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ABSTRACT: New high-resolution visible Fourier transform emission spectra of the
A 2Π → X 2Σ+ and B′ 2Σ+ → X 2Σ+ systems of 24MgD and of the B′ 2Σ+ → X 2Σ+

systems of 25,26MgD and 25,26MgH have been combined with earlier results for 24MgH
in a multi-isotopologue direct-potential-fit analysis to yield improved analytic
potential energy and Born−Oppenheimer breakdown functions for the ground X 2Σ+

state of MgH. Vibrational levels of the ground state of 24MgD were observed up to v″
= 15, which is bound by only 30.6 ± 0.10 cm−1. Including deuteride and minor
magnesium isotopologue data allowed us also to determine the adiabatic Born−
Oppenheimer breakdown effects in this molecule. The fitting procedure used the
recently developed Morse/Long-Range (MLR) potential energy function, whose
asymptotic behavior incorporates the correct inverse-power form. A spin-splitting
radial correction function to take account of the 2Σ spin−rotation interaction was
also determined. Our refined value for the ground-state dissociation energy of the
dominant isotopologue (24MgH) is e = 11 104.25 ± 0.8 cm −1, in which the
uncertainty also accounts for the model dependence of the fitted e values for a range of physically acceptable fits. We were also
able to determine the marked difference in the well depths of 24MgH and 24MgD (with the deuteride potential curve being 7.58
± 0.30 cm−1 deeper than that of the hydride) as well as smaller well-depth differences for the minor 25,26Mg isotopologues. This
analytic potential function also predicts that the highest bound level of 24MgD is v″ = 16 and that it is bound by only 2.73 ± 0.10
cm−1.

I. INTRODUCTION
In studies involving our Milky Way galaxy, magnesium
monohydride (MgH) has proven to be a useful tool in the
study of stellar atmospheres. In fact, the very first experimental
spectrum of MgH was recorded by Fowler in 1907 as part of his
efforts to identify several strong bands appearing in sunspot
umbrae.1 Nearly a century later, bands of the B′ 2Σ+ → X 2Σ+

transitions of MgH were used by Wallace et al.2 to determine a
solar isotope abundance ratio of 24Mg:25Mg:26Mg = 76:12:12. A
similar study was reported a year later by Gay and Lambert,3

who considered 20 different stars of various metallicities ([Fe]/
[H]) with effective temperatures in the range 4190 K < Teff <
5350 K. They found a general trend in which the abundance of
25Mg and 26Mg relative to that of the major isotope 24Mg
decreased with decreasing metallicity. Somewhat earlier,
Bonnell and Bell4 had used spectral features of MgH to
determine the surface gravities of five giant stars of spectral
types G and K by matching the magnesium abundance derived
from MgH to that found from Mg. For a discussion of other
applications of MgH in astronomy, see ref 5, which also reports
the use of an early analysis of high-resolution Fourier transform
spectroscopy on the A 2Π → X 2Σ+ system to predict purely
rotational transition frequencies in the interstellar medium. In
addition to its importance in astrophysics, MgH is interesting

from a spectroscopic point of view, with the interacting low-
lying excited states A 2Π and B′ 2Σ+ being of particular interest.
As will be discussed later, the spectral lines involving transitions
from these states into the ground X 2Σ+ state are rife with
perturbations.
Following Fowler’s work,1 several studies from the 1920s to

the 1960s reported on the visible spectrum of MgH and its
analysis.6−14 In the 1970s, Balfour and collaborators performed
an extensive array of studies of low-lying excited states for both
24MgH and 24MgD and measured some ultraviolet spectra.15−22

In their early work on MgH, they determined a dissociation
energy of 0

MgH = 1.33 ± 0.06 eV from a Birge−Sponer
extrapolation based on data for levels up to v″ = 6 observed in
the A 2Π → X 2Σ+ spectrum.20 In later work, 0 was
redetermined to be 1.27 ± 0.03 eV from data for levels up to v″
= 6 obtained from the B′ 2Σ+ → X 2Σ+ spectrum.21 The latter
estimate of this dissociation energy agreed fairly well with the
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ab initio value of Meyer and Rosmus,23 0 = 1.25 ± 0.05 eV,
and with the present value, 0 = 1.285 11 ± 0.000 10 eV.
In 2004, our group reported24 a multi-isotopologue

Dunham-type analysis of the ground X 2Σ+ state of MgH
using a combination of new Fourier transform infrared
emission spectra with previously published microwave and
diode-laser vibration−rotation data.25−28 Three years later, we
reported new data for the A → X and B′ → X transitions of
24MgH and performed a direct-potential-fit (DPF) analysis on
the combination of these newer data with all of the previous
data.29 This analysis yielded an improved dissociation energy of
1.285 17 ± 0.000 06 eV. It also enabled the determination of an
accurate analytic potential energy curve for the ground state of
MgH, from which we computed vibration−rotation band
constants for all 12 of its vibrational levels. The work of ref 29
shall henceforth be identified as Paper 1. This analytic potential
energy function has also been employed recently for the
calculation of Einstein A coefficients for the A → X and B′ → X
systems.30

The current paper presents new high-resolution Fourier
transform visible emission spectra of the A 2Π → X 2Σ+ and B′
2Σ+ → X 2Σ+ systems of the deuteride isotopologue of 24MgH
as well as the B′ 2Σ+ → X 2Σ+ bands of its (stable) minor
magnesium isotopologues. Our spectra of the major deuteride
species extends up to v″ = 15, which is bound by only 0.27% of
the well depth. These data are combined with both the
previously published microwave28 and infrared24 data for all six
isotopologues and the visible spectra of MgH reported in Paper

1 to provide the first combined-isotopologue DPF analysis of
this system, as reported herein. The simultaneous treatment of
data for multiple isotopologues allows us to delineate adiabatic
and nonadiabatic (centrifugal) Born−Oppenheimer breakdown
(BOB) effects and to make an accurate determination of the
differences between the well depths of the hydride and
deuteride and those for the various magnesium isotopologues.
We also determine an improved analytic potential energy
function for MgH, and an analysis of the model-dependence
allows us to obtain more realistic estimates of the uncertainties
in those dissociation energies.
In the following, section II presents an overview of the

experimental data and a survey of the new deuteride results.
Section III then presents details of the improved potential
energy function model used in the DPF analysis and of aspects
of the fitting procedure. Finally, section IV presents the results
of our DPF analysis and section V discusses those results and
presents our conclusions.

