.2618(58)$	$1.2831(71)$	$1.1928(59)$	$1.3159(58)$

[^1]et al. [10] fixed the centrifugal distortion constants, causing a small shift in the rotational constant. Because Adam et al. saw the $R(4), Q(4)$, and $P(5)$ lines, the quantum number Ω in the upper electronic state could be 4 or 3 and the most likely electronic states are either ${ }^{3} \Phi_{4}$ or ${ }^{3} \Delta_{3}$. Evidently Adam et al. [10] favor the ${ }^{3} \Phi_{4}$ assignment while our data are more consistent with a ${ }^{3} \Delta_{3}$ assignment for the [21.3] state.

The electronic structure of an ionic molecule $\left(M^{\delta+} X^{\delta-}\right)$ correlates with that of the atomic metal ion $\left(M^{+}\right)$as well as with isovalent molecules [22]. The spinorbit constant for the ground state of $\operatorname{CoF}, A_{\mathrm{SO}}\left(X^{3} \Phi_{i}\right)$ is about $-233 \mathrm{~cm}^{-1}$ [17], and we can use this value for a Hund's case (a) fit of the $0-0$ and $0-1$ bands of [20.7] ${ }^{3} \Phi_{4}-X^{3} \Phi_{4}$ and $[20.4]^{3} \Phi_{3}-X^{3} \Phi_{3}$, transitions and $0-0$ bands of [21.3]- $X^{3} \Phi_{4}$ and [21.0]- $X^{3} \Phi_{3}$ transitions of CoCl . In this step, Brown's \mathbf{N}^{2} reduced Hamiltonian [23] was employed, and the spin-orbit interaction constant for the ground state $(v=0)$ was constrained to $-233 \mathrm{~cm}^{-1}$, and the spin-spin interaction parameter λ was assumed to be negligible. The molecular constants are listed in Table 3. In this process, we assumed that the [21.0] and [21.3] states should be F_{2} and F_{1} components of either a ${ }^{3} \Delta_{i}$ or a ${ }^{3} \Phi_{i}$ state, respectively. The spin-orbit interaction parameter for the $X^{3} \Phi_{i}, v=1$ state $\left(-231 \mathrm{~cm}^{-1}\right)$ shows a slight change from that for $v=0$. On the other hand, the spin-orbit constants for the excited states appear to be very different from that of CoF in the $[18.8]^{3} \Phi_{i}$ state, which correlates with $[20.4]^{3} \Phi_{i}$ state of CoCl . The spin-orbit constants for the $[20.4]^{3} \Phi_{i}$ and [21.0] states are obtained as $-131.29410(81) \mathrm{cm}^{-1}$, and $-207.53243(90) \mathrm{cm}^{-1}$ (in case of a $[21.0]^{3} \Delta_{i}$ state) or $-138.24137(61) \mathrm{cm}^{-1}$ (in case of a $[21.0]^{3} \Phi_{i}$ state), respectively, while $A_{\text {SO }}$ is about $-196 \mathrm{~cm}^{-1}$ for the $[18.8]^{3} \Phi$ state of CoF [16].

We assume that these excited states directly correlate with the atomic $b^{3} P$ state ($($ core $\left.) 3 d^{7}\left(a^{4} P\right) 4 s\right)$ of Co^{+}, which is located at $24200 \mathrm{~cm}^{-1}$ above the atomic ground state, $a^{3} F$ ((core) $3 d^{8}$). The atomic spin-orbit parameter, ζ, for the $b^{3} P$ state is $-120.2 \mathrm{~cm}^{-1}$, derived from the atomic energy levels reported by Moore [24]. It is also assumed that the electronic configurations of these excited states can be represented by
(core) $(10 \sigma)^{2}(4 \pi)^{4}(1 \delta)^{3}(5 \pi)^{3}(11 \sigma)^{1}(12 \sigma)^{1}$
$[20.4]^{3} \Phi_{i}$ and $[21.0]^{3} \Phi_{i}$,
(core) $(10 \sigma)^{2}(4 \pi)^{4}(1 \delta)^{3}(5 \pi)^{4}(11 \sigma)^{0}(12 \sigma)^{1} \quad[21.0]^{3} \Delta_{i}$.
With these assumptions, one can easily obtain the relationship $A_{\text {SO }} \sim \zeta$, for these three excited states of CoCl . This relationship works well for the $[20.4]^{3} \Phi_{i}$ state of CoCl with $A_{\mathrm{SO}}=-131.29410(81) \mathrm{cm}^{-1}$ and $\zeta=$ $-120.2 \mathrm{~cm}^{-1}$ for Co^{+}in $b^{3} P$ state. If this relationship is also valid for the [21.0] state, then this state is more likely to be ${ }^{3} \Phi_{i}$ than ${ }^{3} \Delta_{i}$. Unfortunately, such a simple
relationship is generally not reliable particularly for excited states, because molecular wavefunctions are composed of mixtures of atomic states. Even the isovalent CoF molecule does not obey this relationship in the $[18.8]^{3} \Phi_{i}$ state [17]. Although we favor the ${ }^{3} \Delta_{3}$ assignment for the excited state of the [21.3]- $X^{3} \Phi_{4}$ transition (and ${ }^{3} \Delta_{2}$ for the [21.0]- $X^{3} \Phi_{3}$ sub-band), additional experimental and/or theoretical work is needed for confirmation.