II. THE DATA

A. Experimental Details Regarding the MgD Spectra.
Although the new MgD spectra were obtained in a manner very
similar to that described in Paper 1, we shall provide a brief
overview highlighting differences. Optical spectra were obtained
using the discharge furnace source described in Paper 1, with
approximately 50 g of Mg powder placed in an alumina tube.
An initial spectrum was recorded at a temperature of 650 °C
with the spectral range limited to 9000−18000 cm−1 by using a

Figure 1. Survey spectra of the (top left) B′ 2Σ+ → X 2Σ+ and (top right) A 2Π → X 2Σ+ systems of MgD. (bottom left) Details of the rotational
structure of the B′ 2Σ+ → X 2Σ+ transition, showing the P and R branches of the 0−8 band. (bottom right) Details of the Δv = 0 segment of the A 2Π
→ X 2Σ+ spectrum.
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550 nm long-wave-pass filter that captured most of the B′ 2Σ+

→ X 2Σ+ transitions. The instrumental resolution for this
spectrum was 0.0375 cm−1. A second spectrum was then
recorded at a temperature of 550 °C, with an instrumental
resolution of 0.065 cm−1 and with the spectral range limited to
16000−23000 cm−1 by employing 450 nm long-wave-pass and
600 nm short-wave-pass filters, thereby capturing most of the A
2Π → X 2Σ+ transitions. The alumina tube cell was filled with a
flowing mixture of argon (1.6 Torr) and deuterium (0.2 Torr)
for the 9000−18000 cm−1 spectrum and with pure deuterium
(0.5 Torr) for the 16000−23000 cm−1 spectrum.
Emission was detected by a Bruker IFS 120 HR Fourier

transform spectrometer after focusing by a CaF2 lens. The
signal-to-noise ratio (S/N) was greatly enhanced by coadding
about 400 scans over several hours; specifically, this yielded S/
N ≈ 1000 for the strongest MgD lines in the spectra. The upper
panels of Figure 1 show overviews of the MgD spectra for the
B′ 2Σ+ → X 2Σ+ and A 2Π → X 2Σ+ systems.
Transitions involving the hydride minor isotopologues

25MgH and 26MgH were found in the spectra described in
Paper 1, and their combination with the analogous results for
25MgD and 26MgD obtained in the present work facilitated
making proper line assignments for all of these minor 25Mg and
25Mg data.
Line positions in the spectra were measured using the

program WSpectra written by M. Carleer (Universite ́ Libre de
Bruxelles). To obtain vacuum wavenumbers, the correction
formula given in ref 31 was applied. Absolute wavenumber
calibrations for the B′ 2Σ+ → X 2Σ+ lines were derived from
atomic lines of argon previously reported by Norlen.32

However, following the recommendation of a more recent
study of argon emission lines in a hollow cathode discharge
lamp,33 the argon line energies reported in ref 32 were
multiplied by the factor (1 + 6.7 × 10−8). The A 2Π → X 2Σ+

lines were calibrated using several very strong atomic
transitions common to both the MgH and MgD spectra.
Absolute experimental instrumental uncertainties of 0.005 cm−1

were assigned to all of the unblended lines. Further details
regarding uncertainties in the data are discussed below.
B. Characterizing the Excited States. Coincidental

crossings of energy levels of the A 2Π and B′ 2Σ+ states result
in numerous perturbations throughout the spectra. Perturba-
tions were identified by observing the shifts in both the P and R
branches of the B′ 2Σ+ → X 2Σ+ bands together with the
corresponding opposite-direction shifts in the A 2Π → X 2Σ+

spectra. Unfortunately, including such perturbed lines in the
data set precludes the possibility of fitting those excited states
to analytic potential energy functions at the present time.
Consequently, the present analysis represents all of the
observed levels of the A 2Π and B′ 2Σ+ states as independently
fitted term values. A full deperturbation analysis of the data for
these excited states remains the subject of ongoing work.
Six strong branches were observed in the A 2Π → X 2Σ+

system, consisting of ΔJ = −1, 0, and +1 (P, Q, and R)
branches for both the A 2Π1/2 and A 2Π3/2 components. Some
satellite branches (e.g., P12 and R21) were also observed.
In the B′ 2Σ+ → X 2Σ+ system, multiple off-diagonal bands

were observed as a result of favorable Franck−Condon overlap
for at least part of the observed range of J values. For almost all
of the bands in this system that were observed to moderately
high J, doublet e/f splittings caused by the spin−rotation
interaction were observed. Because these splittings could not be

resolved for low J values, the blended lines were assigned to
both e and f transitions and assigned a larger than “basic”
uncertainty.

C. Spectral Assignments. Although several steps were
involved in the assignment of the spectral lines, the process was
greatly facilitated by the 1978 work of Balfour and Lindgren,21

even though their spectrum was of much lower resolution. In
particular, their line lists of the B′ 2Σ+ → X 2Σ+ transitions
proved to be very helpful for our initial assignment of the
strongest bands of that system. A Loomis−Wood program was
used to generate our initial line lists.
We used the parameter-fitting program DParFit34 to check

our assignments of the B′ 2Σ+ → X 2Σ+ transitions by using
band constants to represent the ground state while treating the
observed upper-state levels as individual term values. Apart
from its usefulness for confirming our assignments, DParFit
assisted in the assignment of 31 weaker bands not observed by
Balfour and Lindgren21 (who reported 23 bands in our range of
wavenumbers) by predicting all of the other possible transitions
given the term values of the upper state established from a
preliminary analysis of the stronger bands. However, a
preliminary direct potential fit was required to locate precisely
the higher vibrational levels not observed by Balfour and
Lindgren. Specifically, the MgD data that had been assigned at
the time (extending up to v″ = 13) were fitted using the
procedure described below in section IV but with the minor
magnesium isotopologue data excluded. The resulting potential
function was then employed to predict the remaining bound
vibrational levels, which turned out to be v″ = 14, 15, and 16.
While that initial fit was not optimal, it was sufficiently precise
to locate transitions involving the v″ = 14 and 15 levels.
Since the ground state had been well-characterized already,

the A 2Π term values given in ref 17 were used to identify the
strong bands in the A 2Π → X 2Σ+ system (i.e., the 0−0, 1−1,
0−1, and 1−0 bands). Assignment of the remaining bands with
v′ = 0 and 1 was then straightforward. We did not pursue
assignments of the A 2Π → X 2Σ+ bands with v′ = 2 or 3, as no
new information on the ground X 2Σ+ state would thereby have
been obtained. However, in the interest of identifying
perturbations, assignment of the remaining data will form
part of our future deperturbation analysis.
Our spectra also contained several bands due to the

isotopologues 25MgD and 26MgD, for which the B′ 2Σ+ → X
2Σ+ transitions were assigned in the manner described above.
We also assigned analogous branches for 25MgH and 26MgH
that had not previously been reported. We sought only the
strongest bands for these minor isotopologues (i.e., those
involving v′ = 0 and 1), since we are concerned here solely with
identifying all of the perturbed levels of the major
isotopologues, while data for the minor ones serve only to
provide information on the BOB correction functions for the
magnesium center (see below).
As mentioned above, an uncertainty of 0.005 cm−1 was

assigned to all of the unblended lines of 24MgD. Lines assigned
to unresolved (blended) e/f splittings were given an
uncertainty of 0.015 cm−1, while lines that were blended with
other unrelated transitions were assigned an uncertainty of 0.05
cm−1. Lines of the latter type were usually identified by
inspection when particular data were determined to be outliers
in the band-constant fits. Minor isotopologues were given the
same treatment; however, since their lines are much weaker, all
of the uncertainty values were doubled, so that data for the
major magnesium isotopologues were the most heavily
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weighted in our direct potential fits. As previously reported,24

the highly precise infrared and microwave data have
uncertainties in the range 10−3−10−6 cm−1.
D. The Data Set. The overall data set is summarized in

Table 1 and Figure 2, while Table 2 lists the newly observed

bands of 24MgD and provides a qualitative indication of their
intensities. For the analysis described below, previously
reported microwave and infrared data on the ground X 2Σ+

state for all six isotopologues, together with visible transitions
from the B′ 2Σ+ and A 2Π states of 24MgH, were combined with
new observations of transitions from the B′ 2Σ+ and A 2Π states
of 24,25,26MgD and 25,26MgH. The new data set for the B′ 2Σ+ →

X 2Σ+ system of 24MgD consists of 55 bands involving v′ = 0, 1,
2, 3, and 4 of the B′ 2Σ+ state and v″ = 2−15 of the X 2Σ+ state,
while that for the A 2Π → X 2Σ+ system consists of Δv = 0, ±1,
and +2 sequence bands originating from v′ = 0 and 1.
Altogether, these 20 103 data span 99.88% of the well depth.
This includes the observation of transitions involving several
broadened quasi-bound levels, which shows that some
vibrational levels are followed almost all the way to their
centrifugal barrier maxima, where tunneling predissociation
becomes important.
For all of the bound vibrational levels of the ground X 2Σ+

state of 24MgD, Table 3 lists the J value, the energy relative to
the dissociation asymptote, and (for quasi-bound levels) the
predicted tunneling width for the highest observed rotational
state. The calculated line widths were generated from the DPF
program DPotFit that was used for our data analysis.35 This
table also lists, for each v, the J value for what is predicted to be
the very highest rotational level lying below the centrifugal
barrier maximum for that v.

III. DIRECT-POTENTIAL-FIT DATA ANALYSIS
A. The Radial Hamiltonian. An accurate analytic potential

energy function is the best way of summarizing what is known
about a molecule in a given electronic state. Such a function
should (i) be flexibleable to represent all available data (on
average) within the experimental uncertainties; (ii) be “well-
behaved”continuous and differentiable to all orders at all
distances; (iii) be robustable to provide physically reasonable
extrapolations outside the region over which the data used to
determine the potential are sensitive; (iv) be compactdefined
by a minimum number of empirical parameters; and (v)
incorporate the correct theoretically known long-range
behavior of the molecular state in question.
The best means for determining such a potential function

from spectroscopic data is to perform a “direct-potential-fit”
(DPF) data analysis, in which simulated spectra generated from
a trial analytic potential function are compared with the
experimental data and a least-squares fit is employed to
optimize the parameters defining that potential. The present

Table 1. Summary of the Data Used in the Present Analysis,
in Which v″ is the Vibrational Quantum Number of
Observed Levels in the X 2Σ+ State

isotopologue v″ range no. of data source

Microwave
24MgH 0−1 14 ref 24
24MgD 0−0 9 ref 24
26MgH 0−0 2 ref 24

Infrared
24MgH 0−4 366 ref 24
24MgD 0−5 389 ref 24
25MgH 0−3 185 ref 24
25MgD 0−4 149 ref 24
26MgH 0−3 179 ref 24
26MgD 0−4 163 ref 24

Visible
24MgH 0−11 7073 ref 29
24MgD 0−15 7438 this work
25MgH 3−8 815 this work
25MgD 4−11 1235 this work
26MgH 3−8 780 this work
26MgD 4−11 1306 this work

Total no. of data: 20103

Figure 2. Plot of all of the observed rovibrational levels in the ground
state of each isotopologue, showing the extent to which that electronic
state has been covered by the data.

Table 2. Observed (v′,v″) Bands in the B′ 2Σ+ → X 2Σ+ and
A 2Π → X 2Σ+ Systems of 24MgDa

A 2Π B′ 2Σ+

v′ = 0 v′ = 1 X 2Σ+ v′ = 0 v′ = 1 v′ = 2 v′ = 3 v′ = 4

vs s v″ = 0
s vs v″ = 1
s s v″ = 2 w

s v″ = 3 w w w
v″ = 4 s s s s w
v″ = 5 s s s s w
v″ = 6 s s w w w
v″ = 7 s s s s w
v″ = 8 s s s s w
v″ = 9 s s s w w
v″ = 10 s s w s w
v″ = 11 w s s s w
v″ = 12 w s w w
v″ = 13 w w w w
v″ = 14 w w
v″ = 15 w

aBand intensities are classified as very strong (“vs”), strong (“s”), or
weak (“w”).
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study involves a combined-isotopologue data analysis that
simultaneously treats data for the six isotopologues formed by
24Mg, 25Mg, and 26Mg with H and D and takes account of BOB
corrections to both the rotationless and centrifugal potentials as
well as of 2Σ rotational level splittings. We begin by describing
the effective radial Hamiltonian used in this work.
As in most DPF data analyses reported to date, the present

work uses a form of the effective radial Hamiltonian introduced
by Watson, in which BOB terms associated with the radial
kinetic energy operator are incorporated into both an effective
“adiabatic” correction to the rotationless potential and the
nonadiabatic centrifugal BOB correction.36,37 Following the
convention of ref 38 for mass scaling of the BOB terms and that
of Paper 1 for describing the spin−rotation interaction, the
effective radial Schrödinger equation for a diatomic molecule
A−B in a 2Σ+ electronic state is written as

ψ
μ

μ

ψ
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a selected reference isotopologue, ΔVad
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between the effective adiabatic potential for isotopologue α and
that for reference isotopologue (α = 1), μα is the usual reduced
mass of atoms A and B, and g(α)(r) is the effective nonadiabatic
centrifugal-potential correction function for isotopologue α.
The potential energy and centrifugal BOB corrections are each

expressed as a sum of contributions associated with the two
constituent atoms:36−38
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in which ΔMA
(α) ≡ MA

(α) − MA
(1) is the difference between the

mass of atom A in isotopologue α and that in the reference
isotopologue and the expressions used for the radial strength
functions Sãd

A/B(r) and R̃na
A/B(r) are described in section III.C. As

in Paper 1, following the approach introduced in ref 39 for Λ-
doubling interactions, the rotational level splittings due to the
spin−rotation interactions in a molecule with 2Σ+ symmetry are
taken into account by inclusion of the radial strength function
ΔVΣ(r) with the numerical factors s(e;N) = +N/2 for states
with e symmetry and s(f;N) = −(N + 1)/2 for those with f
symmetry.40