In conclusion, we have identified two spin components for the $[20.4]^{3} \Phi_{i}-X^{3} \Phi_{i}$ and $[21.0]-X^{3} \Phi_{i}$ transitions. Improved effective molecular constants were obtained and our rotational assignment agrees with the previous work [10]. Identification of a second spin component of these two transitions allows us to perform Hund's case (a) fits to obtain effective spin orbit constants for the [20.4] ${ }^{3} \Phi_{i}$ and [21.0] states. The [21.0] state is probably ${ }^{3} \Delta_{i}$ but we cannot definitely rule out the ${ }^{3} \Phi_{i}$ assignment.

Acknowledgments

The authors are thankful to Profs. A.G. Adam and C. Linton of the University of New Brunswick for providing their line list and for fruitful discussions. This research has been supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Centre d'Etudes et de Recherches Lasers et Applications is supported by Ministère Chargé de la Recherche, Région Nord-Pas de Calais and Fond Européen de Développement Economique des Régions.

References

[1] P. Mesnage, C. R. Acad. Sci. 201 (1935) 389-391.
[2] K.R. More, Phys. Rev. 54 (1938) 122-125.
[3] V.G. Krishnamurty, Ind. J. Phys. 26 (1952) 177-185.
[4] S.V.K. Rao, P.T. Rao, Ind. J. Phys. 35 (1961) 556-561.
[5] D.W. Green, D.P. McDermott, A. Bergman, J. Mol. Spectrosc. 98 (1983) 111-124.
[6] C.V. Reddy, A.L. Narayana, P.T. Rao, Ind. J. Pure Appl. Phys. 22 (1984) 550.
[7] C.V. Reddy, A.L. Narayana, P.T. Rao, Opt. Pure Appl. 17 (1985) 289-296.
[8] A.B. Darji, M.B. Suresh Kumar, N.R. Shah, P.M. Shah, Ind. J. Pure Appl. Phys. 26 (1988) $44-46$.
[9] M.B. Suresh Kumar, S.R. Srikant, Turk. J. Phys. 22 (1998) 21.
[10] A.G. Adam, J.R.D. Peers, Y. Teng, C. Linton, J. Mol. Spectrosc. 212 (2002) 111-117.
[11] M. Freindorf, C.M. Marian, B.A. Hess, J. Chem. Phys. 99 (1993) 1215-1223.
[12] M.A. Barnes, A.J. Merer, G.F. Metha, J. Mol. Spectrosc. 173 (1995) 100-112.
[13] R.S. Ram, P.F. Bernath, S.P. Davis, J. Mol. Spectrosc. 175 (1996) 1-6.
[14] A.G. Adam, L.P. Fraser, W.D. Hamilton, M.C. Steeves, Chem. Phys. Lett. 230 (1994) 82-86.
[15] R.S. Ram, P.F. Bernath, S.P. Davis, J. Mol. Spectrosc. 173 (1995) 158-176.
[16] R.S. Ram, P.F. Bernath, S.P. Davis, J. Chem. Phys. 104 (1996) 6949-6955.
[17] A.G. Adam, W.D. Hamilton, J. Mol. Spectrosc. 206 (2001) 139-142.
[18] Y. Krouti, T. Hirao, C. Dufour, A. Boulezhar, B. Pinchemel, P.F. Bernath, J. Mol. Spectrosc. 214 (2002) 152-174.
[19] T. Hirao, B. Pinchemel, P.F. Bernath, J. Mol. Spectrosc. 202 (2000) 213-222.
[20] G. Norlén, Phys. Scr. 8 (1973) 249-268.
[21] R.A. Frosch, H.M. Foley, Phys. Rev. 88 (1952) 1337-1349.
[22] R.W. Field, Ber. Bunsenges. Phys. Chem. 86 (1982) 771-779; S.F. Rice, H. Martin, R.W. Field, J. Chem. Phys. 82 (1985) 50235034.
[23] J.M. Brown, E.A. Colbourn, J.K.G. Watson, F.D. Wayne, J. Mol. Spectrosc. 74 (1979) 294-318.
[24] C.E. Moore, in: Atomic Energy Levels, Vol. II, National Bureau of Standards, Gaithersburg, MD, 1952.

[^0]: * Corresponding author. Present address: Institute for Astrophysics and Planetary Sciences, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan. Fax: +81-29-228-8361.

 E-mail address: yoshi@mcs.ibaraki.ac.jp (T. Hirao).

[^1]: ${ }^{\mathrm{a}} \mathrm{In} \mathrm{cm}^{-1}$ units. All numbers in parentheses are one standard deviation for the last significant figure.
 ${ }^{\mathrm{b}}$ The spin-orbit interaction parameter for $X^{3} \Phi_{i} v=0$ is constrained to that of CoF in the $X^{3} \Phi_{i} v=0$ state, taken from [17].
 ${ }^{\mathrm{c}}$ These constants were also determined by using a Hamiltonian for ${ }^{3} \Phi_{i}$, state for the [21.0] state. In this case, the values are $A_{\mathrm{SO}}=-138.24137(61)$ and $A_{D}=2.98(23) \times 10^{-5} \mathrm{~cm}^{-1}$. The term values and rotational constants remained the same for either ${ }^{3} \Phi_{i}$ or ${ }^{3} \Delta_{i}$. For further details, see the text.