B. The Morse/Long-Range (MLR) Potential Function.
The choice of an optimum potential function form is a central
concern in the DPF method. Paper 1 used the “basic” initial
form of the (then) recently developed41 Morse/Long-Range
(MLR) potential function to model the rotationless adiabatic
internuclear potential of MgH. The version of that function
used here incorporates significant extensions of the MLR form
introduced in refs 42 and 43. These extensions allow us to
obtain more compact (fewer-parameter) potential functions
that also have more reasonable physical behavior in the short-
range extrapolation region than was obtained using the basic
version of the model.43

A central feature of the MLR potential function form is that
it incorporates the inverse-power long-range behavior charac-
teristic of all intermolecular interactions, namely,

≈ − − −V r
C
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( ) ...m

m
m
mMLR

1

1

2

2 (4)

in which the powers mi and coefficients Cmi
are determined by

the nature of the atoms to which the given molecular state
dissociates44−49 and the leading coefficients may often be
computed from theory. Incorporation of the correct long-range
behavior is always desirable, but it is particularly important
when the observed vibrational levels extend fairly close to the
dissociation limit . This is the case for MgH and MgD, as
their highest observed vibrational levels have outer turning
points that lie outside the so-called50,51 “Le Roy radius” of 4.7
Å, which is commonly taken to indicate the onset of the region
in which the inverse-power sum of eq 4 dominates the
interaction.
The updated version of the MLR radial potential energy

function used herein takes the form42,43,49,52

= − β−
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in which e is the well depth, re is the equilibrium internuclear
distance, and the explicit radial variable yp

eq(r) in the exponent is
defined as

=
−
+
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Table 3. Identity, Energy (Relative to the Potential
Asymptote), and Width (for Quasi-Bound Levels) of the
Highest Observed Rotational State for Each Vibrational
Level of the X 2Σ+ State of 24MgD and the Rotational
Quantum Number Jlast

pred for What Is Predicted To Be the Very
Highest Quasi-Bound (Lying below the Centrifugal Barrier
Maximum) Rotational State for Each v″ (Energies in cm−1)

highest observed predicted

v Jmax
obs Ev,N − width Jlast

pred

0 58 −1364.20 − 86
1 52 −2144.17 − 81
2 51 −1576.16 − 76
3 45 −2163.98 − 71
4 62 2500.44 0.0012 67
5 58 2114.30 0.0032 62
6 54 1780.06 0.010 58
7 50 1494.01 0.051 53
8 45 1098.83 0.022 48
9 40 7850.04 0.015 43
10 35 546.51 0.022 38
11 30 372.91 0.096 32
12 24 187.19 0.037 26
13 18 77.46 0.030 20
14 12 17.56 0.002 13
15 7 0.44 3.1 × 10−7 8
16 − − − 3
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The (attractive) long-range tail of the potential function, uLR(r),
is represented by the “damped” inverse-power sum
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= + + +
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Recent work42 has shown that the exponent coefficient function
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is best defined in terms of two radial variables that are similar in
form to yp

eq(r) but involve the use of a different expansion
center, rref > re, and separate integer powers p and q, one of
which is the same as that appearing in eq 6:
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A central property of the MLR form is the fact that the limiting
asymptotic value β∞ ≡ limr→∞ β(r) of the exponent coefficient
function of eq 8 is

β ≡∞ u rln{2 / ( )}e LR e (10)

This means that for p > (mlast − m1) (see below), VMLR(r)
behaves asymptotically as

≈ − +
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⎫⎬⎭V r u r
u r

( ) ( )
( )
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2
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For cases in which m1 is relatively small, the nature of the last
term in eq 11 sometimes requires additional constraints to be
introduced.42,52 However, in the present application m1 = 6,
and such constraints are not required.
It should be noted that the power p in eqs 5, 6, and 8 must

be larger than the difference between the (inverse) powers of
the first and last terms included in eq 7 to prevent the long-
range behavior of the exponential term in eq 5 from interfering
with the long-range behavior specified by eq 7.41,42 However,
this restriction often requires p to be fairly large (e.g., p ≥ 5 in
the present work), which in turn causes yp(r) to be relatively flat
(and close to its limits of ±1) over a significant fraction of the
data-sensitive range of r. This “stiff” behavior of the expansion
variable tends to make it difficult to converge on an accurate
potential function model without introducing an undesirably
large number of exponent polynomial expansion coefficients.
The difficulty encountered in dealing with the large values of

p required by the restriction that p > (mlast − m1) led to the
introduction of the additional radial variable yq(r) of eqs 8 and
9.42 The form of these expressions means that the value
assigned to the power q has no effect on the long-range
behavior of the exponential term in eq 5, so assigning q a
relatively small value (say q = 2−4) enables the determination
of accurate potential functions having smaller exponent
polynomial orders N than would otherwise be required.53

The introduction of a radial variable expansion center rref (>re)
that lies close to the geometric mean of the inner and outer
ends of the range of r to which the data are sensitive also helps
to reduce the order of the (exponent) polynomial expansion
required to obtain a given quality of fit. It is also noteworthy

that the introduction of rref > re also leads to expansion
coefficients βi whose magnitudes are more commensurate with
the domain of the variable and the range of the function than is
the case for rref = re.

43 The impact of these two extensions of the
basic MLR model of ref 41 is demonstrated by the fact that the
exponent coefficient function of the MLR potential obtained in
the present work contains six fewer exponent polynomial
expansion parameters (almost one-third fewer!) than were
required in the fit to the 24MgH data alone in Paper 1.29

Finally, we note that although all intermolecular potential
energy functions eventually take on the simple inverse-power
form of eq 4 at very long range,44−46 it has long been known
that at shorter “molecular” distances, overlap of the electron
distributions of the interacting atoms weakens the inverse-
power dispersion terms and removes their high-order singular
behavior as r→ 0.54 This was the reason for the introduction of
the “damping functions” Dmi

(r) in eq 7. However, as discussed
in ref 43, the use of an appropriate damping function form not
only improves the physical behavior of MLR potential functions
at long range but also substantially improves their extrapolation
behavior at small distances. As a result, following the
recommendation of ref 43, the damping functions appearing
in our MLR model for the potential energy function of MgH
are the s = −1 versions of the generalized Douketis-type
functions55
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+

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
⎫
⎬
⎭

D
b r

m
c r

m
1 exp

( ) ( )
m

s
s s

m s

( )
( ) ( ) 2

12
(12)

A key property of this generalized43 damping function form is
the fact that for all m,

∝
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Within the MLR potential function form, this causes the the
potential energy function to behave as r2s at very short range.
The two system-independent parameters in these s = −1
damping functions have values b(−1) = 3.30 and c(−1) = 0.423.43

Within the damping function form of eq 12, the constant ρ is
a system-dependent range parameter introduced to take
account of the sizes of the electron clouds on the interacting
atoms. Following Douketis et al.,55 for interacting atoms A and
B we write

ρ ρ
ρ ρ

ρ ρ
≡ =

+
2

AB
A B

A B (14)

in which ρA = (IPA/IPH)2/3 is defined by the ratio of the
ionization potential of atom A, IPA, and that of a ground-state
H atom, IPH. The value of this dimensionless parameter used to
define the damping functions employed in the present model
for ground-state MgH is ρMgH = 0.81.

C. Born−Oppenheimer Breakdown Radial Strength
Functions. The empirical determination of radial functions to
characterize the nature and strength of BOB contributions to
the radial Hamiltonian was pioneered by J. A. Coxon over a
quarter century ago56,57 and has evolved to become an almost
routine part of diatomic DPF data analyses for both
hydride58−62 and non-hydride39,42,52,63,64 systems. The present
work follows the approach introduced in ref 65, in which the
radial strength functions defining the adiabatic and centrifugal
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BOB functions are written in the same form used for the MLR
exponent coefficient function, specifically,

∑̃ = + −∞
=

S r u y r y r u y r( ) ( ) [1 ( )] ( )p p
i

N

i q
i

ad
A,B A,B eq eq

0
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ad ad
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i q
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A,B A,B eq eq

0

eq

na na

na
A,B

na (16)

in which pad = m1 = 6 is the (inverse) power associated with the
leading contribution to uLR(r). Our adoption of the convention
that the absolute zero of energy be defined as the energy of the
ground-state atoms at infinite separation65 means that for all
electronic states that dissociate to ground-state atoms, u∞

A = u∞
B

= 0. In contrast, for an electronic state that dissociates to yield
an electronically excited atom A*, the value of u∞

A would be
defined by the isotope shift of the atomic A → A* transition
energy.65 However, since the present work uses a potential
energy function model only for the ground X 2Σ+ state of MgH,
this question does not arise here. The factors t∞

A,B similarly
define the limiting asymptotic values of the nonadiabatic
centrifugal BOB functions R̃na

A,B(r), but the arguments presented
in ref 65 indicate that except for cases in which the electronic
state dissociates to yield an atomic ion (A+), t∞

A = 0. Finally, in
view of Watson’s conclusion that the value of R̃na

A,B(r = re)
cannot be determined from transition-energy data alone,36,37

we therefore fix t0
H = t0

Mg = 0.
As discussed in ref 65, the integer pad in eq 15 must be set at

pad = m1, the power of the leading term in eq 7, in order to
ensure that the long-range tail of the potential energy function
has the same limiting inverse-power behavior for all
isotopologues of a given species. However, there are no
analogous restrictions on the value of qad. Similarly, the value of
qna does not affect the limiting long-range behavior of R̃na

A,B(r),
and since we know of no constraint on the limiting long-range
behavior of the latter function, it is convenient to fix qna = pna.
We know of no theoretical predictions regarding the

characteristic limiting long-range behavior expected for the Σ-
doubling radial strength function ΔVΣ

(α). Hence, it is convenient
to represent it using a simple polynomial expansion in the
reduced variable yqΣ

eq(r) of eq 6:
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As for the expansions in eqs 15 and 16, there are no theoretical
constraints on the choice of the integer qΣ.
D. Aspects of the Fitting Procedure. As in any DPF

procedure, for a given assumed model of the potential energy
function(s) and any associated BOB functions, eq 1 is solved
numerically to yield the eigenvalues Ev,N and eigenfunctions
ψv,N(r) for the upper and lower levels of every observed
transition. The difference between the eigenvalues for those
upper and lower levels yields an estimate of the transition
energy for comparison with experiment, and use of the
Hellmann−Feynman theorem

ψ ψ
∂

∂
= ∂ ̂

∂
E

p
r

p
r( ) ( )v N

j
v N

j
v N

,
, ,

(18)

yields the partial derivatives required for performing a least-
squares fit to optimize the parameters pj defining the

parametrized potential energy and BOB functions. The DPF
data analysis described below was performed using the
computer program DPotFit,35 within which all of the requisite
eigenvalue calculations were performed using a Numerov
propagation algorithm66 on the radial range r ∈ [0.6, 99] Å
with a radial mesh of 0.0025 Å.
The overall quality of fit of a given model to a set of N data

points is represented here by the dimensionless root-mean-
square deviation

∑≡
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y y

u
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i

N
i i
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calc obs 2

(19)

in which yi
calc and yi

obs are, respectively, the calculated and
observed values of the ith datum, while ui is its estimated
experimental uncertainty. A value of dd ≲ 1 indicates that on
average the model explains all of the input data within their
estimated uncertainties. It should also be noted that obtaining
values of dd that are significantly smaller than unity often
indicates that the estimated experimental uncertainties were
unduly pessimistic.
As stated earlier, the extensive perturbations in the excited

electronic states led us to treat all of their observed levels as
independent term values. As a result, our final global fits
involved a total of 2433 fitting parameters, of which 51 were
associated with the Hamiltonian for the ground X 2Σ+ state
while the remaining 2382 were those fitted term values. Of the
latter, some 115 (4.8%) were for levels that were accessed by
only a single emitted line. These 115 data of course contain no
information about the ground electronic state, and in principle
they should have been excluded from the sum in eq 19 since all
of the associated yi

calc − yi
obs values are identically zero.

However, we left them in because of the residual information
they contain about the excited-state levels, but we corrected the
final value of dd to take account of this.
Since the eigenvalues Ev,N of the ground X 2Σ+ state are not

linear functions of the parameters defining the effective radial

Hamiltonian ̂ , a realistic initial set of trial parameters is
required to initiate the fitting cycle. Such trial parameters may
be generated from a fit of the chosen potential form to a mesh
of approximate potential function points, which in turn may be
obtained from ab initio calculations or from the application of
the semiclassical Rydberg−Klein−Rees inversion procedure67

to the results of a preliminary Dunham-type analysis. In the
present case, we selected a grid of points generated from the
fitted potential reported in Paper 1 and used the program
betaFIT68 to generate the required sets of trial potential
function parameters. Because the BOB and Σ-doubling
correction functions are relatively weak, initial trial parameter
values of zero sufficed for them.

IV. RESULTS: NEW POTENTIAL ENERGY AND BOB
FUNCTIONS FOR THE GROUND STATE OF MGH

A. New Potential Energy and BOB Functions for the
Ground State of MgH. Determining an optimum radial
Hamiltonian description of the ground state of MgH is a
complicated multidimensional problem because it is necessary
to determine optimum descriptions of six different radial
functions: (i) the exponent coefficient function β(r) of the
MLR potential; (ii) and (iii) the potential energy and
centrifugal BOB functions for the H-atom terms in eqs 2 and
3; (iv) and (v) the analogous potential energy and BOB
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functions for the Mg atom; and (vi) the 2Σ-doubling radial
strength function ΔVΣ

(α)(r). Fortunately, isotope effects and the
results of Paper 1 simplify the problem considerably. In
particular, if we initially consider only the one isotopologue for
which the data are most extensive, 24MgH, we need consider
only β(r), the H-atom centrifugal BOB function R̃na

H(r), and the
2Σ-doubling radial strength function ΔVΣ

(α)(r). Although the
Mg-atom centrifugal BOB function R̃na

Mg(r) may also affect those
data, the relative atomic mass ratio of 24:1 leads us to expect
that its effect will be relatively small, allowing it to be ignored
initially.
Throughout the present work, the long-range tail of the MLR

potential was represented by a three-term version of eq 7 with
mi = 6, 8 and 10; the corresponding coefficients Cmi

were fixed
at the theoretical values of Mitroy and Zhang,69 and the
damping functions were represented by the s = −1 versions of
the generalized Douketis-type functions of eq 12. Because of
the particular inverse powers appearing in our long-range tail
function uLR(r) (6, 8, and 10), the power p defining the
dimensionless radial variables of eqs 6 and 9 must be >4, and
throughout most of the present work it was fixed at p = 5. The
remaining problem was to determine optimum values for the
exponent polynomial order Nβ, the power q defining the
expansion variable of eqs 8 and 9, and the expansion center rref
of eq 9. A realistic preliminary estimate of this last quantity is
the geometric mean of the inner and outer turning points for
the highest vibrational level included in the analysis,43 which in
the present case suggested rref ≈ 2.9 Å. For any given {Nβ, p, q,
rref} model, it is also necessary to have realistic initial trial values
of the exponent coefficients {βi} to begin the nonlinear fit to
the experimental data. They were obtained by the procedure
described at the end of section III.D.
Some preliminary experimentation indicated that polyno-

mials of order Nna
H ≈ 7 with pna

H = qna
H = 4 and NΣ ≈ 3 with qΣ =

4 should describe the centrifugal BOB and 2Σ-doubling
correction functions properly, so these models were assumed
for those two functions in our initial work on determining
optimum values of Nβ, rref, and q. Fits were then performed
across a range of rref values for a selection of combinations of Nβ

and q, yielding the results presented in Figure 3. The three
plots for fits performed using the q = 4 expansion variables (red
curves joining red squares) illustrate two general results: (i) for
any given combination of q and rref, a fit of optimum quality
(i.e., minimum dd) can always be obtained if Nβ is made
sufficiently large; and (ii) the range of rref values yielding a good

quality of fit becomes ever wider as Nβ increases. On the basis
of the results shown here, we chose Nβ = 12, rref = 2.72 Å, and q
= 4 to define our recommended MLR potential for MgH. This
model requires six fewer fitted exponent expansion parameters
βi than did the recommended model of Paper 1.29 This
compactness was achieved because of the additional sophisti-
cation introduced into the model by including the expansion
center rref and expansion variable power q as additional
parameters and because of the improvements in the short-
range behavior arising from the introduction of damping
functions into our definition of uLR(r).

43

Given a recommended model for the potential energy
function, it is appropriate to test the convergence of the fit with
respect to the orders of the polynomial functions used to
represent the H-atom centrifugal BOB correction and the 2Σ-
splitting radial strength functions. These results are summarized
in Figure 4, where we see that convergence is achieved at Nna

H =

7 and NΣ = 3. Tests showed that expanding these functions in
terms of radial variables defined by pna

H = pΣ = 3 (rather than 4)
did not affect this convergence behavior. Figure 5 shows the
nature of the radial strength functions determined in this way.
It should be noted that the short-range divergence of the R̃na

H(r)
functions occurs at very small distances, well outside the data-
sensitive region. Moreover, although it appears that the radial
function ΔVΣ

(1)(r) for NΣ = 3 has not fully converged to that for
NΣ = 4, the values of dd for those two cases differ by only 0.1%,
a difference deemed to be too small to justify the inclusion of
yet another parameter in the model. The width of the “data
region” in the top panel of Figure 5 is defined by the inner and
outer turning points of the highest vibrational level for which
2Σ splittings were resolved, while that for the H-atom
centrifugal BOB function is defined by the turning points of
the highest observed vibrational level of 24MgH.
Our next objective was to incorporate data for the minor Mg

isotopologues into the analysis and to determine the associated
BOB correction functions. As shown in Table 1, the vibrational
range spanned by these data is distinctly smaller than that
associated with the dominant isotopologue, so we anticipated
that relatively few terms would be required to define these
functions. The inset and the blue circles in Figure 6 show that

Figure 3. Quality of fit to the 7453 24MgH data for MLR models Np,q
as functions of rref, where N ≡ Nβ.

Figure 4. Convergence of the fits to the 7453 24MgH data with respect
to the orders of the polynomials used to represent the H-atom
centrifugal BOB function R̃na

H(r) and the 2Σ-doubling strength function
ΔVΣ

(1)(r). These results were all obtained using the optimum Np,q
rref =

125,4
2.72 MLR model implied by the results in Figure 3.
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convergence with respect to the order of the expansion for the
“adiabatic” Mg-atom potential energy BOB correction function
occurs at Nad

Mg = 3. Figure 7 presents plots of the resulting

Sãd
Mg(r) functions for a range of Nad

Mg values. While the function
for Nad

Mg = 3 does not appear to be fully converged to that for
Nad

Mg = 4, the values of dd for these two cases differ by only
0.004%, and this small difference also did not justify including
yet another fitting parameter in the model. The fits were unable
to discern any dependence on the Mg-atom centrifugal BOB
correction function R̃na

Mg(r).
The next step in our analysis was to determine the adiabatic

BOB potential energy correction function Sãd
H(r) that would

allow not only a unified treatment of the MgH and MgD data
but also reliable predictions for MgT transitions. The red
squares in Figure 6 show the convergence of fits to all 20 103
MgH and MgD data with respect to the number of nonzero
terms in our expression for S ̃adH(r). The circle around the result
for Nad

H = 13 indicates that that is where convergence is
achieved. Figure 8 then shows plots of the resulting adiabatic

correction functions. Once again, the implausible divergence of
these functions only occurs at very short distances, well outside
the data-sensitive region.
Finally, it was appropriate to re-examine our determination

of the optimum MLR potential function model using fits to all
20 103 MgH and MgD data in place of the 7453 24MgH data
used in the fits summarized in Figure 3. For the four families of

Figure 5. Plots of (bottom) the H-atom centrifugal BOB function
R̃na
H(r) and (top) the 2Σ-doubling radial strength function ΔVΣ

(1)(r)
determined in this analysis, showing the convergence of these
functions with increasing polynomial orders Nna

H and NΣ.

Figure 6. Convergence of fits to all 20 103 MgH and MgD data with
respect to the number of terms in the polynomial used to represent the
“adiabatic” H-atom potential energy BOB function S̃ad

H(r) (red
squares). The inset and blue circles show the convergence of fits to
all 9414 MgH data with respect to the number of fitted coefficients in
the polynomial used to represent the “adiabatic” Mg-atom potential
energy BOB function S̃ad

Mg(r). All of these results were obtained using
the optimum Np,q

rref = 125,4
2.72 MLR model implied by the results in Figure

3 and the centrifugal BOB and 2Σ-splitting functions determined from
Figure 4.

Figure 7. Plots of the fitted Mg-atom adiabatic potential energy BOB
functions for increasing values of the polynomial order Nad

Mg.

Figure 8. Plots of the fitted H-atom adiabatic potential energy BOB
functions for increasing values of the polynomial order Nad

H .
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potential function models that yielded the best results in Figure
3, Figure 9 shows how the global quality of fit and the fitted
values of e and re vary with rref. From the dd values shown in
the bottom panel of Figure 9 we conclude that our optimum
MLR model remains Np,q = 125,4 but that the optimum value for
rref should be shifted from 2.72 to 2.74 Å.
The algebraic structure of eq 5 ensures that our fitted

potential energy function assumes the long-range form V(r) ≈
− C6/r

6 − C8/r
8 + ... in the limit r → ∞. This means that as

1/r2 → 0, a plot of C6
eff(r)  r6[ − V(R)] versus 1/r2 should

linearly approach a limiting value of C6
theory with a slope of

C8
theory. However, one sometimes encounters significant

deviations from a monotonic approach to this behavior at
distances outside the data-sensitive region (i.e., past the outer
turning point of the highest observed level). As a test of this
concern, Figure 10 presents plots of this type for five of the
“best-fit” models determined from the minima of dd in Figures
3 and 9. In the two lower panels of Figure 10 we see that all of
these potential function models do indeed have the expected
limiting behavior. However, as is often the case for models with
relatively low q values, the 135,3

2.65 model has a spurious
extremum between the end of the data region (indicated by the
outer turning point for v = 11) and the asymptotic limit. This
unphysical extrapolation behavior confirms that q = 3 should

not be used to define the MLR exponent expansion variable for
this system. All of the other models show the positive curvature
away from the limiting slope that is expected because the third
term in uLR(r) is an attractive C10/r

10 term. On the basis of this
physically sensible extrapolation behavior, and because it
requires fewer exponent polynomial expansion coefficients
than the other “good” models, we choose the Np,q

rref = 125,4
2.74 MLR

function as the recommended potential energy function for the
ground state of MgH. Figure 11 shows the nature of the
exponent coefficient function for this MLR potential.
The parameters defining our final recommended Hamil-

tonian model for the multi-isotopologue MgH/MgD system are
listed in Table 4. A Fortran subroutine for generating the
effective potential energy and the centrifugal potential function
for any of the isotopologues of MgH is included in the
Supporting Information. The uncertainties in e and re given
in Table 4 are the “averaged-over-models” results described
below, and analogous model-averaged uncertainties are given
for the leading adiabatic BOB parameter for each atom, u0

H and
u0
Mg, since they provide a direct measure of the difference
between the well depth for isotopologue α and that for the
reference isotopologue (α = 1):

Figure 9. (bottom) Quality of fit of the 20 103 MgH and MgD data to MLR Np,q model potentials as functions of rref, where N = Nβ. The shaded
region encompasses the models used to estimate the uncertainty due to model dependence, and the circle indicates the recommended model.
(middle, top) Fitted values of e and re for a range of MLR Np,q potential models. The shaded areas indicate the overall estimated parameter
uncertainties, while the circles indicate the recommended model.
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However, uncertainties are not listed for the nonphysical
parameters characterizing the shapes of the various radial

functions. The differences in the well depths for the minor
isotopologues implied by eq 20 are listed in Table 5. It should

be noted, however, that to generate an accurate potential
energy function for one of these species, it does not suffice to
simply replace the value of e in Table 4 by one obtained using
Table 5; rather, one must add the appropriate adiabatic
correction function ΔVad

(α)(r) of eq 2 to the MLR potential for

Figure 10. (bottom and middle) Plots of C6
eff(r) cm−1 Å6 to test the

extrapolation behavior of five of the “best-fit” models of Figure 9. The
black points show the positions of the inner and outer turning points
of the observed levels of 24MgH. (middle) Expanded version of this
C6
eff(r) plot in the region 1/r2 < 0.09 where the C6

eff(r) plots dip below
the limiting C6/C8 line. (upper) Plot of these actual potential functions
(superimposed in this scale) at distances from the outer turning points
for v = 8 to beyond that for v = 11.

Figure 11. Plot of β(y4
2.74(r)) showing the range of y4(r) defined by the

turning points of the highest observed vibrational level, v = 11 of MgH.

Table 4. Fitted Parameters Defining the Recommended
Radial Hamiltonian for the Isotopologues of MgH in its
Ground X 2Σ+ Statea

e 11 104.25 ± 0.80 {pad, qad} {6, 4}

re 1.729 685 4 ± 0.000 000 7 u0
H −15.183 ± 0.61

{p, q} {5, 4} u1
H 37.524

rref 2.74 u2
H −11.607

β0 1.170 475 46 u3
H 32.2

β1 1.080 157 9 u4
H 60.57

β2 2.673 297 1 u5
H 229.5

β3 2.483 59 u6
H −1561

β4 0.740 13 u7
H −2013

β5 0.191 47 u8
H 12 530

β6 0.603 83 u9
H 5360

β7 −2.4873 u10
H −49 740

β8 −7.6653 u11
H 10 500

β9 −5.731 u12
H 71 100

β10 2.839 u13
H −47 000

β11 6.054 u∞
H [0.0]

β12 2.4
u0
Mg 1.31 ± 0.16

{pna, qna} {4, 4} u1
Mg 4.18

t0
H [0.0] u2

Mg 2.67
t1
H 0.000 726 6 u3

Mg 4
t2
H 0.000 27 u∞

Mg [0.0]
t3
H 0.000 911
t4
H 0.002 97 {qΣ} {4}
t5
H −0.0019 w0

Σ 0.004 619 3
t6
H −0.0072 w1

Σ −0.003 14
t7
H 0.023 w2

Σ 0.000 27
t∞
H [0.0] w3

Σ −0.004 54
aThe MLRp=5,q=4

rref=2.74(Nβ = 12) potential function incorporates a three-
term uLR(r) function defined by69 C6 = 2.7755 × 105 cm−1 Å6, C8 =
3.4549 × 106 cm−1 Å8, and C10 = 4.6140 × 107 cm−1 Å10 and the
damping functions of eq 12 with s = −1 and ρAB = 0.81. It should be
noted that all of the μi

H/Mg parameters have units of cm−1. This model
reproduces the 20 103 observations (on average) to within 0.869 times
their estimated experimental uncertainties.

Table 5. Well-Depth Differences Δ e and Ground-State
Dissociation Energies 0 for Nine Isotopologues of MgH

species Δ e/cm
−1

0/cm
−1

24MgH 0.0 10365.141
25MgH −0.052(6) 10365.680
26MgH −0.101(11) 10366.176
24MgD 7.586(30) 10576.971
25MgD 7.533(31) 10577.744
26MgD 7.483(32) 10578.455
24MgT 10.110(41) 10668.371
25MgT 10.057(41) 10669.311
26MgT 10.009(42) 10670.178
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the reference isotopologue 24Mg1H defined by the parameters
of Table 4.
The two upper panels of Figure 9 show that model

dependence is a much larger source of uncertainty than are
the correlated parameter uncertainties associated with any given
fit (error bars on points). To take account of this, the scheme
for averaging over models introduced in ref 70 was applied to
all of the models whose dd values lay within 2% of the lowest
value attained (shaded region in the bottom panel of Figure 9).
In particular, the statistical weight for parameter value Pi yielded
by a particular fit is defined in terms of the correlated 95%
confidence limit uncertainty in the value of that parameter
yielded by the fit, u(Pi), and the overall quality-of-fit parameter
ddi:

=w
u P dd

1
[ ( ) ]i

i i
2

(21)

The ‘average-over-models’ estimate of that parameter is then
given by
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∑
∑
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while the model-averaged estimate of the uncertainty in that
parameter is calculated as the square root of the sum of the
squares (SRSS) of the 95% confidence limit uncertainty in the
(above) average of the parameter values and the average of the
95% confidence limit uncertainties yielded by the individual
fits:70
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in which f 95(m) (≈2) is the Student’s t-factor corresponding to
a 95% confidence interval for m degrees of freedom.71

Application of this scheme to all of the 21 models whose dd
values lie within 2% of the lowest value attained (shaded region
in the bottom panel of Figure 9) yielded overall estimated
uncertainties u ̅( e) = 0.80 cm−1 and u ̅(re) = 0.000 000 73 Å. It
should be noted, however, that while the average values of e
and re yielded by eq 22 (dotted lines in the upper panels of
Figure 9) lie well outside the uncertainties in the parameter
values associated with the recommended “best-fit” model
(circled points in Figure 9), these differences are well within the
overall uncertainty ranges (shaded regions centered on the
results for the recommended best-fit model in the upper panels
of Figure 9). It should also be noted that if the averaging had
included all of the 32 models whose dd values lie within 5% of
their minimum, these estimated uncertainties would have
increased only to 1.15 cm−1 and 0.000 000 81 Å, respectively,
while if it had been restricted to the 15 models whose dd values
lie within 1% of the minimum, these uncertainties would have
decreased to 0.78 cm−1 and 0.000 000 74 Å, respectively.
Figure 12 presents a plot of the MLR5,4

2.74(12) potential energy
function and shows the locations of all bound vibrational levels
of the 24MgH and 24MgD isotopologues. The inset shows the
distinct differences in the energies at the potential minima for
24MgH and 24MgD on an expanded scale. However, even on
this scale, the −0.00024 Å shift of the position of the deuteride
minimum relative to that of the hydride (see eq 29 of ref 42) is

not discernible. Predictions for the analogous MgT isotopo-
logues show that their highest bound level is v = 20, which is
bound by only 0.035, 0.068, and 0.110 cm−1 for 24MgT, 25MgT,
and 26MgT, respectively. Listings of the binding energies and
band constants of all vibrational levels of all six isotopologues
are given in the Supporting Information.
For illustrative purposes, Figure 12 also shows an RKR

potential curve for the B′ 2Σ+ state in this figure, taken from ref
72. This shows the radial displacement of the excited-state
potential that led to our observations of so many transitions
involving the higher vibrational levels of the ground state
originating from the five lowest levels in the B′ 2Σ+ state.

V. DISCUSSION
One feature of the final recommended Hamiltonian model that
may seem somewhat less than ideal is the need for more
parameters in the polynomial that defines the H-atom
potential-energy BOB correction Sãd

H(r) of eq 15 than are
required to define the exponent polynomial β(r) of eq 8 that
defines the shape of the potential energy function itself. In an
attempt to address this point, we experimented with the use of
a radial expansion variable for Sãd

H(r) defined in terms of an
independent expansion center rref

ad . However, while this did
allow us to obtain good fits with lower-order S ̃adH (r)
polynomials, the reduction was not enough to justify the
additional complexity of the model. Moreover, when one
includes e, re, rref, q, and Nβ, the number of parameters
required to define the Sãd

H(r) function of Table 4 (14) is fewer
than that required to define the 24MgH MLR potential, and this
combined model also allows us to make reliable predictions for
all of the tritium isotopologues. Thus, we conclude that our
representation of the S ̃adH(r) function by a 14-term polynomial
in y4

eq(r) is indeed appropriate.
Figure 10 shows that the recommended potential does

indeed approach the expected limiting C6/C8 behavior in the

Figure 12. Plot of the ground-state potential energy curves for MgH
and MgD (indistinguishable on this scale) showing the energies and
turning points for all of the bound vibrational levels (dotted lines for
MgH and solid lines for MgD) as well as turning points for the first
five levels of the B′ 2Σ+ state. Inset: Details of the ground-state hydride
and deuteride potentials near their minima on an enlarged scale; very
little shift in the equilibrium internuclear distance is evident.
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limit as r → ∞ (1/r2 → 0). However, the dip below the
theoretical C6/C8 line in the region between the outer turning
points for v = 8 and v = 11 is an interesting indicator of the
nature of the intermolecular forces in this region. In particular,
while the top panel of Figure 10 shows that the potential itself
is smooth and monotonically attractive there, the C6

eff(r) plots
show that at distances shorter than about 5.5 Å the growth of
the attractive potential is substantially slower than any plausible
extrapolation of the limiting dispersion energy behavior would
lead us to expect. Moreover, the fact that in this region lie the
outer turning points of the v = 9−11 levels, which are
associated with some 294 experimental data, means that this
behavior is not some artefact of our model for the potential
energy function.
In conclusion, inclusion of the new MgD data reported

herein in a global DPF analysis has allowed us to obtain a better
overall description of all of the isotopologues of the ground X
2Σ+ state of MgH. A new model-averaged estimate of the
24MgH well depth has been determined to be e = 11104.25 ±
0.80 cm−1, in which the uncertainty takes account of averaging
over a range of physically acceptable models. In addition, BOB
radial strength functions indicate that the deuteride potential
well is 7.58 ± 0.30 cm−1 deeper than that of the hydride.
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